用户名: 密码: 验证码:
多花水仙花色相关基因的分离及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水仙花是世界著名的球根花卉,在中国已有1000多年的栽培历史,是中国十大传统名花之一。主栽品种单一、种性退化已经严重制约了我国水仙花产业的发展,由于主栽品种是三倍体,难于通过有性杂交开展新品种选育。国内水仙育种起点低,相关生理生化的基础研究积累少,花色分子育种进展慢。本研究以黄花水仙2号和金盏银台为材料,先测定开花期色素物质种类及变化,再构建不同颜色花瓣正反向抑制消减杂交cDNA文库,分离并克隆若干花色差异相关基因cDNA全长,通过分析花期候选基因的表达水平,筛选花色差异的关键因子,并获取黄花水仙2号PSY5'端侧翼序列。本研究为进一步开展水仙花色基因工程育种提供了一定的理论依据和部分基因资源。主要研究结果如下:
     1、测定两种花色水仙类胡萝卜素和类黄酮物质的含量
     采用高效液相色谱法(HPLC)测定水仙花开花过程类胡萝卜素物质和类黄酮物质的含量。结果表明:黄花水仙2号的主要色素物质是芦丁和叶黄素,金盏银台的主要色素物质是芦丁、柚皮苷和叶黄素。两种水仙在花蕾期已经有大量色素物质的积累,花期两个品种副冠和花瓣中芦丁和柚皮苷的含量变化趋势基本一致,均表现为花蕾期含量最高,始花期、盛花期有所降低,衰败期又升高的趋势,而叶黄素含量变化不同。t测验分析结果表明:两种花色的差异可能主要受到叶黄素含量的影响,叶黄素可能与水仙花黄色、橙黄色的形成有关,而芦丁和柚皮苷可能起辅助色素作用。
     2、构建不同颜色水仙花瓣抑制消减杂交cDNA文库
     应用抑制性消减杂交(SSH)技术成功构建了盛花初期黄花水仙2号黄色花瓣与金盏银台白色花瓣的正、反向cDNA消减文库。随机挑选正向文库716个、反向文库216个阳性克隆进行测序和生物信息学分析。Gene Ontology(GO)功能分类结果显示,水仙花色差异可能涉及多条代谢途径,有多个基因的参与。文库二次筛选,获得13个与花色差异相关的候选基因UniESTs:八氢番茄红素合成酶基因(PSY)、类胡萝卜素异构酶基因(CRTISO)、异戊烯焦磷酸异构酶基因(IPI)、9-顺式-环氧类胡萝卜素双加氧酶基因(NCED)、1-羟基-2-甲基-2-丁烯基-4-磷酸合酶基因(HDS)、4,5,7-三羟黄烷酮,2-酮戊二酸3-双氧酶基因(F3H)、对香豆酸-3羟基化酶基因(C3H)、黄酮合酶基因(FNS)、黄酮醇3’单加氧酶基因(F3’H)、咖啡酸甲基转移酶基因(COMT)、黄酮甲基转移酶基因(FOMT)、WRKY和NAC转录因子。
     3、克隆若干水仙花色相关基因cDNA全长
     (1)从黄花水仙2号、金盏银台中各克隆1条IPI基因,分别命名为NtIPI-H和NtIPI-J(登录号KC841854.1、KC841855.1),两个基因各含有一个858bp的开放阅读框,编码285个氨基酸,但存在8个氨基酸差异。氨基酸序列分析表明:黄花水仙2号与烟草、玉米、葡萄、甘薯IPI基因的氨基酸相似性分别为87%、86%、77%和75%。
     (2)从黄花水仙2号、金盏银台中各克隆1条CRTISO基因,分别命名为NtCRTISO-H和NtCRTISO-J(登录号KC207079.1、JX469116.1),两个基因各含有一个1767bp的开放阅读框,编码588个氨基酸,但存在2个氨基酸差异。氨基酸序列分析表明:黄花水仙2号与拟南芥、金盏花、水稻、玉米CRTISO基因的氨基酸相似性分别为84%、84%、84%、83%。
     (3)从黄花水仙2号、金盏银台中各克隆1条NCED基因,分别NtNCED-H和NtNCED-J(登录号KC841856.1、KF017562.1)两个基因各含有一个1803bp的开放阅读框,编码600个氨基酸,但存在9个氨基酸差异。氨基酸序列分析表明:黄花水仙2号与剑兰、百合、水稻、马铃著NCED基因的相似性分别为80%、80%、77%、77%。
     (4)从黄花水仙2号、金盏银台中各克隆1条F3’MO-like基因,分别命名为NtF3’MO-like-H和NtF3’MO-like-J(登录号KC841857.1、KC841858.1)两个基因各含有一个1518bp的开放阅读框,编码505个氨基酸,但存在6个氨基酸差异。氨基酸序列分析表明:黄花水仙2号与番茄、葡萄、黄瓜、草莓F3’MO-like基因的相似性分别为65%、65%、64%、64%。
     4、分析花期若干花色相关基因的表达水平
     以水仙Actin基因为内参,采用荧光定量PCR方法分析NtPSY、NtCRTISO、NtIPI、NtNCED、NtF3’MO-like等5个基因在4个花期2种多花水仙的花瓣和副冠中的表达水平,结果表明:开花过程中,NtPSY、NtIPI、NtNCED基因在金盏银台白色花瓣的表达水平与黄花水仙2号黄色花瓣、金盏银台橙黄色副冠之间的差异都比较明显。推测NtPSY、NtIPI、NtNCED3个基因可能与水仙花色差异有关。
     5、获取黄花水仙2号PSY基因5'端侧翼序列
     应用染色体步移技术获得NtPSY基因5'端侧翼序列2522bp,经比对分析,发现在NtPSY基因5'UTR区内有一个198bp的内含子。启动子预测结果分析表明,转录起始位点可能在起始密码子上游305bp处,转录起始位点为碱基C。顺式作用元件预测结果表明,黄花水仙2号NtPSY基因5'端侧翼序列含有大量光响应元件,以及逆境胁迫和激素信号响应元件,推测NtPSY的表达可能受到多种信号的调控。
Narcissus is one of the ten traditional flowers in China and a famous bulb flower in theworld, which has more than1000years of cultivation history in China. Single cultivar andspecies recession have severely restricted the development of domestic Narcissus industry.Due to the nature of triploid, it is difficult for Narcissus to breed new varieties via sexualhybridization. Narcissus flower color molecular breeding has not yet been established in ourcountry and few researches on physiology and biochemistry have been reported. In thisresearch, changes of flavonoids and carotenoids content in Narcissus tazetta flower weretested through high performance liquid chromatography (HPLC), and the suppressionsubtractive hybridization (SSH) cDNA libraries between yellow and white petal wereconstructed for the isolation of flower color related genes. In order to select the key gene offlower pigmentation formation, the relative expression of candidate genes were tested viafluorescence quantitative PCR (qRT-PCR) at different flowering stages. And the PSY genepromoter of HUANGHUASHUIXIAN Ⅱ was cloned using chromosome walkingtechnology. This study provided a certain theoretical basis and gene resources for furtherresearch on genetic engineering. The main results were as follows:
     1. Analysis of flavonoids and carotenoids content in Narcissus tazetta flower
     The contents of carotenoids and flavonoids in petal and corona of JINZHANYENTAIand HUANGHUASHUIXIANⅡ at flowering phase were tested. The results showed thatthere were a large number of various pigmentations accumulated in petal and corona. Rutinand phytoxanthin were the main pigmentations in HUANGHUASHUIXIANⅡflower, andrutin, naringin and phytoxanthin were main pigmentations in JINZHANYENTAI flower.The dynamics of rutin and naringin contents in two varieties above are consistent atflowering phase, showing that the pigmentation contents both in petal and corona were thehighest at flower budding period, decreased slightly at early flowering stage and full-bloomstage, and increased at decline stage. However, the changes of phytoxanthin content showeda different pattern. T test analysis results showed that the color differences of Narcissustazetta flower may be affected mainly by the phytoxanthin content. It is speculated that thephytoxanthin plays a key role for the formation of orange and yellow, and rutin and naringinmay be important supplementary factors for pigmentation.
     2. Construction and analysis of the SSH cDNA libraries between yellow and white petal
     The forward and reverse SSH cDNA libraries were constructed between yellow and white petal, and were tested to be of reliable quality. Nine hundred and thirty-two cloneswere randomly selected and sequenced. Gene Ontology (GO) annotation functionclassification results showed that the flower color difference of Narcissus might beinfluenced by multiple metabolic pathways. The uniESTs involved in the color formationwas verified by fluorescence quantitative PCR, and thirteen uniESTs were obtained forfurther investigation of their roles in the flower color formation of Narcissus.
     3. Cloning of the full length cDNA of NtIPI, NtCRTISO, NtNCED, NtF3’MO-like genes
     (1) Two genes, named NtIPI-H (accession number: KC841854.1) and NtIPI-J(accession number: KC841855.1), were cloned from Narcissus tazetta var. by SSH andRACE. The ORF is858bp encoding285amino acids, and there are eight amino acidsdifferent between NtIPI-H and NtIPI-J. Sequence analysis showed that the amino acidsequence of NtIPI-H was87%,86%,77%and75%homologous with that of IPI genes fromNicotiana tabacum, Zea mays, Vitis vinifera, Ipomoea batatas, respectively.
     (2) Two genes, named NtCRTISO-H (accession number: KC207079.1) andNtCRTISO-J (accession number: JX469116.1), were cloned from Narcissus tazetta var. bySSH and RACE. The ORF is1767bp encoding588amino acids, and there are two aminoacids different between NtCRTISO-H and NtCRTISO-J. Sequence analysis showed that theamino acid sequence of NtCRTISO-H was84%,84%,84%and83%homologous with thatof CRTISO genes from Arabidopsis thaliana, Calendula officinalis, Oryza sativa Japonica,Zea may, respectively.
     (3) Two genes, named NtNCED-H (accession number: KC841856.1) and NtNCED-J(accession number: KF017562.1), were cloned from Narcissus tazetta var. by SSH andRACE. The ORF is1803bp encoding600amino acids, and there are nine amino acidsdifferent between NtNCED-H and NtNCED-J. Sequence analysis showed that the aminoacid sequence of NtNCED-H was80%,80%,77%,77%homologous with that of NCEDgenes from Gladiolus hybrid cultivar, Lilium formosanum, Crocus sativus, Solanumtuberosum, respectively.
     (4) Two genes, named NtF3’MO-like-H (accession number: KC841857.1) andNtF3’MO-like-J (accession number: KC841858.1), were cloned from Narcissus tazetta var.by SSH and RACE. The ORF is1518bp encoding505amino acids, and there are six aminoacids different between NtF3’MO-like-H and NtF3’MO-like-J. Sequence analysis showedthat the amino acid sequence of NtF3’MO-like-H was65%,65%,64%,64%homologouswith that of F3’MO-like genes from Solanum lycopersicum, Vitis vinifera, Cucumis sativusv, Fragaria vesca, respectively.
     4. qRT-PCR of the differential expression genes during flowering phase
     The expression analysis of NtPSY, NtCRTISO, NtIPI, NtNCED, NtF3’MO-like genes inthe alabastrum stage, early flowering stage, full-bloom stage, and faded stage wereconducted by qRT-PCR with NtActin as reference gene. The qRT-PCR results showed thatthere were three genes, NtPSY, NtIPI, and NtNCED, of which the differences of relativeexpression level at four flowering phase were significantly differential betweenJINAHANYINTAI white petal and JINAHANYINTAI orange coronal, also betweenJINAHANYINTAI white petal and HUANGHUASHUIXIAN II yellow petal. It isspeculated that NtPSY, NtIPI and NtNCED gene might play important role during the colorformation of Narcissus tazetta flower.
     5. Cloning of PSY promoter of Narcissus tazetta HUANGHUASHUIXIAN II
     In order to study NtPSY gene expression and regulation, a2522bp sequence of the5'flanking region of NtPSY gene was isolated via genome-walking method. One198bp intronwas found in NtPSY gene5' UTR region. Neural Network Promoter Prediction resultsshowed that the transcription start site might be at305bp upstream from the start codon ofPSY and the transcription initiation site was the base C. Cis-regulatory element predictionresults by plantCARE showed that NtPSY5' flanking sequence contained a lot of lightresponse elements, adversity stress and hormone signal response elements.
引文
[1]赵昶灵,郭维明,陈俊愉.植物花色形成及其调控机理[J].植物学通报2005,22(1):70‐81.
    [2]安田齐.花色的生理生物化学[M].傅玉兰译.北京:中国林业出版社,1989.
    [3]惠伯棣.类胡萝卜素化学及生物化学[M].北京:中国轻工业出版社,2005.
    [4]陶俊,张上隆.园艺植物类胡萝卜素的代谢及其调节[J].浙江大学学报(农业与生命科学版),2003,9(5):585‐590.
    [5] Taylor L P, Grotewold E. Flavonoids as developmental regulators[J]. Current opinion in plant biology,2005,8(3):317‐323.
    [6]胡可,韩科厅,戴思兰.环境因子调控植物花青素苷合成及呈色的机理[J].植物学报,2010,45:307-317.
    [7]邹清成.中国水仙花色相关基因的分离和反义Psy基因的遗传转化[D],浙江大学硕士学位论文,2006.
    [8]张石宝,胡虹,李树云.花卉基因工程研究进展Ⅰ:花色.云南植物研究.2001,23(4):479‐487.
    [9]黄明.花色及其变化[J].生物学通报,1992,27(10):15-17.
    [10]陈建.非洲菊花瓣解剖结构及赤霉素处理对花色的影响研究[D].湖南农业大学硕士学位论文,2010.
    [11]陈建,陈晨甜,吕长平.观赏植物花色形成影响因子研究进展[J].现代园艺,2009,6:4‐6,10.
    [12]章玉平,冼昭燕,程筱莹.不同保鲜剂对非洲菊切花的保鲜效应[J].亚热带植物科学.2004,33(1):26‐28.
    [13]王锋,邓洁红,谭兴和,等.花色苷及其共色作用研究进展[J].食品科学,2008,29(2):272-276.
    [14]于晓南,张启翔.观赏植物的花色素苷与花色.林业科学,2002,38(3):147‐153.
    [15] Yoshida K, Kitahara S, Ito D, et al. Ferric ions involved in the flower color development of theHimalayan blue poppy, Meconopsis grandis [J]. Phytochemistry,2006,67(10):992-998.
    [16] Perucka, I. Ethephon-induced changes in accumulation of carotenoids in red pepper fruit (Capsicumannuum L.). Polish journal of food and nutrition sciences,1996,5(4):61-68.
    [17]李明,郝建军.寒光苹果果实成熟期色素、糖、酸和激素含量的变化[J].吉林农业科学,2005,35(2):55‐57.
    [18]潘增光,范晖,束怀瑞.苹果果实花青素形成与乙烯释放的关系[J].植物生理学通讯,1995,31(5):338‐340.
    [19] Weiss D, Van Blokland R, Kooter J M, et al. Gibberellic acid regulates chalcone synthase genetranscription in the corolla of Petunia hybrida[J]. Plant physiology,1992,98(1):191‐197.
    [20]李秀菊,刘用生,束怀瑞.红富士苹果套袋果实色泽与激素含量的变化[J].园艺学报,1998,25(3):209‐213.
    [21]程龙军,郭得平,张建华,等.高等植物花生长和花色素苷生物合成的信号调控[J].植物生理学通讯,2002,38(2):175‐178.
    [22]班兆男.植物花色成因及几种常见变色花卉[J].现代农业科学,2009,16(11):58‐59.
    [23]黄蓉.园林植物开花生理与控制[M].农业出版社,北京,1990.93‐99.
    [24] Stewart R N, Norris K H, Asen S. Microspectrophotometric measurement of pH and pH effect oncolor of petal epidermal cells[J]. Phytochemistry,1975,14(4):937‐942.
    [25] Fukada-Tanaka S, Inagaki Y, Yamaguchi T, et al. Colour-enhancing protein in blue petals[J]. Nature,2000,407(6804):581-581.
    [26]苏焕然,张丹,汪清凰,等.花卉基因工程研究进展.北方园艺,1996,4:26-28.
    [27] Armitage A M,Carison W H.The effect of quantum flux density,day and night temperature andphosphorus and potassium status on anthocyanin and chlorophyll content in Marigold Leaves[J].JAmer Soc Hort Sci,1981,106(5):639‐642.
    [28] Deal D L, Raulston J C, Hinesley L E. Leaf color retention, dark respiration, and growth ofred-leafed Japanese maples under high night temperatures[J]. Journal of the American Society forHorticultural Science,1990,115(1):135-140.
    [29]何奕昆,奚惕.凤仙花中花色素苷累积与苯丙氨酸解氨酶的关系[J].植物生理学通讯,1989,(2):35‐38.
    [30] Guo J, Han W, Wang M. Ultraviolet and environmental stresses involved in the induction andregulation of anthocyanin biosynthesis: a review[J]. African Journal of Biotechnology,2008,7(25).
    [31]于晓南.美人梅栽培生理与叶色表达的研究[D].北京:北京林业大学博士学位论文,2001.
    [32]孟祥春,张玉进,王小菁.玉米根中花色素苷积累的某些影响因子研究[J]。华南师范大学学报:自然科学版,2002,(4):25‐28.
    [33]孙建霞,张燕,胡小松.花色苷的结构稳定性与降解机制研究进展[J].中国农业科学,2009,42(3):996-1008.
    [34]曹晶,姜卫兵,翁忙玲,等.夏秋季旱涝胁迫对红叶石楠光合特性的影响[J].园艺学报,2007,34(1):163‐172.
    [35] Kim J S, Lee B H, Kim S H, et al. Responses to environmental and chemical signals for anthocyaninbiosynthesis in non-chlorophyllous corn (Zea mays L.) leaf[J]. Journal of Plant Biology,2006,49(1):16-25.
    [36] Huang Z, Liang M, Peng J, et al. Exogenous ammonium inhibits petal pigmentation and expansionin Gerbera hybrida[J]. Physiologia plantarum,2008,133(2):254-265.
    [37]孙明霞,王宝增,范海,等.叶片中的花色素苷及其对植物适应环境的意义.植物生理学通讯,2003,39:688‐694.
    [38] Rajendran L, Ravishankar G A, Venkataraman L V, et al. Anthocyanin production in callus culturesofDaucus carota as influenced by nutrient stress and osmoticum[J]. Biotechnology letters,1992,14(8):707-712.
    [39] Tanaka Y, Ohmiya A. Seeing is believing: engineering anthocyanin and carotenoid biosyntheticpathways[J]. Current opinion in biotechnology,2008,19(2):190‐197.
    [40] Rodr guez‐Concepción M, Boronat A. Elucidation of the methylerythritol phosphate pathway forisoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved throughgenomics[J]. Plant Physiology,2002,130(3):1079‐1089.
    [41] Cunningham F X, Lafond T P, Gantt E. Evidence of a role for LytB in the nonmevalonate pathwayof isoprenoid biosynthesis[J]. Journal of bacteriology,2000,182(20):5841-5848.
    [42] Bramley P M. Regulation of carotenoid formation during tomato fruit ripening and development[J].Journal of Experimental Botany,2002,53(377):2107‐2113.
    [43]朱长甫,陈星,王英典.植物类胡萝卜素生物合成及其相关基因在基因工程中的应用[J].植物生理与分子生物学学报,2004,30(6):609‐618.
    [44] Li F, Murillo C, Wurtzel E T. Maize Y9encodes a product essential for15‐cis‐ζ‐caroteneisomerization[J]. Plant physiology,2007,144(2):1181‐1189.
    [45]周琳,王雁,彭镇华.黄色花形成机制及基因工程研究进展[J].林业科学,2009,45(002):111‐119.
    [46] Breitenbach J, Sandmann G. ζ-Carotene cis isomers as products and substrates in the plant poly-ciscarotenoid biosynthetic pathway to lycopene[J]. Planta,2005,220(5):785-793.
    [47]叶一江.多花水仙类胡萝卜素生物合成途径部分酶基因的克隆与分析[D].福州:福建农林大学硕士学位论文,2012.
    [48] Krubasik P, Sandmann G. A carotenogenic gene cluster from Brevibacterium linens with novellycopene cyclase genes involved in the synthesis of aromatic carotenoids[J]. Molecular and GeneralGenetics MGG,2000,263(3):423‐432.
    [49] Grotewold E. The genetics and biochemistry of floral pigments[J]. Annu Rev Plant Biol,2006,57:761‐780.
    [50] Winkel‐Shirley B. Biosynthesis of flavonoids and effects of stress. Current Opinion in Plant Biology,2002,5:218‐223.
    [51]周兴文.金花茶花色相关基因的克隆及其功能研究[D].北京:中国林业科学研究院博士学位论文,2012.
    [52] Tanaka Y, Tsuda S, Kusumi T. Metabolic engineering to modify flower color[J]. Plant and cellphysiology,1998,39(11):1119‐1126.
    [53]蔡雪玲.多花水仙类黄酮生物合成相关酶基因的克隆与表达分析[D].福州:福建农林大学硕士学位论文,2012.
    [54]乔小燕,马春雷,陈亮.植物类黄酮生物合成途径及重要基因的调控[J].天然产物研究与开发,2009,21:354‐360,207.
    [55]彭镇华,汪政科.观赏植物基闪工程研究进展[A].高俊平,姜伟民主编.中国花卉科技进展
    [C].北京:中国农业出版社,2001:166‐172.
    [56]赵昶灵,郭维明,陈俊愉.植物花色呈现的生物化学、分子生物学机制及其基因工程改良.西北植物学报.2003,22(6):1024‐1035.
    [57] Del Villar‐Martínez A A, García‐Saucedo P A, Carabez‐Trejo A, et al. Carotenogenic gene expressionand ultrastructural changes during development in marigold[J]. Journal of plant physiology,2005,162(9):1046‐1056.
    [58] Mir J I, Ahmed N, Wafai A H, et al. Relative expression of CsZCD gene and apocarotenoidbiosynthesis during stigma development in Crocus sativus L[J]. Physiology and Molecular Biology ofPlants,2012,18(4):371‐375.
    [59] Zhu C, Yamamura S, Nishihara M, et al. cDNAs for the synthesis of cyclic carotenoids in petals ofGentiana lutea and their regulation during flower development[J]. Biochimica et Biophysica Acta(BBA)‐Gene Structure and Expression,2003,1625(3):305‐308.
    [60] Yoshioka S, Aida R, Yamamizo C, et al. The carotenoid cleavage dioxygenase4(CmCCD4a) genefamily encodes a key regulator of petal color mutation in chrysanthemum[J]. Euphytica,2012,184(3):377-387.
    [61] Ohmiya A, Kishimoto S, Aida R, et al. Carotenoid cleavage dioxygenase (CmCCD4a) contributes towhite color formation in chrysanthemum petals[J]. Plant Physiology,2006,142(3):1193-1201.
    [62]李宗艳,李名扬.调控植物类黄酮生物合成的转录因子研究进展[J].南京林业大学学报(自然科学版).2011,35(5):130-134.
    [63] Speh C,Quattrocchio F,Mol J,et a1.ANTHOCYANIN1of petunia controls pigment synthesis,vacuolar pH,and seed coat development by genetically distinct mechanisms[J].Plant Cell,2002,14(9):2121‐2135.
    [64] Ramsay N A,Glover B J.MYB‐bHLH‐WD40protein complex and the evolution of cellular diversity[J].Trends in Plant Science,2005,10(2):63‐70.
    [65] Sagasser M, Lu G H, Hahlbrock K, et al. A. thaliana TRANSPARENT TESTA1is involved in seed coatdevelopment and defines the WIP subfamily of plant zinc finger proteins[J]. Genes&development,2002,16(1):138‐149.
    [66] Spelt C, Quattrocchio F, Mol J N M, et al. anthocyanin1of petunia encodes a basic helix-loop-helixprotein that directly activates transcription of structural anthocyanin genes [J]. The Plant Cell Online,2000,12(9):1619-1631.
    [67] De Vetten N, Quattrocchio F, Mol J, et al. The an11locus controlling flower pigmentation in petuniaencodes a novel WD-repeat protein conserved in yeast, plants, and animals[J]. Genes&development,1997,11(11):1422-1434.
    [68] Menke F L H, Champion A, Kijne J W, et al. A novel jasmonate-and elicitor-responsive element inthe periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate-andelicitor-inducible AP2-domain transcription factor, ORCA2[J]. The EMBO journal,1999,18(16):4455-4463.
    [69]何水林.参与植物次生代谢调控的转录因子及其在植物次生代谢遗传改良中的应用[J].热带亚热带植物学报,2004,12(4):374-380.
    [70] Mitsuda N, Hiratsu K, Todaka D, et al. Efficient production of male and female sterile plants byexpression of a chimeric repressor in Arabidopsis and rice[J]. Plant biotechnology journal,2006,4(3):325-332.
    [71]何承忠,程雪梅,周敏,等.观赏植物花色改良技术与应用[J].现代园艺,2008,4:28-30.
    [72]张金锋,刘永华,施雪良,等.基因工程在花色改良中的研究进展[J].广西园艺,2006,17(6):62-64.
    [73] Seitz C, Vitten M, Steinbach P, et al. Redirection of anthocyanin synthesis in Osteospermum hybridaby a two‐enzyme manipulation strategy[J]. Phytochemistry,2007,68(6):824‐833.
    [74] Mol J,Cornish E,Mason J,et a1.Novel colored flowers.Curr Opin Biotech,1999,10:198‐201.
    [75] Katsumoto Y, Fukuchi‐Mizutani M, Fukui Y, et al. Engineering of the rose flavonoid biosyntheticpathway successfully generated blue‐hued flowers accumulating delphinidin[J]. Plant and cellphysiology,2007,48(11):1589‐1600.
    [76] Ye X, Al‐Babili S, Kloti A, et al. Engineering the provitamin A (β‐carotene) biosynthetic pathway into(carotenoid‐free) rice endosperm. Science,2000,287:303‐305.
    [77] Morris W L, Ducreux L J M, Fraser P D, et al. Engineering ketocarotenoid biosynthesis in potatotubers[J]. Metabolic Engineering,2006,8(3):253‐263.
    [78] Dhannapuri S.,Rosati C.,Pallara P. et al. Metabolic engineering of xanthophyll content in tomatofia~its,FEBS Lett.2002,519(13):30‐34.
    [79] Ravanello M P, Ke D, Alvarez J, et al. Coordinate expression of multiple bacterial carotenoid genesin canola leading to altered carotenoid production[J]. Metabolic Engineering,2003,5(4):255-263.
    [80] Ralley L,Enfissi E M A,Misawa N, et al. Metabolic engineering of ketocatenoid formation in higherplants. Plant J,2004,39:477‐486.
    [81]陈段芬,高健,彭镇华.水仙属植物研究进展[J].林业科学,2008,44(3):140‐146.
    [82] Blanchard J W. Narcissus conspectus[J]. PLANTSMAN-LONDON,2004,3(1):44-51.
    [83] Shikhiev A S, Serkerov V. The flavonoids of the flowers ofNarcissus tazetta[J]. Chemistry of NaturalCompounds,1970,6(4):490‐490.
    [84] Koul A K, Sharma M C, Bhargava R. Impact of polyploidy on flavonoid constitution inNarcissustazetta L[J]. Proceedings: Plant Sciences,1985,95(1):1-5.
    [85] Valadon, L. R. G., Mummery, R. S. Carotenoids in floral parts of a narcissus, a daffodil and a tulip [J].Biochem. J,1968,106:479‐484.
    [86] Booth V.H. β‐Carotene in the Flowers of Narcissus [J]. Biochem. J,1957,65:660‐663.
    [87] Booth V.H. Rapidity of Carotene Biosynthesis in Narcissus[J]. Biochem. J.1963,87:238‐239.
    [88] Ohmiya A. Diversity of carotenoid composition in flower petals[J]. Jpn Agr Res Q,2011,45:163-171.
    [89]李忠英,罗跃中,温拥军.水仙花中类黄酮超声提取工艺的研究[J].现代中药研究与实践,2008,22(6):67‐69.
    [90]张慧平.中国水仙遗传转化及花色素成分分析[D].福州:福建农林大学硕士学位论文2010.
    [91] Beyer P, Kreuz K, Kleinig H. β‐Carotene synthesis in isolated chromoplasts from Narcissuspseudonarcissus[J]. Planta,1980,150(5):435‐438.
    [92] Kreuz K, Beyer P, Kleinig H. The site of carotenogenic enzymes in chromoplasts from Narcissuspseudonarcissus L[J]. Planta,1982,154(1):66-69.
    [93] Schledz M, Al‐Babili S, Lintig J, et al. Phytoene synthase from Narcissus pseudonarcissus:functional expression, galactolipid requirement, topological distribution in chromoplasts andinduction during flowering[J]. The Plant Journal,1996,10(5):781-792.
    [94] Lu G, Zou Q, Guo D, et al. Agrobacterium tumefaciens‐mediated transformation of Narcissus tazzetavar. chinensis[J]. Plant cell reports,2007,26(9):1585‐1593.
    [95]钟淮钦,黄敏玲,樊荣辉,等.中国水仙花色相关基因的克隆与分析[D].南方农业学报,2011,42(11):1311-1315.
    [96] Al‐Babili S, Hobeika E, Beyer P. A cDNA Encoding Lycopene Cyclase (Accession No. X98796) fromNarcissus pseudonarcissus L. Plant Gene Register PGR96‐107[J]. Plant Physiology,1996,112:1398.
    [97] Apel W, Bock R. Enhancement of carotenoid biosynthesis in transplastomic tomatoes by inducedlycopene‐to‐provitamin A conversion[J]. Plant Physiology,2009,151(1):59‐66.
    [98]陈段芬,彭镇华,高志民.中国水仙八氢番茄红素脱氢酶基因(PDS)的克隆及表达分析[J].分子植物育种,2008,6(3):574-578.
    [99]陈段芬,彭镇华,高健.中国水仙ZDS基因的克隆及表达分析[J].林业科学研究,2009,22(1):115-119.
    [100]江琳玉.中国水仙花色相关基因ZDS, LYCE的克隆[D].福州:福建农林大学硕士学位论文,2009.
    [101]曾原飞,张慧平,温超,等.漳州水仙花瓣和副冠类胡萝卜素成分分析及合成途径基因表达研究[J].热带作物学报2012,33(4):663-66.
    [102]黄胤怡,沈明山,陈亮,等.中国水仙查尔酮合酶cDNA的克隆及序列分析(简报).实验生物学报,2002,35(3):195-197.
    [103]陈晓静,吕柳新.福建多花水仙资源[J].福建林学院学报,2006,26(1):14-17.
    [104]赵莺莺.水仙属植物形态学,解剖学,孢粉学初步研究[D].南京:南京农业大学硕士学位论文,2003.
    [105]陈晓静.福建3个产地水仙的核型分析[J].植物资源与环境学报,2004,13(4):28-31.
    [106]吕柳新,陈晓静,余小玲,等.水仙品种资源的育种基础研究Ⅰ.多花水仙若干品种类型的细胞学研究[J].福建农林大学学报(自然科学版),1989,18(1):32-36.
    [107]戴艺民,林江波,王伟英,等.农杆菌介导的蓝色基因转化中国水仙[J].农业生物技术学报,2009,2:231-238.
    [108]叶祖云.根癌农杆菌介导F3′,5′H酶基因转化中国水仙的初步研究.昆明:云南大学硕士学位论文,2001.
    [109]庄晓英,卢钢,汪志平,等.中国水仙遗传转化及离体诱变体系的研究.核农学报,2006,2(1):32-35.
    [110] Diatchenko L, Lau Y F, Campbell A P, et al. Suppression subtractive hybridization: a method forgenerating differentially regulated or tissue-specific cDNA probes and libraries[J]. Proceedings ofthe National Academy of Sciences,1996,93(12):6025-6030.
    [111]胡昌单.抑制消减杂交技术研究进展[J].国外医学生理、病理科学与临床分册,2001,21(1):4-6.
    [112]刘蕾,徐进,许景升,等.应用抑制性差减杂交法筛选植物青枯菌致病相关基因[J].农业生物技术学报,2012,20(7):745-755.
    [113]蔡静莉,李昌本,赵寿元.鉴别差异表达基因的新方法-抑制消减染交法(SSH)[J].生命科学,1998,10(3):115-118.
    [114]李娟娟,陈福龙,李鑫,等.黄瓜芽黄突变体抑制消减杂交文库的构建及初步分析[J].西北植物学报,2010,30(5):0905-0910.
    [115111]李娟,刘硕谦,刘仲华,等.‘安吉白茶’抑制消减杂交cDNA文库的构建及初步分析[J].中国农学通报,2011,27(04):96-101.
    [116]谢吉容,梁国鲁,唐开学,等.月季突变体抑制差减杂交cDNA文库构建及分析[J].园艺学报,2007,34(3):688-694.
    [112]陈源,潘东明,陈玲妹.超声波提取金柑黄酮类化合物的工艺研究[J].热带作物学报,2011,32(2):345-348.
    [118] Wang Y C, Chuang Y C, Ku Y H. Quantitation of bioactive compounds in citrus fruits cultivated inTaiwan[J]. Food chemistry,2007,102(4):1163-1171.
    [119]郭军,凌和平,李良俊,等.园艺作物黄酮类化合物研究进展[J].江苏农业学报,2011,27(2):430-436.
    [120]车越,王普,孙卫,等.10种提取液对菊花花瓣中类胡萝卜素提取效率的影响[J].湖北农业科学:2011,50(15):3152-3155.
    [113]蔡雪玲,陈晓静,叶一江,等.中国水仙查尔酮异构酶基因的克隆与表达分析[J].热带作物学报.2011,32(12):2287-2292.
    [122]白新祥,胡可,戴思兰,等.不同花色菊花品种花色素成分的初步分析[J].北京林业大学学报,2006,28(5):84-89.
    [123] Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: anthocyanins, betalains andcarotenoids[J]. The Plant Journal,2008,54(4):733-749.
    [124]李崇晖,王亮生,舒庆艳,等.迎红杜鹃花色素组成及花色在开花过程中的变化[J].园艺学报,2008,35(7):1023-1030.
    [114] Uddin A, Hashimoto F, Nishimoto S, et al. Flower growth, coloration and petal pigmentation infour lisianthus cultivars[J]. JOURNAL-JAPANESE SOCIETY FOR HORTICULTURALSCIENCE,2002,71(1):40-47.
    [126] Heursel J. Diversity of flower colours in Rhododendron simsii Planch and prospects forbreeding[J].Euphytica,1981,30(1):9-14.
    [115]王桂凤.杉木木材形成过程中差异表达基因的鉴定与功能分析[D].南京:南京林业大学博士学位论文,2008.
    [116] Von Stein O D, Thies W G, Hofmann M. A high throughput screening for rarely transcribeddifferentially expressed genes[J]. Nucleic acids research,1997,25(13):2598-2602.
    [117]肖军,邹飞,蔡绍曦. PCR法制备地高辛标记探针改良PCR-Select Differential Screening试剂盒[J].中国应用生理学杂志,2004,20(2):205-207,184.
    [130]王延华,冯忠堂, Merlio J P.分子杂交理论与技术[M].北京:科学出版社,2005,161.
    [131]岳洋,王栋,郝海生,等.消减cDNA文库差异表达基因检测分析方法的研究进展[J].中国畜牧兽医.2010,37(10):100-104.
    [118]蔡更元,陈瑶生,李加琪.蓝塘猪和大白猪消减cDNA文库与差异基因分析[J].中国农业科学,2011,44(12):2553-2560.
    [133]李世国,杨帆,吴倩倩.孔石莼在干在干出胁迫下上调表达基因消减cDNA文库的构建及分析[J].海洋渔业,2011,33(2):172-180.
    [134]罗开军,石君,王晓红,等.结核分枝杆菌休眠期和活跃期差异表达基因分析[J].中国病原生物学杂志,2010,12(5):889-891,894.
    [135]毛逸清,赵东升,李稚锋,等.大规模EST序列聚类的并行算法研究进展[J].军事医学科学院院刊,2006,30(6):591-595.
    [136]刘青林,陈俊愉.观赏植物花器官主要观赏性状的遗传与改良[J].园艺学报,1998,(25)1:81-87.
    [137]袁亚楠,刘文忠.实时荧光定量PCR技术的类型、特点与应用[J].中国畜牧兽医,2008,35(3):27-30.
    [138]陈大华,叶和春,李国凤,等.植物类异戊二烯代谢途径的分子生物学研究进展[J].植物学报,2000,42(6):551-558.
    [139]李莉,高凌云,董越,等.植物类异戊二烯生物合成相关酶基因研究进展[J].浙江师范大学学报(自然科学版).2008,31(4):461-466.
    [140] Bick J A,Lange B M.Metabolic cross talk between cytosolic and plastidial pathways of isoprenoidbiosynthesis: unidirectional transport of intermediates across the chloroplast envelopemembrane[J].Archives of Biochemistry and Biophysics,2003,415(2):146-154.
    [141] Estévez, J.M., Cantero, A., Reindl, A., et al.1-Deoxy-D-xylulose-5-phosphate synthase, a limitingenzyme for plastidic isoprenoid biosynthesis in plants[J].Biol. Chem,2001,276:22901-22909.
    [142] Botella-Pavía P, Besumbes O, Phillips M A, et al. Regulation of carotenoid biosynthesis in plants:evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply ofplastidial isoprenoid precursors[J]. The Plant Journal,2004,40(2):188-199.
    [143] Ramos-Valdivia A C, van der Heijden R, Verpoorte R. Isopentenyl diphosphate isomerase: a coreenzyme in isoprenoid biosynthesis. A review of its biochemistry and function[J]. Natural productreports,1997,14(6):591-603.
    [144] Kajiwara S,Fraser PD,Kondo K, et al. Expression of an exogenous isopentenyl diphosphateisomerase gene enhances isoprenoid biosynthesis in Escherichia coli.[J]. Biochem J.1997,324:421-426.
    [145] Gallagher C, Cervantes-Cervantes M, Wurtzel E. Surrogate biochemistry: use of Escherichia coli toidentify plant cDNAs that impact metabolic engineering of carotenoid accumulation[J]. Appliedmicrobiology and biotechnology,2003,60(6):713-719.
    [146] Sun Z, Cunningham F X, Gantt E. Differential expression of two isopentenyl pyrophosphateisomerases and enhanced carotenoid accumulation in a unicellular chlorophyte[J]. Proceedings ofthe National Academy of Sciences,1998,95(19):11482-11488.
    [147] Wurtzel E T. Chapter five Genomics, genetics, and biochemistry of maize carotenoidbiosynthesis[J]. Recent advances in phytochemistry,2004,38:85-110.
    [148] Winterhalter P, Schreier P. The generation of norisoprenoid volatiles in starfruit (Averrhoacarambola L.): A review [J]. Food Reviews International,1995,11(2):237-254.
    [149] Lewinsohn E, Sitrit Y, Bar E, et al. Carotenoid pigmentation affects the volatile composition oftomato and watermelon fruits, as revealed by comparative genetic analyses[J]. Journal ofagricultural and food chemistry,2005,53(8):3142-3148.
    [150] Tanaka Y. Flower colour and cytochromes P450[J]. Phytochemistry Reviews,2006,5(2-3):283-291.
    [151]钟巍然,柴友荣,张凯,等.苯丙烷代谢途径中细胞色素P450的研究[J].安徽农业科学,2008,36(13):5285-5289.
    [152] Schuler M A, Werck-Reichhart D. Functional genomics of P450s[J]. Annual review of plantbiology,2003,54(1):629-667.
    [153]梁明炜,刘海峰,陆雪莹,等.棕色棉类黄酮3'-羟化酶基因(F3'H)的克隆及色素合成途径中相关基因表达特性研究[J].农业生物技术学报,2011,19(5):808-814.
    [154] Koes R E, Quattrocchio F, Mol J N M. The flavonoid biosynthetic pathway in plants: function andevolution[J]. BioEssays,1994,16(2):123-132.
    [155]房欢,焦浈.花色素苷生物合成及代谢工程研究进展[J].江苏农业科学,2012,40(7):5-8,10.
    [156] Martin C, Prescott A, Mackay S, et al. Control of anthocyanin biosynthesis in flowers ofAntirrhinum majus[J].The Plant Journal,1991,1(1):37-49.
    [157]张传丽,仲月明,沈丹红,等.植物类黄酮O-甲基转移酶研究进展[J].西北植物学报,2012,32(6):1274-1281.
    [158]李波,倪志勇,王娟,等.木质素生物合成关键酶咖啡酸-O-甲基转移酶基因(COMT)的研究进展[J].分子植物育种,2010,8(1):117-124.
    [159]聂会忠,薛永常,高志芳,等.木质素生物合成中羟基化酶的研究进展[J].河南农业科学,2008,4:5-9.
    [160]李宗艳,李名扬.调控植物类黄酮生物合成的转录因子研究进展[J].南京林业大学学报(自然科学版).2011,35(5):130-134.
    [161]沈忠伟,许昱,夏犇,等.植物类黄酮次生代谢生物合成相关转录因子及其在基因工程中的应用[J].分子植物育种.2008,6(3):542-548.
    [162] Nesi N., Clarisse J.,Debeaujon I, et al. The Arabidopsis TT2gene encodes an R2R3MYB domainprotein that acts as a key determinant for proanthocyanidin accumulation in developing seed[J].Plant Cell,2001,13:2099-2l14.
    [163]陈峰,韩成云,任春梅.植物WRKY转录因子的分子生物学功能[J].湖南农业科学,2010,(19):30-33.
    [164]柳展基,邵凤霞,唐桂英.植物NAC转录因子的结构功能及其表达调控研究进展[J].西北植物学报,2007,27(9):1915-192.
    [165] Ramsay N A, Glover B J. MYB–bHLH–WD40protein complex and the evolution of cellulardiversity[J]. Trends in plant science,2005,10(2):63-70.
    [166] Morita Y, Saitoh M, Hoshino A, et al. Isolation of cDNAs for R2R3-MYB, bHLH and WDRtranscriptional regulators and identification of c and ca mutations conferring white flowers in theJapanese morning glory[J]. Plant and cell physiology,2006,47(4):457-470.
    [167] Laule O, Fürholz A, Chang H S, et al. Crosstalk between cytosolic and plastidial pathways ofisoprenoid biosynthesis in Arabidopsis thaliana[J]. Proceedings of the National Academy ofSciences,2003,100(11):6866-6871.
    [168]化文平,王喆之.向日葵异戊烯焦磷酸异构酶基因(ipi)的电子克隆和生物信息学分析[J].植物生理学通讯,2008,44(1):81-86.
    [169] Zhang C, Liu L, Xu H, et al. Crystal structures of human IPP isomerase: new insights into thecatalytic mechanism[J]. Journal of molecular biology,2007,366(5):1437-1446.
    [170] Siddiqui M A, Yamanaka A, Hirooka K, et al. Enzymatic and structural characterization of type IIisopentenyl diphosphate isomerase from hyperthermophilic archaeon Thermococcuskodakaraensis[J]. Biochemical and biophysical research communications,2005,331(4):1127-1136.
    [171] Campbell M, Hahn F M, Poulter C D, et al. Analysis of the isopentenyl diphosphate isomerase genefamily from Arabidopsis thaliana[J]. Plant molecular biology,1998,36(2):323-328.
    [172] Arnold K, Bordoli L, Kopp J, et al. The SWISS-MODEL workspace: a web-based environment forprotein structure homology modelling[J]. Bioinformatics,2006,22(2):195-201.
    [173] Benkert P, Biasini M, Schwede T. Toward the estimation of the absolute quality of individualprotein structure models[J]. Bioinformatics,2011,27(3):343-350.
    [174]杨滢,周露,化文平,等.丹参异戊烯焦磷酸异构酶基因(SmIPI)的生物信息学及表达分析[J].植物生理学报.2011,47(11):1086-1090.
    [175]姜铮,王芳,何湘,等.蛋白质磷酸化修饰的研究进展[J].生物技术通讯,2009,20(002):233-237.
    [176]李群睿.玉米类胡萝卜素异构酶和番茄红素ε-环化酶基因的克隆与鉴定[D].长春:东北师范大学博士学位论文,2010.
    [177] Kishimoto S, Ohmiya A. Carotenoid Isomerase Is Key Determinant of Petal Color of Calendulaofficinalis[J]. Journal of Biological Chemistry,2012,287(1):276-285.
    [178] Seo M,Koshiba T.Complex regulation of ABA biosynthesis in plants[J].Trends in Plant Science,2002,7(1):41-48.
    [179]贺斌,黄兴奇,余腾琼,等. cDNA末端快速扩增技术及其方法的改进[J].浙江农业科学2012,9:1352-1357.
    [180] Raghavanpillai R, Bobbi L H, Duraiswamy N, et al.Rapid PCR·based method to directionall pullout longer cDNA fragment from cDNA libraries[J]. Biotechniques,1995,18(1):37-38.
    [181]王晓波,解天然,潘陈陈,等.大豆质膜内在水孔蛋白的生物学功能预测[J].安徽农业科学,2010,38(34):2-3.
    [182] Phillips M A, D'Auria J C, Gershenzon J, et al. The Arabidopsis thaliana type I isopentenyldiphosphate isomerases are targeted to multiple subcellular compartments and have overlappingfunctions in isoprenoid biosynthesis[J]. The Plant Cell Online,2008,20(3):677-696.
    [183] Cazzonelli C I, Pogson B J. Source to sink: regulation of carotenoid biosynthesis in plants[J].Trends in plant science,2010,15(5):266-274.
    [184] Zhu C,Naqvi S,Breitenbach J,et al. Combinatorial genetic transformation generates a libraryof metabolic phenotypes for the carotenoid pathway in maize. Proc Natl Acad Sci USA,2008,105(47):18232-18237.
    [185] Fraser P D, Romer S, Shipton C A, et al. Evaluation of transgenic tomato plants expressing anadditional phytoene synthase in a fruit-specific manner[J]. Proceedings of the National Academy ofSciences,2002,99(2):1092-1097.
    [186] Ducreux L J M, Morris W L, Hedley P E, et al. Metabolic engineering of high carotenoid potatotubers containing enhanced levels of β-carotene and lutein[J]. Journal of Experimental Botany,2005,56(409):81-89.
    [187] Zhang J, Tao N, Xu Q, et al. Functional characterization of Citrus PSY gene in Hongkong kumquat(Fortunella hindsii Swingle)[J]. Plant cell reports,2009,28(11):1737-1746.
    [188] Ye X, Al-Babili S, Kl ti A, et al. Engineering the provitamin A (β-carotene) biosynthetic pathwayinto (carotenoid-free) rice endosperm[J]. Science,2000,287(5451):303.
    [189] Paine J A, Shipton C A, Chaggar S, et al. Improving the nutritional value of Golden Rice throughincreased pro-vitamin A content[J]. Nature biotechnology,2005,23(4):482-487.
    [190] ParkH,Kreunen S S,Cuttriss,A J,eta1.Identification of the carotenoid isomexase provides insightinto carotenoid biosynthesis, prolamellar body formation and photomorphngenesis[J].Plant Cell,2002,14:321-332
    [191] Isaacson T, Ronen G, Zamir D, et al. Cloning of tangerine from tomato reveals a carotenoidisomerase essential for the production of β-carotene and xanthophylls in plants[J]. The Plant CellOnline,2002,14(2):333-342.
    [192] Wurtzel E T. Chapter five Genomics, genetics, and biochemistry of maize carotenoidbiosynthesis[J]. Recent advances in phytochemistry,2004,38:85-110.
    [193] Breitenbach J and Sandmann G. ζ-Carotene cis isomers as products and substrates in the plantpoly-cis carotenoid biosynthetic pathway to lycopene [J]. Planta,2005,220(5):785-793.
    [194] Giuliano G, Giliberto L, Rosati C. Carotenoid isomerase: a tale of light and isomers[J]. Trends inplant science,2002,7(10):427-429.
    [195] Fang J, Chai C, Qian Q, et al. Mutations of genes in synthesis of the carotenoid precursors of ABAlead to pre‐harvest sprouting and photo‐oxidation in rice[J]. The Plant Journal,2008,54(2):177-189.
    [196] Phillip D, Molnar P, Toth G, et al. Light-induced formation of13-cis violaxanthin in leaves ofHordeum vulgare[J]. Journal of Photochemistry and Photobiology B: Biology,1999,49(2):89-95
    [197] Vallabhaneni R and Wurtzel E. Timing and biosynthetic potential for carotenoid accumulation ingenetically diverse germplasm of maize [J]. Plant Physiol,2009,150(2):562-572.
    [198]由淑贞,杨洪强.类胡萝卜素裂解双加氧酶及其生理功能[J].西北植物学报,2008,28(3):0630-0637.
    [199] Tan B C, Joseph L M, Deng W T, et al. Molecular characterization of the Arabidopsis9‐cisepoxycarotenoid dioxygenase gene family[J]. The Plant Journal,2003,35(1):44-56.
    [200] Schwartz S H, Tan B C, Gage D A, et al. Specific oxidative cleavage of carotenoids by VP14ofmaize[J]. Science,1997,276(5320):1872-1874.
    [201] Seo M, Peeters A J M, Koiwai H, et al. The Arabidopsis aldehyde oxidase3(AAO3) gene productcatalyzes the final step in abscisic acid biosynthesis in leaves[J]. Proceedings of the NationalAcademy of Sciences,2000,97(23):12908-12913.
    [202] Ren H, Gao Z, Chen L, et al. Dynamic analysis of ABA accumulation in relation to the rate of ABAcatabolism in maize tissues under water deficit[J]. Journal of experimental botany,2007,58(2):211-219.
    [203]夏江东,夏平.高等植物启动子功能和结构研究进展[J].楚雄师范学院学报,2005,20(3):41-48.
    [204] Ruan M B, Liao W B, Zhang X C, et al. Analysis of the cotton sucrose synthase3(Sus3) promoterand first intron in transgenic Arabidopsis[J]. Plant Science,2009,176(3):342-351
    [205] Yoshihama M, Nguyen H D, Kenmochi N. Intron dynamics in ribosomal protein genes[J]. PLoSOne,2007,2(1): e141.
    [206] Dibari B, Murat F, Chosson A, et al. Deciphering the genomic structure, function and evolution ofcarotenogenesis related phytoene synthases in grasses[J]. BMC genomics,2012,13(1):221.
    [207]陈君.矮牵牛PMADS9基因的启动子克隆与功能分析[D].重庆:西南大学硕士学位论文,2011.
    [208] Wang S, Wang J W, Yu N, et al. Control of plant trichome development by a cotton fiber MYBgene[J]. The Plant Cell Online,2004,16(9):2323-2334.
    [209] Watson C F, Zheng L, DellaPenna D. Reduction of tomato polygalacturonase beta subunitexpression affects pectin solubilization and degradation during fruit ripening[J]. The Plant CellOnline,1994,6(11):1623-1634.
    [210]陶俊,张上隆,安新民,等.光照对柑橘果皮类胡萝卜素和色泽形成的影响[J].应用生态学报,2003,14(11):1833-1836.
    [211] Lopez M, Candela M E, Sabater F. Carotenoids fromCapsicum annuum fruits: Influence of spectralquality of radiation[J]. Biologia plantarum,1986,28(2):100-104.
    [212]朱颖,王丽丽,柴芸彬.茉莉酸甲酯对杜氏盐藻β-胡萝卜素含量的影响.宁波大学学报(理工版),2010,23(1):13-17.
    [213]万群.番茄八氢番茄红素脱饱和酶基因(Pds)启动子的克隆[J].中国农学通报,2010,26(8):84-86.
    [214] Zeng W, Huang M, Wang X, et al. Identification and Functional Characterization of the Promoterof a Phytoene Synthase from Sweet Orange (Citrus sinensis Osbeck)[J]. Plant Molecular BiologyReporter,2013,31(1):64-74.
    [215]春晖,劳永民,姜建国.巴氏杜氏藻八氢番茄红素合成酶侧翼调控序列的克隆与分析[J].现代食品科技,2012,28(3):271-273.
    [216] Salguero A, León R, Mariotti A, et al. UV-A mediated induction of carotenoid accumulation inDunaliella bardawil with retention of cell viability[J]. Applied microbiology and biotechnology,2005,66(5):506-511.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700