用户名: 密码: 验证码:
茶叶香气的图谱分析及在茶叶品质真实性鉴定中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茶叶(Camellia sinensis)是人们日常生活中的重要饮品,以其健康的品质和怡人的感官风味受到消费者喜爱。近年来,农产品的品质真实性越来越受到政府、企业和消费者的关注,尤其质量等级鉴定、原产地追溯、添加剂检测和掺伪鉴别等。如何快速准确地鉴别茶叶产品的真实性是当前茶叶行业亟待解决的一项重大课题。香气是茶叶品质评价的关键因子之一,对香气图谱的分析不仅可以阐释茶叶冲泡过程中的呈香机理,还可以从中提取茶叶产品真实性相关的化学指纹。本论文采用顶空固相微萃取-气相色谱质谱联用(HS-SPME/GC-MS)技术,对茶叶香气图谱进行细致的分析,并对冲泡过程中的变化规律进行探索;结合主成分分析(PCA)、偏最小二乘(PLS)、聚类分析(HCA)和线性判别分析(LDA)等化学计量学方法,从茶叶香气图谱中提取特征性的化学指纹,试图对茶叶产品的品质真实性进行客观而准确的鉴定。主要的研究结果如下:
     1.保留指数在茶叶香气成分鉴定中的应用:分别应用正构烷烃(n-alkanes)混标和分析物中的正构烷烃对茶叶保留指数(RI)进行了测定,得到的保留时间相对碳数的线性相关系数(R2)均超过了0.99,证实了两种保留指数测定方法的可靠性。在谱库检索的基础上结合保留指数法,龙井茶香气成分的鉴定率从46.67%提高到74.67%,大多数物质可得到完全的鉴定。同时,保留指数能对质谱匹配过程中存在的同分异构体进行有效的鉴定,提高物质定性的准确性,使物质鉴定效率大大提高。归纳相关文献数据,构建了HP-innowax色谱柱的保留指数库,提高了利用HP-innowax色谱柱进行挥发物分析的效率。
     2.茶叶冲泡的香气图谱变化规律研究:本研究对茶叶冲泡过程中4种冲泡香气形式(干茶香、茶汤香、冲泡香和叶底香)、不同冲泡次数以及不同茶水比条件下的香气图谱进行了比较分析。4种冲泡形式在挥发物种类和含量组成上均有着显著的差异,干茶中检测得到最多的挥发物成分,保留了最完整的茶叶香气信息,而冲泡过程中并没有新挥发物大量产生。溶解度对挥发物在冲泡过程中的挥发影响非常显著,其中碳氢化合物的挥发受茶汤的限制非常明显;随着冲泡次数增加,醛类物质的相对含量呈快速递减趋势,而酯类物质则大多呈现先升后降的趋势。乌龙茶呈花香物质很可能与萜烯类物质、橙花叔醇无关,乌龙茶香气强度的降低并不与香精油总量的降低直接相关,而很可能是由香气组成的变化造成。不同茶水比的香气图谱比较研究也表明溶解度对挥发物在冲泡过程中的挥发有显著影响;其中,碳氢化合物的相对含量随茶水比增加,而部分物质(如苯甲醇和苯乙醇等)则随茶水比的增加而未能在茶汤中挥发。
     3.龙井茶香气图谱的分析及香气品质预测:本研究对龙井茶香气图谱进行分析,并试图建立基于呈香物质的龙井茶香气品质预测模型。采用HS-SPME/GC-MS技术对21个龙井茶样进行分析,采用Pearson's线性相关分析和偏最小二乘(PLS)回归分析对感官香气分数和挥发物组分的相关性进行探索。结果表明,龙井中共检测得到60个共同挥发物成分;其中,萜烯类和酯类物质是两类主要的物质,分别占总峰面积的33.89%和15.53%;芳樟醇(0.701)、壬醛(0.738)、顺-3-已酸叶醇酯(-0.785)和β-紫罗酮(-0.763)等10种成分与龙井茶的香气品质显著相关。基于这10种香气品质相关成分,建立了龙井茶香气品质预测模型(模型相关系数89.4%,交互验证相关系数80.4%)。本研究为绿茶品质预测提供了一种新的选择——基于HS-SPME/GC-MS技术。
     4.乌龙茶香气图谱的分析以及品种区分研究:本研究基于挥发物图谱分析,旨在建立一种客观、精确的分析方法,对易于掺伪的乌龙茶品种进行有效的鉴别。采用HS-SPME/GC-MS技术对5个相似乌龙茶品种(铁观音、本山、毛蟹、黄金桂和金观音)共75个茶样进行分析。26种主要的挥发物组分的相对含量在品种间差异显著,结合层序聚类分析(HCA),表明亲缘相关相近的茶叶品种的挥发物图谱仍然可能存在显著的品种差异。挥发物图谱的主成分分析(PCA)也表明,品种因素的影响显著大于其他因素(如产地和质量等级)。通过逐步线性判别分析(S-LDA)筛选得到18种判别特征最显著的成分和4个判别因子(DFs),基于S-LDA的判别模型对5个乌龙茶品种的正确判别率达到100%。
     5.茉莉花茶香气指数以及窨制品质的鉴定:茉莉花茶是日常饮用和饮料工业上非常畅销的茶类,其窨制品质和人工合成香精的监控是质量控制的重点。采用HS-SPME/GC-MS技术对茉莉花茶和茉莉花(Jasminum sambac)浸膏的挥发物图谱进行分析,得到了29种共同的挥发物组分(“共同组分”)。茉莉花茶质量等级,与相对含量比值“(α-法尼烯+顺-3-苯甲酸叶醇酯+邻氨基苯甲酸甲酯+吲哚)/芳樟醇”间存在显著的正相关。本研究将此比值命名为“茉莉花茶香气指数”(JTFindex),作为茉莉花茶品质评价的一个新的指标。JTF指数,结合“共同组分”和异常峰的检测,可以对窨制较佳、窨制较差和未窨制的茉莉花茶进行非常有效的鉴别。此外,调香载体物质(如丙二醇)可以作为添加合成香精的假冒茉莉花茶的鉴定依据。
Tea (Camellia sinensis) is one kind of famous beverages in people's daily life, and is favored for its healthy benefits and pleasant flavor. Recently, the quality authentication of agricultural products is gaining more and more attentions from the government, producers and consumers. And characterization of quality grade, traceability of geographic origin, detection of additives and identification of economic adulteration are curial issues of quality authentication of agricultural products. It is desired to develop fast, robust and objective methods for quality authentication of tea products.
     Aroma is one of the key sensory factors for quality evaluation of tea. The analysis of tea aromatic profile enables the understanding of tea aroma during brewing. Besides, aromatic profile might contain relevant fingerprints for product quality authentication. In this study, aromatic profile of tea was analyzed by headspace solid phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). The changes of aromatic profile during brewing were investigated. Combined with chemometric methods, such as principal component analysis (PCA), partial least square (PLS), hierarchical cluster analysis (HCA) and linear discriminant analysis (S-LDA), relevant aromatic fingerprints were characterized so as to make objective and robust authentication of tea products. The main results are listed as follows:
     1. Application of retention index on volatile compound indentification of tea
     Standard mixture of n-alkanes and n-alkanes in analyte assay were applied respectively to determine the retention index (RI) of tea volatiles. The linear correlation coefficients of retention time with carbon number of the two methods were both above0.99, indicating quite good reliability for determine RI. With the applying of RI, the correct identification rate of the volatiles increased from46.67%to74.67%. Meanwhile, retention index enabled effective identification of the isomers contained in tea volatiles, greatly increased the identification accuracy. Data in relevant literatures were summarized to construct a RI database for HP-innowax column. The RI database could also improve the efficiency of compound identification using HP-innowax column.
     2. Study of change rules of tea volatile profile during brewing
     This study compared the aromatic profiles of tea under different conditions, including four forms aroma during brewing (dry tea aroma, tea beverage aroma, tea infusion aroma and tea leaves remain aroma), aroma of different infusion times and aroma of different tea/water ratios. Apparent differences of volatile constitution could be observed for the four aroma forms. Most volatile compounds were detected in dry tea aroma, indicating that most complete features were kept in dry tea aroma. No volatile compound was generated in quantity during brewing process of tea. The compound volatilization was greatly affected by its solubility in water. The volatilizations of hydrocarbon compounds were significantly suppressed by tea beverage. The relative abundance of aldehydes decreased with infusion times, while that of most esters rose first and then fell with infusion times. The flowery aroma of oolong tea was unlikely contributed by terpenes and nerolidol. The variation of aroma intensity of oolong tea was caused by change of aroma constitution rather that the total amount of essential oil. The study of different tea/water ratios also confirmed the significant influence of solubility on compound volatilization. The relative abundance of hydrocarbons increased with tea/water ratio, while some volatiles (like benzyl alcohol and phenyl ethanol) were refrained from volatilizing in tea infusion with the increasing of tea/water ratio.
     3. Volatile profile analysis and quality prediction of Longjing tea (Camellia sinensis) by HS-SPME/GC-MS
     This study aimed to analyze the volatile profile of Longjing tea, and further develop an objective prediction model for aroma quality of Longjing tea based on potent odorants. A total of21Longjing samples were analyzed by headspace solid phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). Pearson's linear correlation analysis and Partial Least Square (PLS) regression were applied to investigate the relationship between sensory aroma scores and the volatile compounds. Results showed that60volatile compounds could be commonly detected in this famous green tea, and terpenes and esters were two major groups characterized, representing33.89%and15.53%of the total peak area respectively. Ten compounds were determined to be significantly correlated with the perceived aroma quality of Longjing tea, especially linalool (0.701), nonanal (0.738),(Z)-3-hexenyl hexanoate (-0.785), and β-ionone (-0.763). On the base of these10compounds, a model (correlation coefficient of89.4%and cross-validated correlation coefficient of80.4%) was constructed to predict the aroma quality of Longjing tea. Summarily, this study provided a novel option for quality prediction of green tea based on HS-SPME/GC-MS technique.
     4. Discrimination of oolong tea (Camellia sinensis) varieties based on feature extraction and selection from aromatic profiles analyzed by HS-SPME/GC-MS
     This study aimed to develop an objective and accurate analytical method to discriminate oolong tea varieties that easily causing adulteration by potential volatile compounds. A total of75oolong tea samples of five similar varieties (Tieguanyin, Benshan, Maoxie, Huangjingui and Jinguanyin) were analyzed by headspace solid phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). The relative content of26major volatile compounds varied significantly according to variety, combined with the results of hierarchical cluster analysis (HCA), indicating that the varietal differences of aromatic profile remain significant for tea cultivars with very close origin. Principal component analysis (PCA) of the aromatic profiles showed that the feature of variety dominated over the other features (like producing region and quality). By stepwise linear discriminant analysis (S-LDA),18volatiles with the best discriminating capacity were selected, and4discriminant functions (DFs) enabled simultaneously discrimination of the five oolong varieties with100%correct rate.
     5. A novel quality evaluation index and strategies to identify scenting quality of jasmine tea based on volatile profile analysis
     Jasmine tea is a popular tea in daily consumption and beverage industry, and scenting quality and synthetic artificial oil are crucial issues of quality control for this tea. The volatile profiles of jasmine tea samples and flower concrete of Jasminum sambac were analyzed by headspace solid phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). Twenty-nine volatile compounds were detected as "common components" in well-scented jasmine teas and concrete of jasmine flowers. Potential correlation was discovered between the quality grade of jasmine tea and the ratio of the peak area percentage of a-farnesene,(Z)-3-hexenyl benzoate, methyl anthranilate, and indole to that of linalool. This ratio was denoted as "Jasmine Tea Flavor" index (JTF index), a novel index for quality evaluation of jasmine tea. JTF index, together with detecting of "common components" and abnormal peaks, could provide a good identification of well-scented, poor-scented, and not scented jasmine teas. Moreover, carrier compounds might be a clear evidence for identifying fake jasmine teas that were added with synthetic fragrance oil.
引文
Abrodo, P. A., Llorente, D. D., Corujedo, S. J., de la Fuente, E. D., Alvarez, M. D. G.,& Gomis, D. B. (2010). Characterisation of Asturian cider apples on the basis of their aromatic profile by high-speed gas chromatography and solid-phase microextraction. Food Chemistry,121: 1312-1318.
    Adams RP. (2001). Identifcation of Essential Oil Components by Gas Chromatography/quadrupole Mass Spectroscopy. Allured:Carol Stream, IL.
    Adams RP, ed. (2007). Identii cation of Essential Oil Components by Gas Chromatography/Mass Spectrometry,4th edn. Allured:Carol Stream, IL.
    Akhgar, M.R., Rustaiyan, A., Masoudi, S.,& Bigdeli, M. (2005). Essential Oils of Ferula microcolea (Boiss.) Boiss. and Ferula hirtella Boiss. from Iran. Journal of Essential Oil Research,17:237-238.
    Alcazar, A., Ballesteros, O., Jurado, J. M., Pablos, F., Martin, M. J., Vilches, J. L.,& Navalon, A. (2007). Differentiation of green, white, black, oolong, and Pu-erh teas according to their free amino acids content. Journal of Agricultural and Food Chemistry,55:5960-5965.
    Alodanlou, R., Darbellay, C., Luisier, J.L., Villettaz, J.C.,& Amadd, R. (2003). Quality assessment of strawberries (Fragaria species). J. Agr. Food Chem.,51:715-721.
    Alvarez, R.Q., Passaro, C.C., Lara, O.G.,& Londono, J.L. (2011). Relationship between chromatographic profiling by HS-SPME and.sensory quality of mandarin juices:effect of squeeze technology. Procedia Food Sci.,1:1396-1403.
    Augusto, F.,& Zini, C.A. (2002). Sampling and Sample Preparation for Field and Laboratory: Fundamentals and New Directions in Sample Preparation. In:J. Pawliszyn (Ed.), Solid Phase Microextraction. Elsevier, Amsterdam, p.389-478.
    Azodanlou, R., Darbellay, C., Luisier, J.L., Villettaz, J.C.,& Amado, R. (2003). Development of a model for quality assessment of tomatoes and apricots. Lebensm. Wiss. Technol,36:223-233.
    Bai, K. Y., Yu, F. L., Yang, Y. J.,& Fang, J. H. (2001). Tea tree cultivars in China. China: Shanghai Science and Technology Publishing House.
    Banach, U., Tiebe, C.,& Hubert, T. (2012). Multigas sensors for the quality control of spice mixtures. Food Control,26:23-27.
    Biswas, S., Heindselmen, K., Wohltjen, H.,& Staff, C. (2004). Differentiation of vegetable oils and determination of sunflower oil oxidation using a surface acoustic wave sensing device. Food Control,15:19-26.
    Borse, B. B., Jagan Mohan Rao, L., Nagalakshmi, S.,& Krishnamurthy, N. (2002). Fingerprint of black teas from India:identification of the regio-specific characteristics. Food Chemistry, 79:419-424.
    Bozin, B., Mimica-Dukic, N., Samojlik, I.,& Jovin, E. (2007). Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L. Lamiaceae) essential oils. J. Agric. Food Chem.,55:7879-7885.
    Branch, S., Burke, S., Evans, P., Fairman, B.,& Briche, C.S.J.W. (2003). A preliminary study in dterminaing the geographical origin of wheat using isotope ratio inductively coupled plasma mass spectrometry with 13C,15N mass spectrometry. Journal of analytical atomic spectrometry,18:17-22.
    Chen, Y.J., Kuo, P.C., Yang, M.L., Li, F.Y.,& Tzen, J.T.C. (in press). Effects of baking and aging on the changes of phenolic and volatile compounds in the preparation of old tieguanyin oolong teas. Food Research International.
    Chen, Y.X., Yu, M.G., Xu, J., Chen, X.C.,& Shi, J.Y (2009). Differentiation of eight tea (Camellia sinensis) cultivars in China by elemental fingerprint of their leaves. J. Sci. Food Agric.,89: 2350-2355.
    Cheng, Y., Huynh-Ba, T., Blank, I.,& Robert, F. (2008). Temporal changes in aroma release of Longjing tea infusion:interaction of volatile and nonvolatile tea components and formation of 2-butyl-2-octenal upon aging. J. Agric. Food Chem.,56:2160-2169.
    Cho, I.H., Lee, S.M., Kim, S.Y., Choi, H.K, Kim, K.O.,& Kim, Y.S. (2007). Differentiation of aroma characteristics of pine-mushrooms(Tricholoma matsutake Sing.) of different grades using gas chromatography-olfactometry and sensory analysis. J. Agr. Food Chem.,55: 2323-2328.
    Choi, H.S. (2003). Character impact odorants of Citrus Hallabong [(C. unshiu Marcov×C. sinensis Osbeck) ×C. reticulata Blanco] cold-pressed peel oil. Journal of Agricultural and Food Chemistry,51(9):2687-2692.
    Choi, H.S. (2005). Characteristic odor components of Kumquat(Fortunella japonica Swingle) peel oil. Journal of Agricultural and Food Chemistry,53(5):1642-1647.
    Christensen, L. P., Jakobsen, H. B., Kristiansen, K.,& M(?)ller, J. (1997). Volatiles emitted from flowers of γ-radiated and nonradiated Jasminum polyanthum Franch. in situ. Journal of Agricultural and Food Chemistry,45:2199-2203.
    Chung, M.S. (2012). Volatile compounds of the Hallabong(Citrus kiyomi× Citrus ponkan) blossom. Food Sci. Biotechnol.,21:285-290.
    Cirlini, M., Caligiani, A., Pall, L.,& Palla, G. (2011). HS-SPME/GC-MS and chemometrics for the classification of Balsamic Vinegars of Modena of different maturation and ageing. Food Chemistry,124:1678-1683
    Cuadros-Inostroza, A., Giavalisco, P., Hummel, J., Eckardt, A., Willmitzer, L.,& Pena-Cortes, H. (2010). Discrimination of wine attributes by metabolome analysis. Analytical Chemistry,82: 3573-3580.
    Darriet, P., Pons, M., Henry, R., Dumont, O., Findeling, V., Cartolaro, P., Calonnec, A.,& Dubourdieu, D. (2002). Impact odorants contributing to the fungus type aroma from grape berries contaminated by powdery mildew(Uncinula necator); incidence of enzymatic activities of the Yeast Saccharomyces cerevisiae. J. Agric. Food Chem.,50:3277-3282.
    Dennis, M.J. (1998). Recent developments in food authentication. Analyst,123:151R-156R.
    De Castro, O., Senatore, F., Rigano, D., Formisano, C., Cennamo, P., Gianguzzi, L. (2008). Composition of the essential oil of Petagnaea gussonei (Sprengel) Rauschert, a relict species from Sicily (Southern Italy). Flavour and Fragrance Journal,23:172-177.
    De Martino, L., Roscigno, G., Mancini, E., De Falco, E.,& De Feo, V. (2010). Chemical composition and antigerminative activity of the essential oils from five Salvia species. Molecules,15:735-746.
    Demirci, B., Baser, K. H. C., Tabanca, N.,& Wedge, D. E. (2006). Characterization of volatile constituents of Haplopappus greenei and studies on the antifungal activity against phytopathogens. Journal of Agricultural and Food Chemistry,54:3146-3150.
    Demirci, B., Demirci, F.,& Baser, K. H. C. (2003). Composition of the essential oil of Cotinus coggygria Scop. from Turkey. Flavour and Fragrance Journal,18:43-44.
    Dhiman, B.,& Singh, M. (2003). Molecular detection of cashew husk (Anacardium occidentale) adulteration in market samples of dry tea(Camellia sinensis). Planta Medica,69:882-884.
    Dmowski, P., Smiechowska, M., Akademia, M. G.,& Katedra T. i L. (2008). Applying crude fibre to detect adulteration of tea. Zywnosc Nauka Technologia Jakosc,15:116-122.
    do Nascimento, M.E., Zoghbi, M.G.B., Pinto, J.E.B.P.,& Bertolucci, S.K.V. (2012). Chemical variability of the volatiles of Copaifera langsdorffii growing wild in the Southeastern part of Brazil. Biochemical Systematics and Ecology,43:1-6.
    Dutta, R., Hines, E.L., Gardner, J.W., Kashwan, K.R.,& Bhuyan, M. (2003). Tea quality prediction using atinoxide-based electronic nose:an artificial intelligence approach. Sensors and Actuators B,94(2):228-237.
    Edris, A.E., Chizzola, R.,& Franz, C. (2008). Isolation and characterization of the volatile aroma compounds from the concrete headspace and the absolute of Jasminum sambac (L.) Ait. (Oleaceae) Xowers grown in Egypt. European Food Research and Technology,226: 621-626.
    Fernandez, P.L., Pablos, F., Martin, M.J.,& Gonzalez, A.G. (2002). Study of catechin and xanthine tea profiles as geographical tracers. J. Agric. Food Chem.,50:1833-1839.
    Fernandez-Caceres, P.L., Martin, M.J., Pablos, F.,& Gonzalez, A.G. (2001). Differentiation of tea (Camellia sinensis) varieties and their geographical origin according to their metal content. J. Agric. Food Chem.,49:4775-4779.
    Gall, G.L., Colquhoun, I.J., Defernez, M. (2004). Metabolite profiling using 1H NMR spectroscopy for quality assessment of green tea, Camellia sinensis (L.). J. Agric. Food Chem.,52:692-700.
    Grujic-Jovanovic, S., Skaltsa, H.D., Marin, P.,& Sokovic, M. (2004). Composition and antibacterial activity of the essential oil of six Stachys species from Serbia. Flavour and Fragrance Journal,19:139-144.
    Habibi, Z., Masoudi, S.,& Rustaiyan, A. (2004). Essential Oil of Nepeta makuensis Jamzad et Mozaffarian from Iran. Journal of Essential Oil Research,16:214-215.
    Haghi, G., Ghasian, F.,& Safaei-Ghomi, J. (2010). Determination of the essential oil from root and aerial parts of Artemisia dracunculus L. cultivated in central Iran. Journal of Essential Oil Research,22:294-296.
    Hara, Y., Luo, S., Wiickremasinghe, L.R.,& Yamanishi, T. (1995). Processing of tea Ⅳ. Food Reviews International,11:409-434.
    Hazzit, M., Baaliouamer, M., Faleiro, M.L.,& Miguel, M.G. (2006). Composition of the essential oils of Thymus and Origanum species from Algeria and their antioxidant and antimicrobial activities. J. Agric. Food Chem.,54:6314-6321.
    He, W., Hu, X. S., Zhao, L., Liao, X. J., Zhang, Y, Zhang, M. W.,& Wu, J. H. (2009). Evaluation of Chinese tea by the electronic tongue:Correlation with sensory properties and classification according to geographical origin and grade level. Food Research International,42:1462-1467.
    Heravi, M.J.,& Sereshti, H. (2007). Determination of essential oil components of Artemisia haussknechtii Boiss. using simultaneous hydrodistillation-static headspace liquid phase microextraction-gas chromatography mass spectrometry. Journal of Chromatography A,1160: 81-89.
    Herrador, M.A.,& Gonzalez, A.G. (2001). Pattern recognition procedures for differentiation of Green, Black and Oolong teas according to their metal content from inductively coupled plasma atomic emission spectrometry. Talanta,53:1249-1257.
    Horn, P., Schaaf, P., Holbach, B., Holzl, S.,& Eschnauer, H. (1993).87Sr/86Sr from rock and soil into vine and wine. Zeitschrift Fur Lebensmitteluntersuchung und-Forschung A,196: 407-409.
    Hu, Q.H., Xu, J.,& Pan, G.X. (2001). Effect of selenium spraying on green tea quality. Journal of the Science of Food and Agriculture,81:1387-1390.
    Inoue, N., Kuroda, K., Sugimoto, A., Kakuda, T.,& Fushiki, T. (2003). Autonomic Nervous Responses According to Preference for the Odor of Jasmine Tea. Bioscience Biotechnology & Biochemistry,67:1206-1214.
    Ito, Y,& Kubota, K. (2005). Sensory evaluation of the synergismamong odorants present in concentrations below their odor threshold in a Chinese jasmine green tea infusion. Mol. Nutr. Food Res.,49:61-68.
    Ito, Y, Sugimoto, A., Kakuda, T.,& Kubota, K. (2002). Identification of potent odorants in Chinese jasmine green tea scented with flowers of Jasminum sambac. Journal of Agricultural and Food Chemistry,50:4878-4884.
    Jang, J., Yang, Y.C., Zhang, GH., Chen, H., Lu, J.L., Du, Y.Y., Ye, J.H., Ye, Q., Borthakur, D., Zheng, X.Q.,& Liang, Y.R. (2010). Effect of ultra-violet B on release of volatiles in tea leaf. International Journal of Food Properties,13:608-617.
    Jelen, H.H., Obuchowska, M., Zawirska-Wojtasiak, R.,& Wasowicz, E. (2000). Headspace solid-phase microextraction use for the characterization of volatile compounds in vegetable oils of different sensory quality. J. Agr. Food Chem.,48:2360-2367.
    Jogensen, U., Hansen, M., Christensen, L.P., Jensen, K.,& Kaack, K., (2000). Olfactory and quantitative analysis of aroma compounds in elder flower (Sambucus nigra L.) drink processed from five cultivars.J. Agr. Food Chem.,48(6):2376-2383.
    Jordan, M.J., Goodner, K.L.,& Shaw, P.E. (2002). Characterization of the aromatic profile in aqueous essence and fruit juice of yellow passion fruit(Passiflora edulis Sims F. Flavicarpa degner) by GC-MS and GC/O. J. Agric. Food Chem.50:1523-1528.
    Jumtee, K., Komura, H., Bamba, T.,& Fukusaki, E. (2011). Predication of Japanese green tea (Sen-cha) ranking by volatile profiling using gas chromatography mass spectrometry and multivariate analysis. J. Biosci. Bioeng.,112:252-255.
    Kaneko, S., Kumazawa, K., Masuda, H., Henze, A.,& Hofmann, T. (2006). Molecular and sensory studies on the umami taste of Japanese green tea. J. Agric. Food Chem.,54: 2688-2694.
    Kawakami, M, Ganguly, S.N., Banerjee, J.,& Kobayashi, A. (1995). Aroma composition of oolong tea and black tea by brewed extraction method and characterizing compounds of Darjeeling tea aroma. J. Agric. Food Chem.,1995,43 (1), pp 200-207.
    Kawakami, M.,& Yamanishi, T. (1981). Aroma characteristics of kabusecha (shaded green tea). Nippon Nogeikagaku Kaishi,55:117-123.
    Kawakami, M,& Yamanishi, T. (1983). Flavor constituents of Longjing tea. Agr. Biol. Chem. Tokyo,47(9):2077-2083.
    Kawasaki, A., Oda, H.,& Hirat, T. (2002). Determination of strontium isotope ration of brown rice for estimating its provenance. Jap. Soc. Soil. Sci. Plant Nutri.,48:635-640.
    Kenig, F., Simons, D.H., Crich, D., Cowen, J.P., Ventura, G.T.,& Rehbein-Khalily, T. (2005). Structure and distribution of branched aliphatic alkanes with quaternary carbon atoms in Cenomanian and Turonian black shales of Pasquia Hills (Saskatchewan, Canada). Organic Geochemistry,36:117-138.
    Kim, H., Cho, W. J., Ahn, J. S., Cho, D. H.,& Cha, Y. J. (2005). Identification of radiolytic marker compounds in the irradiated beef extract powder by volatile analysis. Microchemical Journal,80:127-137.
    Kim, T.H., Thuy, N.T., Shin, J.H., Baek, H.H.,& Lee, H.J. (2000). J. Agric. Food Chem.,48: 2877-2881.
    Kinoshita, T., Hirata, S., Yang, Z.Y., Baldermann, S., Kitayama, E., Matsumoto, S., Suzuki, M., Fleischmann, P.,& Winterhalter, P. (2010). Formation of damascenone derived from glycosidically bound precursors in green tea infusions. Food Chemistry,123:601-606.
    Kodama, S., Ito, Y, Nagase, H., Yamashita, T., Kemmei, T., Yamamoto, A.,& Hayakawa, K. (2007). Usefulness of catechins and caffeine profiles to determine growing areas of green tea leaves of a single variety, Yabukita, in Japan.
    Kosuge, M, Mori, Y, Yamanishi, T.,& Fuchinoe, H. (1978). Aroma characteristics of var. sayamakaori, a newly registered variety of tea plant. Nippon Nogeikagaku Kaishi,52: 259-262.
    Kuo, P.C., Lai, Y.Y., Chen, Y.J.,& Yang, W.H. (2010). Changes in volatile compounds upon aging and drying in oolong tea production. J. Sci. Food Agric.,91:293-301.
    Kumazawa, K.,& Masuda, H. (1999). Identification of Potent odorants in Japanese green tea (Sen-cha). J. Agric. Food Chem.,47:5169-5172.
    Kumazawa, K.,& Masuda, H. (2002). Identification of potent odourants in different green tea varieties using flavour dilution technique. Journal of Agricultural and Food Chemistry,50, 5660-5663.
    Kuroda, K., Inoue, N., Ito, Y., Kubota, K., Sugimoto, A., Kakuda, T.,& Fushiki, T. (2005). Sedative effects of the jasmine tea odor and (R)-(-)-linalool, one of its major odor components, on autonomic nerve activity and mood states. European Journal of Applied Physiology,95:107-114.
    Lachenbruch, P. A. (1979). Discriminant analysis. Biometrics,35:69-85.
    Lavilla, T., Puy, J., Lopez, M.L., Recasens, I.,& Vendrell, M. (1999). Relationships between volatile production, fruit quality, and sensory evaluation in Granny Smith apples stored in different controlled-atmosphere treatments by means of multivariate analysis. J. Agr. Food Chem.,47:3791-3803.
    Li, R.,& Jiang, Z.T. (2004). Chemical composition of the essential oil of Cuminum cyminum L. from China. Flavour and Fragrance Journal,19:311-313.
    Liang, Y.R., Wu, Y., Lu, J.L.,& Zhang, L.Y. (2007). Application of chemical composition and infusion colour difference analysis to quality estimation of jasmine-scented tea. International Journal of Food Science and Technology,42:459-468.
    Liolios, C., Laouer, H., Boulaacheb, N., Gortzi, O.,& Chinou, I. (2007). Chemical composition and antimicrobial activity of the essential oil of Algerian Phlomis bovei De Noe subsp. bovei. Molecules,12:772-781.
    Lucero, M., Estell, R., Tellez, M.,& Fredrickson, E.2009. A retention index calculator simplifies identification of plant volatile organic compounds. Phytochemical Analysis,20:378-384.
    Luypaert, J., Zhang, M.H.,& Massart, D.L. (2003). Feasibility study for the use of near infrared spectroscopy in the qualitative and quantitative analysis of green tea, Camellia sinensis (L.). Analytica Chimica Acta,478(2):303-312.
    Lv, H. P., Zhong, Q. S., Lin, Z., Wang, L., Tan, J. F.,& Guo, L. (2012). Aroma characterization of Pu-erh tea using headspace-solid phase microextraction combined with GC/MS and GC-olfactometry. Food Chem.,130:1074-1081.
    Lvova, L., Legin, A., Vlasov, Y., Cha, GS.,& Nam, H. (2003). Multicomponent analysis of Korean green tea by means of disposable all-solid-state potentiometric electronic tongue microsystem. Sensors and Actuators B,95:391-399.
    Marcos, A., Fisher, A., Rea, G.,& Hill, S.J. (1998). Preliminary study using trace element concentrations and a chemometrics approach to determine the geographical origin of tea. Journal of Analytical Atomic Spectrometry,1998,13:521-525.
    Maggi, F., Bilek, T., Cristalli, G., Papa, F., Sagratini, G.,& virtori, S. (2009). Comparison of the characterization of the fruit-like aroma of Teucrium flavum L. subsp flavum by hydrodistillation and solid-phasemicro-extraction. J. Sci. Food Agric,89:2505-2518.
    McKenzie, J.S., Jurado, J.M.,& de Pablos, F. (2010). Characterisation of tea leaves according to their total mineral content by means of probabilistic neural networks. Food Chemistry,123: 859-864.
    Mihailovic, V., Vukovic, N., Niciforovic, N., Solujic, S., Mladenovic, M. Maskovic, P.,& Stankovic, M.S. (2001). Journal of Medicinal Plants Research,5:1164-1174.
    Moreda-Pineiro, A., Fisher, A.,& Hill, S.J. (2003). The classification of tea according to region of origin using pattern recognition techniques and trace metal data. Journal of Food Composition and Analysis,16:195-211.
    Ogawa, K., Ijima, Y, Guo, W. F., Watanabe, N., Usui, T., Dong, S. S., Tong, Q. Q.,& Sakata, K. (1997). Purification of a β-primeverosidase concerned with alcoholic aroma formation in tea leaves (cv. Shuixian) to be processed to oolong tea. Journal of Agricultural and Food Chemistry,45,877-882.
    Owuor, P.O., Tsushida, T., Horita, H., Takeo, T.,& Murai, T. (1987). Differentiation of clonal teas by terpene index. Journal of the Science of Food and Agriculture,40:341-345.
    Petersen, M. A., Poll, L.,& Larsen, L. M. (1998). Comparison of volatiles in raw and boiled potatoes using a mild extraction technique combined with GC odour profiling and GC-MS. Food Chemistry,61:461-466.
    Pino, J.A., Marbot, R.,& Vazquez, C. (2001). Characterization of volatiles in strawberry guava (Psidium cattleianum Sabine) fruit. J. Agr. Food Chem.,49(12):5883-5887.
    Pino, J.A., Marbot, R.,& Vazquez, C. (2002). Characterization of volatiles in Costa Rican guava [Psidium friedrichsthalianum (Berg) Niedenzu] fruit. J. Agr. FoodChem,,50:6023-6026.
    Pino, J.A.,& Quijano C., C.E. (2012). Volatile constituents of camu-camu (Myrciaria dubia (HBK) McVaugh) leaves. Journal of Essential Oil Research,20:205-207.
    Pino, J., Sauri-Duch, E.,& Marbot, R. (2006). Changes in volatile compounds of Habanero chile pepper (Capsicum chinense Jack. cv. Habanero) at two ripening stages. Food Chemistry,94: 394-398.
    Pizarro, C, Esteban-Diez, I., Saenz-Gonzalez, C.,& Gonzalez-Saiz, J. M. (2008). Vinegar classification based on feature extraction and selection from headspace solid-phase microextraction/gas chromatography volatile analyses:A feasibility study. Analytica Chimica Acta,608:38-47
    Pligrim, T. S., Watling R. J.,& Grice, K. (2010). Application of trace element and stable isotope signatures to determine the provenance of tea (Camellia sinensis) samples. Food Chemistry, 118:921-926.
    Pongsuwan, W., Fukusaki, E., Bamba, T., Yonetani, T., Yamahara, T.,& Kobayashi, A. (2007). Prediction of Japanese green tea ranking by gas chromatography/mass spectrometry-based hydrophilic metabolite fingerprinting. J. Agr. FoodChem.,55:231-236.
    Pongsuwan, W., Bamba, T., Yonetani, T., Kobayashi, A.,& Fukusaki, E. (2008). Quality prediction of Japanese green tea using pyrolyzer coupled GC/MS based metabolic fingerprinting. J. Agr. Food Chem.,56:744-750.
    Rawat, R., Gulati, A., Kiran Babu, G.D., Acharya, R., Kaul, V.K.,& Singh, B. (2007). Characterization of volatile components of Kangra orthodox black tea by gas chromatography-mass spectrometry. Food Chem.,105:229-235.
    Roβmann, A., Reniero, F., Moussa, I., Schmidt, H.-L., Versini, G.,& Merle, M.H. (1999). Stable oxygen isotope content of water of EU data-bank wines from Italy, France and Germany. Zeitschrift Fur Lebensmitteluntersuchung und-ForschungA,208:400-407.
    Romesburg, H. C. (1984). Cluster analysis for researchers. Belmont, Calif.:Lifetime Learning Publications.
    Salido, S., Altarejos, J., Nogueras, M., Sanchez, A., Pannecouque, C., Witvrouw, M.,& De Clercq, E. (2002). Chemical studies of essential oils of Juniperus oxycedrus ssp. badia. Journal of Ethnopharmacology,81:129-134.
    Sayaka, M., Hitoshi, K., Takami, K.,& Kikue, K. (2003). Study on the characteristics aroma constituents of oolong tea "Huang Chin Kuei". Koryo, Terupen oyobi Seiyu Kagaku ni kansuru Toronkai Koen Yoshishu,47:7-9. (in Japanese)
    Scharbert, S.,& Hofmann, T. (2005). Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments. J. Agric. Food. Chem., 53:5377-5384.
    Schuh, C.,& Schieberle, P. (2006). Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea:quantitative differences between tea leaves and infusion. J. Agric. Food. Chem.,54:916-924.
    Senatore, F., Arnold, N.A.,& Piozzi, F. (2004). Chemical composition of the essential oil of Salvia multicaulis Vahl. var. simplicifolia Boiss. growing wild in Lebanon. Journal of Chromatography A,1052:237-240.
    Senatore, F., Arnold, N.A., Piozzi, F.,& Formisano, C. (2006). Chemical composition of the essential oil of Salvia microstegia Boiss. et Balansa growing wild in Lebanon. Journal of Chromatography A,1108:276-278.
    Shang, C., Hu, Y., Deng, C.,& Hu, K. (2002). Rapid determination of volatile constituents of Michelia alba flowers by gas chromatography-mass spectrometry with solid-phase microextraction. Journal of Chromatography A,942:283-288.
    Shimoda, M., Shigematsu, H., Shiratsuchi, H.,& Osajima, Y. (1995a). Comparison of odor concentrates by SDE and adsorptive column method from green tea infusion. J. Agric. Food Chem.,43:1616-1620.
    Shimoda, M., Shigematsu, H., Shiratsuchi, H.,& Osajima, Y. (1995b). Comparison of volatile compounds among different grades of green tea and their relations to odor attributes. J. Agric. Food Chem.,43:1621-1625.
    Tabanca, N., Demirci, B., Ozek, T., Kirimer, N., Baser, K. H. C., Bedir, E., Khan, I. A.,& Wedge, D. E. (2006). Gas chromatographic-mass spectrometric analysis of essential oils from Pimpinella species gathered from Central and Northern Turkey. Journal of Chromatography A,1117:194-205.
    Tabanca, N., Kirimer, N., Demirci, B., Demirci, F.,& Baser, H. C. (2001). Composition and antimicrobial activity of the essential oils of Micromeria cristata subsp. phrygia and the enantiomeric distribution of borneol. Journal of Agricultural and Food Chemistry,49: 4300-4303.
    Tairu, A.O., Hofmann, T.,& Schieberle, P. (1999). Characterization of the key aroma compounds in dried fruits of the West African peppertree Xylopia aethiopica (Dunal) A. Rich (Annonaceae) using aroma extract dilution analysis. Journal of Agricultural and Food Chemistry,47:3285-3287.
    Takei, Y.; Ishiwata, K.; Yamanishi, T.1976. Aroma components characteristic of spring green tea. Agric. Biol. Chem.,40:2151-2157.
    Tao, Y.S., Li, H., Wang, H.,& Zhang, L. (2008). Volatile compounds of young Cabernet Sauvignon red wine from Changli County (China). Journal of Food Composition and Analysis,21:689-694
    Tipping, M. E.,& Bishop, C. M. (1999). Probabilistic principal component analysis. Journal of the Royal Statistical Society:Series B,61:611-622.
    Togari, N., Kobayashi, A.,& Aishima, T. (1995). Relating sensory properties of tea aroma to gas chromatographic data by chemometric calibration methods. Food Res. Int.,28(5):485-493.
    Ueyama, Y., Hashimoto, S., Nii, H.,& Furukawa, K. (1992). The chemical composition of the flower oil and the leaf oil of Michelia alba D.C. Journal of Essential Oil Research,4:15-23.
    Vian, M. A., Fernandez, X., Visinoni, F.,& Chemat, F. (2008). Microwave hydrodiffusion and gravity, a new technique for extraction of essential oils. Journal of Chromatography A, 1190:14-17.
    Vichi, S., Pizzale, L., Conte, L.S., Buxaderas, S.,& Lopez-Tamames, E. (2005). Simultaneous determination of volatile and semi-volatile aromatic hydrocarbons in virgin olive oil by headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry. Journal of Chromatography A,1090:146-154.
    Vinas, P., Campillo, N., Aguinaga, N., Perez-Canovas, E.,& Hernandez-Cordoba, M. (2007). Use of headspace solid-phase microextraction coupled to liquid chromatography for the analysis of polycyclic aromatic hydrocarbons in tea infusions. Journal of Chromatography A, 1164:10-17.
    Wang, K.B.,& Ruan, J.Y. (2009). Analysis of chemical components in green tea in relation with perceived quality, a case study with Longjing teas. Int. J. Food Sci. Tech.,44:2476-2484.
    Wang, K.B., Liu, F., Liu, Z.H., Huang, J.A., Xu, Z.X., Li, Y.H., Chen, J.H., Gong, Y.S.,& Yang, X.H. (2010). Analysis of chemical components in oolong tea in relation to perceived quality. Int. J. Food Sci. Tech.,45:913-920.
    Wang, L.F., Lee, J.Y., Chung J.O., Baik, J.H., So, S.,& Park, S.K. (2008). Discrimination of teas with different degrees of fermentation by SPME-GC analysis of the characteristic volatile flavour compounds. Food Chemistry,109:196-206.
    Wold, S., Sjostrom, M.,& Eriksson, L. (2001). PLS-regression:a basic tool of chemometrics. Chemometr. Intell. Lab. Sys.,58:109-130.
    Xu, X.Q., Mo, H.Z., Yan, M.C.,& Zhu, Y. (2007). Analysis of characteristic aroma of fungal fermented Fuzhuan brick-tea by gas chromatography/mass spectrophotometry. J Sci Food Agric,87:1502-1504.
    Yamaguchi, K.,& Shibamoto, T. (1981). Volatile constituents of green tea, Gyokuro(Camellia sinensis L. var Yabukita). J. Agric. Food Chem.,29:366-370.
    Yamanishi, T. (1988). Aroma of Chinese scented green tea. In Frontiers of Flavor. Proceedings of 5th International Flavor Conference, Porto Karras, Chalkidiki, Greece (pp.181-190) Amsterdam:Elsevier Science Publishers B.V.
    Yang, D.S., Shewfelt, R.L., Lee, K.S.,& Kays, S.J. (2008). Comparison of odor-active compounds from xix distinctly different rice flavor types. J. Agric. Food Chem.,56:2780-2787.
    Yang, Z.Y., Kinoshita, T., Tanida, A., Sayama, H., Morita, A.,& Watanabe, N. (2009). Analysis of coumarin and its glycosidically bound precursor in Japanese green tea having sweet-herbaceous odour. Food Chemistry,11:289-294.
    Ye, N.S. (2012). A minireview of analytical methods for the geographical origin analysis of teas (Camellia sinensis). Critical Reviews in Food Science and Nutrition,52:775-780.
    Yu, H. C., Wang, Y. W.,& Wang, J. (2009). Identification of tea storage times by linear discrimination analysis and back-propagation neural network techniques based on the eigenvalues of principal components analysis of E-nose sensor signals. Sensors,9: 8073-8082.
    Zhang, J., Li, L., Gao, N. F., Wang, D. P., Gao, Q.,& Jiang, S. P. (2010). Feature extraction and selection from volatile compounds for analytical classification of Chinese red wines from different varieties. Analytica Chimica Acta,662:137-142.
    Zhang, Y., Gao, B., Zhang, M., Shi, J.,& Xu, Y. (2009). Headspace solid-phase microextraction-gas chromatography-mass spectrometry analysis of the volatile components of longan(Dimocarpus longan Lour.). Eur. Food Res. Technol.,229:457-465.
    Zhao, C.X., Liang, Y.Z., Fang, H.Z.,& Li, X.N. (2005). Temperature-programmed retention indices for gas chromatography-mass spectroscopy analysis of plant essential oils. Journal of Chromatography A,1096:76-85.
    Zhu, M., Li, E.,& He, H. (2008). Determination of volatile chemical constitutes in tea by simultaneous distillation extraction, vacuum hydrodistillation and thermal desorption. Chromatographia,68:603-610.
    艾施荣,吴瑞梅,吴燕.2010.基于BP神经网络近红外光谱鉴别茶饮料的研究.安徽农业科学,38(14):7658-7659.
    蔡健荣.2000.利用计算机视觉定量描述茶叶色泽.农业机械学报,3(14):67-70.
    陈昌辉,齐桂年,黄烈平.2010.高香绿茶香气成分的GC-MS分析.西南农业学报,23(6):2151-2154.
    陈岱卉,叶乃兴,邹长如.2008.茶树品种的适制性与茶叶品质.福建茶叶,(1):2-5.
    陈全胜,赵杰文,张海东,刘木华.2006a. SIMCA模式识别方法在近红外光谱识别茶叶中的应用.食品科学,27(4):186-189.
    陈全胜,赵杰文,张海东,王新宇.2006b.基于支持向量机的近红外光谱鉴别茶叶的真伪.光学学报,26(6):933-937.
    陈荣冰,张方舟,黄福平,游小妹.1998.丹桂与名优乌龙茶品种香气特征比较.茶叶科学,18(2):113-118.
    陈颖,董文,吴亚君,袁飞,黄文胜,葛毅强.2008.食品鉴伪技术体系的研究与应用.食品工业科技,7:216-218,312.
    陈颖,葛毅强,吴亚君,黄文胜.2007.现代食品真伪检测鉴别技术.食品与发酵工业,33(7):102-106.
    陈悦娇.2005.不同乌龙茶的香气特征及加工工艺对香气形成的影响研究.中山大学硕士学位论文.
    程启坤,阮宇成.1985.绿茶滋味化学鉴定法.茶叶科学,(1):7-17.
    代毅,须海荣.2008.采用SPME—GC/MS联用技术对龙井茶香气成分的测定分析.茶叶,34(2):85-88.
    窦宏亮,李春美,乔宇,顾海峰,周丽明.2007.炒青绿茶香气成分的GC-MS分析.食品科学,28(5):258-261.
    冯花,郭雅玲.2010.茶叶感官审评方法及其新发展.福建茶叶,(7):28-31.
    龚琦,钱惠萍.1997.LRC数字电桥检测茶叶品质的研究.农业工程学报,13(2):216-219.
    郭吉春,杨如兴,张文锦,陈志辉,陈键.2008.茶树杂交种金观音与黄观音的选育及应用.贵州科学,26(2):20-24.
    郭建华.2011.绿茶贮藏过程中挥发性物质变化规律的研究.浙江大学硕士学位论文.
    郭丽,蔡良绥,林智,王力.2010.基于主成分分析法的白茶香气质量评价模型构建.热带作物学报,31(9):1606-1610.
    郭雯飞.1996.茶叶香气生成机理的研究.中国茶叶加工,(4):34-37.
    GB/T 18650-2008.中华人民共和国国家标准:地理标志产品龙井茶.中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.
    GB/T22292-2008.中华人民共和国国家标准:茉莉花茶.中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.
    GB/T23776-2009.中华人民共和国国家标准:茶叶感官审评方法.中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.
    阚能才,郑定贵,王云,阚能才,郑定贵,_王_-Z-.1991.茶叶吸附茉莉花芳香成份规律的研究.西南农业学报,4:40-45.
    黄新安.2001.茉莉花茶和茉莉花香气分析及其形成机理的初步研究.安徽农业大学硕士学位论文.
    蒋顾伟,廖明宏,李拥军.2005.窨制茉莉花茶与添加香精茉莉花茶香气成分的差异性分析.茶叶通讯,32(3):17-20.
    康海宁,杨妙峰,陈波等.2006.利用矿质元素的测定数据判别茶叶的产地和品种.岩矿测试,25(1):22-26.
    李晓丽,何勇,裘正军.2007.一种基于可见-近红外光谱快速鉴别茶叶品种的新方法.光谱 学与光谱分析,27(2):279-282.
    李泽贤.2011.浅析生态茶园对茶叶品质的影响.贵州茶叶,39(2):10-12.
    梁晟,李雅文,赵晨曦,梁逸曾.2008.GC-MS结合保留指数对中药挥发油的定性.分析测试学报,27(1):84-87.
    梁月荣,罗德尼·毕.1991.名茶茶汤光谱特性初探.茶叶,17(2):44-46.
    林刚,严俊.1994.茶叶外形数量化研究初报.茶叶科学,14(1):75-78.
    林智.2011.国内外茶叶新产品研发进展.中国茶叶,(4):12-15.
    鲁成银.2004.茶叶质量安全.茶叶,30(2):67-69.
    陆建良,梁月荣,龚淑英.2002.茶汤色差与茶叶感官品质相关性研究.茶叶科学,22(1):57-61.
    陆锦时.1994.茶树儿茶素含量及组成特性与品种品质的关系.西南农业学报,7(s1):6-12.
    陆锦时,魏芳华,李春华.1994.茶树新梢中主要游离氨基酸含量及组成对茶品种品质的影响.西南农业学报,7(S1):13-16.
    陆松侯.施兆鹏.茶叶审评与检验.北京:中国农业出版社,2001
    马静.2001.茉莉花茶窨制过程香气及其它理化因子变化规律的研究.中国农业科学院茶叶研究所硕士学位论文.
    马军辉.2008.HS-SPME-GC-MS检测茶叶内挥发性组分方法的建立及应用.浙江大学硕士学位论文.
    邵晓林,龚淑英,张月玲.2006.西湖龙井茶主要呈味物质浸出浓度与速率的研究.茶叶,32(2):92-96.
    苏越,姬厚伟,苏式兵,郭寅龙.2008GC/MS中保留指数和保留温度回归分析应用于单萜烯结构确认.分析测试技术与仪器,14(3):131-135.
    苏越,刘素红,王呈仲,郭寅龙.2009.谱图相似度分析结合保留指数对单萜烯同分异构体的GC-MS定性分析.分析测试学报,28(5):525-528.
    汤小斌.2003.茶叶掺杂物中CaO、MgO的测定.福建分析测试,12(3):1803-1806.
    陶运来,殷俊峰,田素润,柯立良,郭德军.2008.关于发展茶叶清洁化加工技术的研究.安徽农业科学,36(26):11532-11533,11536.
    宛晓春.茶叶生物化学.北京:中国农业出版社,2007.
    王华夫.1992.冲泡对茶叶香气的影响.中国茶叶,(4):12-13
    王小平,马以瑾,徐元春.2008.原子荧光光谱法测定不同产地茶叶中As, Se, Hg和Bi四种元素含量.光谱学与光谱分析,28(7):1653-1657.
    王文杰.2006.茶叶品质识别技术研究进展.中国茶叶加工,(3):40-42.
    魏乃杰.2009.现代感官分析技术及其在肉制品工业中的应用.肉类研究,(3):47-50.
    徐立恒,吕进,林敏,孙耀国.2006.茶叶中3类主要组分的近红外光谱分析作为茶叶质量的快速评定方法.理化检验-化学分册,42:334-336
    阎守和.评价茶品质的近红外光谱(NIRS)法.上海茶叶,2005,3:19-21
    杨亚军.1989.品种间茶多酚含量差异及其与茶叶品质关系的探讨.中国茶叶,(5):8-10.
    叶国注,江用文,尹军峰,袁海波,张瑞莲,王志岚,沈丹玉,汪芳,陈建新.2009.板栗香型绿茶香气成分特征研究.茶叶科学,29(5):385-394.
    叶乃兴.2010.茶叶品质性状的构成与评价.中国茶叶,(8):10-11.
    叶乃兴,杨广,郑乃辉,杨江帆,王振康,梁小虾.2005.湿窨工艺及配花量对茉莉花茶香气成分的影响.茶叶科学,26(1):65-71.
    叶珊珊,杨健,刘洪波.2009.农产品原产地判定的元素“指纹”分析进展.中国农业科技导报,11(4):34-40.
    原利男(黄华涛译).1986.关于茶的香气成分(2)——乌龙茶的香气成分.福建茶叶,(1):45,14.
    翟凤林.作物品质育种.北京:中国农业出版社,1994
    张爱霞,生庆海.2006.食品感官评定的要素组成分析.中国乳品工业,34(12):5153.
    张文锦,王峰,翁伯琦.2011.中国茶叶质量安全的现状、问题及保障体系构建.福建农林大学学报(哲学社会科学版),14(4):27-31.
    赵杰文,陈全胜,张海东,刘木华.2006.近红外光谱分析技术在茶叶鉴别中的应用研究.光谱学与光谱分析,26(9):1601-1604.
    赵哲,张泰铭,方宣启,向凤琴,乔君喜,朱蓉.2011.利用非线性化学指纹图谱技术鉴别评价茶饮料.食品科学,32(16):219-223。
    周春明,袁海波,秦志荣,郑林.2004.花香绿茶的香气成分分析.广州食品工业科技,20(2):101-104.
    周健,成浩,王丽鸳.2008.近红外技术在茶叶上的研究进展.茶叶科学,28(4):294-300.
    周亦斌,王俊.2004.新技术在茶叶品质评价中应用的现状及趋势.茶叶科学,24(2):82-85.
    诸葛天秋,覃秀菊,罗跃新.2007.茶园栽培管理与茶叶品质的关系.广西农学报,22(2):33-35.
    竹尾忠一等(梁月荣译).1986.乌龙茶和红茶香气的食品化学研究.福建茶叶,(3):40-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700