用户名: 密码: 验证码:
生物质纳米纤维素及其自聚集气凝胶的制备与结构性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在可持续发展观已成为全球性共识的环境背景下,合理开发利用生物质材料日渐受到关注。生物质材料是由纳米纤维素所支撑的,将纳米纤维素从生物质材料中分离出来,利用其高比表面积、高强度和低热膨胀系数等特点,可开发出多种纳米纤维素基制品,这些材料有望在今后人们生产和生活的诸多方面获得应用。本论文集中阐述了生物质纳米纤维素的制备、结构与性能特点及其制品的开发与利用。通过改变生物质材料的种类及其开纤方法,制备出了多种生物质纳米纤维素,对其结构及性能进行了详细的表征和分析。随后以纳米纤维素气凝胶为例,研究在制备纳米纤维素基制品的过程中,纳米纤维素的自聚集机理及其制品的结构和性能特点。本论文主要开展了以下工作:
     (1)利用化学预处理结合高强度超声方法制备木质纳米纤维素,并系统研究纳米纤维素在制备过程中的结构及性能演变,以及高强度超声处理对纳米纤维素的结构及性能的影响。研究发现原料木粉为圆棒状结构,而在综纤维素中出现了源于导管的短而扁平的片状结构和源于木纤维的细长中空棒状结构。化学纯化纤维素也保持着细长的扁平片状结构,但厚度更薄,且彼此间相互分离。最终制备的纳米纤维素为细长的丝状结构。随着超声处理时间和超声波输出功率的提高,纯化纤维素的纳米开纤化程度随之提高。当超声波输出功率大于1000W,超声时间为30min时,制备了均匀分散的纳米纤维素水悬浊液。高强度超声处理对纳米纤维素的化学组分、聚集态结构及热稳定性等的影响不大。
     (2)对比研究了基于不同种生物质材料、不同种机械开纤方法制得的纳米纤维素的结构和性能差异。从木材等相对“低”纤维素含量的生物质材料中,可以制得形态尺寸均匀的纳米纤维素。但从麻纤维等相对“高”纤维素含量的生物质材料中,不易制得形态尺寸均匀的纳米纤维素。采用高速搅拌处理、高强度超声处理及高压匀质处理,均可实现生物质化学纯化纤维素的纳米开纤化,其中以高压匀质处理制得的纳米纤维素水悬浊液最为稳定。所制得的纳米纤维素多以簇状聚集体的形式存在。聚集体的长度大于13μm,宽度在30~250nm之间,其内部由平行排列的纳米纤维素所组成。
     (3)利用冷冻干燥方法处理离心后的纳米纤维素水悬浊液,制得了超长的纤维素纳米纤维,并对纳米纤维的结构与性能进行了表征。所制备的竹纤维素纳米纤维的直径为30-80nm,长度大于1mm,并保留了天然纤维素Ⅰ型结晶结构,结晶度值约为61.3%,热降解温度高于309℃。利用这一方法,也可从针叶树材、阔叶树材、麦秸及甘蔗渣等生物质材料中制备超长的纤维素纳米纤维。
     (4)通过对高强度超声纳米纤维素水悬浊液进行冷冻干燥处理,制备了轻质、柔韧的气凝胶,并对气凝胶的微观结构、密度和水分保持值等进行了表征。通过改变纳米纤维素水悬浊液的浓度,可以将气凝胶的三维多孔网状缠结结构转变为二维片状结构。在对高强度超声纳米纤维素水悬浊液进行离心处理后,冷冻干燥上清液,制得了密度为’0.2×10-3g/cm3的超低密度纳米纤维素气凝胶。
     (5)分别采用四种开纤方法制备出四种具有不同形态与表面性能的纳米纤维素,随后冷冻干燥其水悬浊液,制得了轻质、自支撑的纳米纤维素气凝胶。通过调整纳米纤维素的类型及其水悬浊液的浓度,可以控制气凝胶的微观结构。基于这一发现,我们提出了纳米纤维素在冷冻干燥过程中的自聚集形成机理。由于具有网状结构、高孔隙率、高表面活性等特点,所得纳米纤维素气凝胶显示出良好的力学柔韧性及耐压缩性,并具有非常高的水分承载值及染料吸附能力。纳米纤维素气凝胶还显示出良好的热绝缘与高频声吸附特征。
With the increasing attention on sustainable development, utilization of bio-based materials became more and more important. The bio-based materials are supported with nanocellulose. Because nanocellulose has prospective properties such as high Young's modulus and very low coefficient of thermal expansion, they are expected to be utilized as a filler of next generation nanocomposites. The present dissertation will focus on the preparation, characterization, and application of nanocellulose and their aerogels. First, a series of nanocellulose were produced from various bio-based materials with different nanofibrillation methods. Second, the structures and properties of the nanocellulose were characterized and compared. Third, aerogels were fabricated by freeze-drying the nanocellulose suspensions. The self-aggregation mechanism of nanocellulose and the structures and properties of their aerogels were further presented. The main results can be summarized as follows:
     (1) Nanocellulose was successfully fabricated from poplar wood using high-intensity ultrasonication combined with chemical pretreatments. In this work, the structural and property evolution during the preparation of nanocellulose were investigated. The effect of ultrasonication treatment on the structures and properties of nanocellulose were also studied. With the removing of lignin and most of hemicelluloses, the size of the cellulose fibers decreased apparently. The diameter distributions of the nanocellulose were dependent on the treating time and output power of the ultrasonication. Uniform nanocellulose can be produced when the treating time reached30min, and the output power was greater than1000W. The ultrasonication treatment has little effect on the chemical composition, crystal structure and thermal stability of the nanocellulose.
     (2) The structures and properties of the nanocellulose isolated from various bio-based materials with different nanofibrillation methods were investigated. We can isolate long nanocellulose with10~40nm in width from the resources with "low" cellulose content such as wood, bamboo, and wheat straw. However, it is very hard for us to extract long nanocellulose from the resources with "high" cellulose content such as cotton and flax. Nanocellulose can be individualized by nanofibrillation the cellulose fibers using a high-speed blender, an ultrasonicator, and a high-pressure homogenizer. The suspensions after treated with a high-pressure homogenizer exhibited the best stable behavior. Large amounts of bundles were existed in the suspensions. The bundles were>13μm long and30~250nm wide. The bundles were organized with parallel aligned nanocellulose with3~5nm in width.
     (3) Ultralong and highly uniform cellulose nanofibers were successfully prepared, by using chemical pretreatment combined with high intensity ultrasonication to exact nanocellulose, and then self-aggregation of them into ultralong nanofibers by freeze-drying. The as-prepared bamboo cellulose nanofibers displayed fine structures with lengths>1mm, diameters of30-80nm, and aspect ratios>10,000. Similar findings were also observed from the micrographs of nanofibers fabricated from softwood, hardwood, wheat straw and cane bagasse. With the removal of the matrix materials, the cellulose Ⅰ crystal structure was maintained, whereas the crystallinity and thermal stability of the fibers increased. The crystallinity and thermal degradation temperature of the bamboo cellulose nanofibers reached61.3%and over309℃, respectively.
     (4) Ultralight and highly flexible nanocellulose aerogels were fabricated by freeze-drying the nanocellulose suspensions which were produced by nanofibrillation the cellulose fibers using an ultrasonicator. The structure, density, and water uptake capability of the aerogels were characterized. The microstructures of the aerogels can be transformed from open3D porous nanofibrillar network to2D sheet-like skeletons by adjusting the concentration of the nanocellulose suspension. When the transparent supernatant fraction, which has-0.018wt%solid content obtained via centrifugation of the nanocellulose suspensions, was subjected to freeze-drying, ultra-low density aerogels (0.2×10-3g/cm3) were successfully produced due to the self-aggregated of the nanocellulose and their bundles along the longitudinal direction.
     (5) By carefully modulating the nanofibrillation process, four types of nanocellulose with different morphologies and surface properties were readily fabricated. Then, free-standing lightweight aerogels were obtained from the corresponding aqueous nanocellulose suspensions via freeze-drying. The structures of the aerogels could be controlled by manipulating the type of nanocellulose as well as the concentrations of their suspensions. A possible mechanism for the self-aggregation of nanocellulose into aerogel nanostructures was further proposed. Owing to web-like structure, high porosity and high surface reactivity, the nanocellulose aerogels exhibited high mechanical flexibility and ductility, and excellent properties for water uptake, removal of dye pollutants, and the use as thermal insulation materials. The aerogels also displayed high sound adsorption capability at high frequencies.
引文
[1]D. Klemm, B. Heublein, H.P. Fink, A. Bohn. Cellulose:Fascinating Biopolymer and Sustainable Raw Material. Angewandte Chemie International Edition.2005,44 (22): 3358-3393
    [2]张俐娜.天然高分子科学与材料.科学出版社.2007
    [3]张俐娜.基于生物质的环境友好材料.化学工业出版社.2011
    [4]D. Fengel. Ideas on the Ultrastructural Organization of the Cell Wall Components. Journal of Polymer Science Part C:Polymer Symposia.1971,36:383-392
    [5]D. Klemm, F. Kramer, S. Moritz, T. Lindstrom, M. Ankerfors, D. Gray, A. Dorris. Nanocelluloses:A New Family of Nature-Based Materials. Angewandte Chemie International Edition.2011,50 (24):5438-5466
    [6]Y. Nishiyama, P. Langan, H. Chanzy. Crystal Structure and Hydrogen-Bonding System in Cellulose Iβ from Synchrotron X-Ray and Neutron Fiber Diffraction. Journal of the American Chemical Society.2002,124 (31):9074-9082
    [7]Y. Nishiyama, J. Sugiyama, H. Chanzy, P. Langan. Crystal Structure and Hydrogen Bonding System in Cellulose Iα from Synchrotron X-Ray and Neutron Fiber Diffraction. Journal of the American Chemical Society.2003,125 (47):14300-14306
    [8]I. Sakurada, Y. Nukushina, T. Ito. Experimental Determination of the Elastic Modulus of Crystalline Regions in Oriented Polymers. Journal of Polymer Science.1962,57 (165): 651-660
    [9]杨淑蕙.植物纤维化学.中国轻工业出版社.2011
    [10]R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood. Cellulose Nanomaterials Review:Structure, Properties and Nanocomposites. Chemical Society Reviews.2011, 40 (7):3941-3994
    [11]I. Siro, D. Plackett. Microfibrillated Cellulose and New Nanocomposite Materials:A Review. Cellulose.2010,17 (3):459-494
    [12]S. Eichhorn, A. Dufresne, M. Aranguren, N. Marcovich, J. Capadona, S. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar. Review:Current International Research into Cellulose Nanofibres and Nanocomposites. Journal of Materials Science. 2010,45(1):1-33
    [13]M.A.S. Azizi Samir, F. Alloin, A. Dufresne. Review of Recent Research into Cellulosic Whiskers, Their Properties and Their Application in Nanocomposite Field. Biomacromolecules.2005,6 (2):612-626
    [14]Y. Habibi, L.A. Lucia, O.J. Rojas. Cellulose Nanocrystals:Chemistry, Self-Assembly, and Applications. Chemical reviews.2010,110 (6):3479-3500
    [15]P. Tingaut, T. Zimmermann, G. Sebe. Cellulose Nanocrystals and Microfibrillated Cellulose as Building Blocks for the Design of Hierarchical Functional Materials. Journal of Materials Chemistry.2012,22 (38):20105-20111
    [16]A. Isogai, T. Saito, H. Fukuzumi. TEMPO-Oxidized Cellulose Nanofibers. Nanoscale. 2011,3(1):71-85
    [17]N. Lin, J. Huang, A. Dufresne. Preparation, Properties and Applications of Polysaccharide Nanocrystals in Advanced Functional Nanomaterials:A Review. Nanoscale.2012,4 (11):3274-3294
    [18]S.J. Eichhorn. Cellulose Nanowhiskers:Promising Materials for Advanced Applications. Soft Matter.2011,7 (2):303-315
    [19]K. Abe, H. Yano. Comparison of the Characteristics of Cellulose Microfibril Aggregates Isolated from Fiber and Parenchyma Cells of Moso Bamboo (Phyllostachys Pubescens). Cellulose.2010,17 (2):271-277
    [20]A. Alemdar, M. Sain. Isolation and Characterization of Nanofibers from Agricultural Residues-Wheat Straw and Soy Hulls. Bioresource technology.2008.99 (6): 1664-1671
    [21]R. Zuluaga, J.-L. Putaux, A. Restrepo, I. Mondragon, P. Ganan. Cellulose Microfibrils from Banana Farming Residues:Isolation and Characterization. Cellulose.2007,14 (6): 585-592
    [22]R. Zuluaga, J.L. Putaux, J. Cruz, J. Velez, I. Mondragon, P. Ganan. Cellulose Microfibrils from Banana Rachis:Effect of Alkaline Treatments on Structural and Morphological Features. Carbohydrate Polymers.2009,76 (1):51-59
    [23]E. de Morais Teixeira, A.C. Correa, A. Manzoli, F. de Lima Leite, C.R. de Oliveira, L.H.C. Mattoso. Cellulose Nanofibers from White and Naturally Colored Cotton Fibers. Cellulose.2010,17 (3):595-606
    [24]J.P.S. Morais, M.d.F. Rosa, M.d.s.M. de Souza Filho. L.D. Nascimento, D.M. do Nascimento, A.R. Cassales. Extraction and Characterization of Nanocellulose Structures from Raw Cotton Linter. Carbohydrate Polymers.2013,91 (1):229-235
    [25]P. Satyamurthy, P. Jain, R.H. Balasubramanya, N. Vigneshwaran. Preparation and Characterization of Cellulose Nanowhiskers from Cotton Fibres by Controlled Microbial Hydrolysis. Carbohydrate Polymers.2011,83 (1):122-129
    [26]F. Fahma, S. Iwamoto, N. Hori, T. Iwata, A. Takemura. Effect of Pre-Acid-Hydrolysis Treatment on Morphology and Properties of Cellulose Nanowhiskers from Coconut Husk. Cellulose.2011,18 (2):443-450
    [27]J.I. Moran, V.A. Alvarez, V.P. Cyras, A. Vazquez. Extraction of Cellulose and Preparation of Nanocellulose from Sisal Fibers. Cellulose.2008,15 (1):149-159
    [28]Y. Habibi, M. Mahrouz, M.R. Vignon. Microfibrillated Cellulose from the Peel of Prickly Pear Fruits. Food Chemistry.2009,115 (2):423-429
    [29]J. Leitner, B. Hinterstoisser. M. Wastyn, J. Keckes, W. Gindl. Sugar Beet Cellulose Nanofibril-Reinforced Composites. Cellulose.2007,14 (5):419-425
    [30]A. Hirai, O. Inui, F. Horii, M. Tsuji. Phase Separation Behavior in Aqueous Suspensions of Bacterial Cellulose Nanocrystals Prepared by Sulfuric Acid Treatment. Langmuir. 2008,25(1):497-502
    [31]H.T. Winter, C. Cerclier, N. Delorme, H. Bizot, B. Quemener, B. Cathala. Improved Colloidal Stability of Bacterial Cellulose Nanocrystal Suspensions for the Elaboration of Spin-Coated Cellulose-Based Model Surfaces. Biomacromolecules.2010,11 (11): 3144-3151
    [32]I. Kalashnikova, H. Bizot, B. Cathala, I. Capron. New Pickering Emulsions Stabilized by Bacterial Cellulose Nanocrystals. Langmuir.2011,27 (12):7471-7479
    [33]J.R. Capadona, K. Shanmuganathan, D.J. Tyler, S.J. Rowan, C. Weder. Stimuli-Responsive Polymer Nanocomposites Inspired by the Sea Cucumber Dermis. Science.2008,319 (5868):1370-1374
    [34]J.D. Fox, J.R. Capadona. P.D. Marasco, S.J. Rowan. Bioinspired Water-Enhanced Mechanical Gradient Nanocomposite Films That Mimic the Architecture and Properties of the Squid Beak. Journal of the American Chemical Society.2013,135 (13): 5167-5174
    [35]T. Saito, R. Kuramae, J. Wohlert, L.A. Berglund, A. Isogai. An Ultrastrong Nanofibrillar Biomaterial:The Strength of Single Cellulose Nanofibrils Revealed Via Sonication-Induced Fragmentation. Biomacromolecules.2012,14 (1):248-253
    [36]O. van den Berg, J.R. Capadona, C. Weder. Preparation of Homogeneous Dispersions of Tunicate Cellulose Whiskers in Organic Solvents. Biomacromolecules.2007,8 (4): 1353-1357
    [37]S. Elazzouzi-Hafraoui, Y. Nishiyama, J.L. Putaux, L. Heux, F. Dubreuil, C. Rochas. The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose. Biomacromolecules.2007,9 (1):57-65
    [38]A. Chakraborty, M. Sain, M. Kortschot. Reinforcing Potential of Wood Pulp-Derived Microfibres in a Pva Matrix. Holzforschung.2006,60 (1):53-58
    [39]A. Nakagaito, H. Yano. The Effect of Morphological Changes from Pulp Fiber Towards Nano-Scale Fibrillated Cellulose on the Mechanical Properties of High-Strength Plant Fiber Based Composites. Applied Physics A.2004,78 (4):547-552
    [40]K. Uetani, H. Yano. Nanofibrillation of Wood Pulp Using a High-Speed Blender. Biomacromolecules.2010,12 (2):348-353
    [41]K. Abe, S. Iwamoto, H. Yano. Obtaining Cellulose Nanofibers with a Uniform Width of 15 nm from Wood. Biomacromolecules.2007,8 (10):3276-3278
    [42]W. Chen, H. Yu, Y. Liu. Preparation of Millimeter-Long Cellulose I Nanofibers with Diameters of 30-80nm from Bamboo Fibers. Carbohydrate Polymers.2011,86 (2): 453-461
    [43]M. Paakko, M. Ankerfors, H. Kosonen, A. Nykanen, S. Ahola, M. Osterberg, J. Ruokolainen, J. Laine, P. Larsson, O. Ikkala. Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels. Biomacromolecules.2007,8 (6):1934-1941
    [44]T. Saito, S. Kimura, Y. Nishiyama, A. Isogai. Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose. Biomacromolecules.2007,8 (8): 2485-2491
    [45]A. Walther, J.V. Timonen, I. Diez, A. Laukkanen, O. Ikkala. Multifunctional High-Performance Biofibers Based on Wet-Extrusion of Renewable Native Cellulose Nanofibrils. Advanced Materials.2011,23 (26):2924-2928
    [46]M. Nogi, H. Yano. Transparent Nanocomposites Based on Cellulose Produced by Bacteria Offer Potential Innovation in the Electronics Device Industry. Advanced Materials. 2008,20(10):1849-1852
    [47]S. Camarero Espinosa, T. Kuhnt, E.J. Foster, C. Weder. Isolation of Thermally Stable Cellulose Nanocrystals by Phosphoric Acid Hydrolysis. Biomacromolecules.2013,14 (4):1223-1230
    [48]F.W. Herrick, R.L. Casebier, J.K. Hamilton, K.R. Sandberg. Microfibrillated Cellulose: Morphology and Accessibility. Journal of Applied Polymer Science:Applied Polymer Symposium.1983,37,797-813.
    [49]A.F. Turbak, F.W. Snyder, K.R. Sandberg. Microfibrillated Cellulose, a New Cellulose Product:Properties, Uses, and Commercial Potential. Journal of Applied Polymer Science:Applied Polymer Symposium.1983,37,815-827.
    [50]S. Iwamoto, A. Nakagaito, H. Yano. Nano-Fibrillation of Pulp Fibers for the Processing of Transparent Nanocomposites. Applied Physics A.2007,89 (2):461-466
    [51]K. Uetani, H. Yano. Self-Organizing Capacity of Nanocelluloses Via Droplet Evaporation. Soft Matter.2013,9:3396-3401
    [52]H.P. Zhao, X.Q. Feng, H. Gao. Ultrasonic Technique for Extracting Nanofibers from Nature Materials. Applied Physics Letters.2007,90 (7):073112
    [53]Q. Cheng, S. Wang, T.G. Rials, S.-H. Lee. Physical and Mechanical Properties of Polyvinyl Alcohol and Polypropylene Composite Materials Reinforced with Fibril Aggregates Isolated from Regenerated Cellulose Fibers. Cellulose.2007,14 (6): 593-602
    [54]Q. Cheng, S. Wang, T.G. Rials. Poly (Vinyl Alcohol) Nanocomposites Reinforced with Cellulose Fibrils Isolated by High Intensity Ultrasonication. Composites Part A: Applied Science and Manufacturing.2009,40 (2):218-224
    [55]K. Abe, H. Yano. Comparison of the Characteristics of Cellulose Microfibril Aggregates of Wood, Rice Straw and Potato Tuber. Cellulose.2009,16 (6):1017-1023
    [56]S. Ifuku, M. Nogi, K. Abe, M. Yoshioka, M. Morimoto, H. Saimoto, H. Yano. Preparation of Chitin Nanofibers with a Uniform Width as a-Chitin from Crab Shells. Biomacromolecules.2009,10 (6):1584-1588
    [57]S. Ifuku, S. Morooka, M. Morimoto. H. Saimoto. Acetylation of Chitin Nanofibers and Their Transparent Nanocomposite Films. Biomacromolecules.2010,11 (5):1326-1330
    [58]M. Henriksson, G. Henriksson, L. Berglund, T. Lindstrom. An Environmentally Friendly Method for Enzyme-Assisted Preparation of Microfibrillated Cellulose (MFC) Nanofibers. European Polymer Journal.2007,43 (8):3434-3441
    [59]T. Saito, Y. Nishiyama, J.L. Putaux, M. Vignon, A. Isogai. Homogeneous Suspensions of Individualized Microfibrils from TEMPO-Catalyzed Oxidation of Native Cellulose. Biomacromolecules.2006,7 (6):1687-1691
    [60]Y. Fan, T. Saito, A. Isogai. Chitin Nanocrystals Prepared by TEMPO-Mediated Oxidation of a-Chitin. Biomacromolecules.2007,9 (1):192-198
    [61]J.A. Kelly, A.M. Shukaliak, C.C. Cheung, K.E. Shopsowitz, W.Y. Hamad, M.J. MacLachlan. Responsive Photonic Hydrogels Based on Nanocrystalline Cellulose. Angewandte Chemie International Edition.2013,52(34):8912-8916
    [62]S. Iwamoto, A. Isogai, T. Iwata. Structure and Mechanical Properties of Wet-Spun Fibers Made from Natural Cellulose Nanofibers. Biomacromolecules.2011,12 (3):831-836
    [63]H. Mertaniemi, A. Laukkanen, J.E. Teirfolk, O. Ikkala, R.H. Ras. Functionalized Porous Microparticles of Nanofibrillated Cellulose for Biomimetic Hierarchically Structured Superhydrophobic Surfaces. RSC Advances.2012,2 (7):2882-2886
    [64]R. Kolakovic, T. Laaksonen, L. Peltonen, A. Laukkanen, J. Hirvonen. Spray-Dried Nanofibrillar Cellulose Microparticles for Sustained Drug Release. International Journal of Pharmaceutics.2012,430 (1):47-55
    [65]M. Wang, A. Olszewska, A. Walther, J.M. Malho, F.H. Schacher, J. Ruokolainen, M. Ankerfors, J. Laine, L.A. Berglund, M. Osterberg. Colloidal Ionic Assembly between Anionic Native Cellulose Nanofibrils and Cationic Block Copolymer Micelles into Biomimetic Nanocomposites. Biomacromolecules.2011,12 (6):2074-2081
    [66]P. Laaksonen, A. Walther, J.M. Malho, M. Kainlauri, O. Ikkala, M.B. Linder. Genetic Engineering of Biomimetic Nanocomposites:Diblock Proteins, Graphene, and Nanofibrillated Cellulose. Angewandte Chemie International Edition.2011,50 (37): 8688-8691
    [67]K.A. Zimmermann, J.M. LeBlanc, K.T. Sheets, R.W. Fox, P. Gatenholm. Biomimetic Design of a Bacterial Cellulose/Hydroxyapatite Nanocomposite for Bone Healing Applications. Materials Science and Engineering:C.2011,31 (1):43-49
    [68]K.E. Shopsowitz, H. Qi, W.Y. Hamad, M.J. MacLachlan. Free-Standing Mesoporous Silica Films with Tunable Chiral Nematic Structures. Nature.2010,468 (7322): 422-425
    [69]K.E. Shopsowitz, W.Y. Hamad, M.J. MacLachlan. Chiral Nematic Mesoporous Carbon Derived from Nanocrystalline Cellulose. Angewandte Chemie International Edition. 2011,50(46):10991-10995
    [70]J.A. Kelly, K.E. Shopsowitz, J.M. Ahn, W.Y. Hamad, M.J. MacLachlan. Chiral Nematic Stained Glass:Controlling the Optical Properties of Nanocrystalline Cellulose-Templated Materials. Langmuir.2012,28 (50):17256-17262
    [71]M.K. Khan, M. Giese, M. Yu, J.A. Kelly, W.Y. Hamad, M.J. MacLachlan. Flexible Mesoporous Photonic Resins with Tunable Chiral Nematic Structures. Angewandte Chemie International Edition.2013,52(34):8921-8924
    [72]K.E. Shopsowitz, W.Y. Hamad, M.J. MacLachlan. Flexible and Iridescent Chiral Nematic Mesoporous Organosilica Films. Journal of the American Chemical Society.2012,134 (2):867-870
    [73]K.E. Shopsowitz, A. Stahl, W.Y. Hamad, M.J. MacLachlan. Hard Templating of Nanocrystalline Titanium Dioxide with Chiral Nematic Ordering. Angewandte Chemie International Edition.2012.51 (28):6886-6890
    [74]K.E. Shopsowitz. J.A. Kelly. W.Y. Hamad, M.J. MacLachlan. Biopolymer Templated Glass with a Twist:Controlling the Chirality, Porosity, and Photonic Properties of Silica with Cellulose Nanocrystals. Advanced Functional Materials.2013, DOI: 10.1002/adfm.201301737
    [75]G. Nystrom, A. Mihranyan, A. Razaq, T. Lindstrom, L. Nyholm, M. Str(?)mme. A Nanocellulose Polypyrrole Composite Based on Microfibrillated Cellulose from Wood. The Journal of Physical Chemistry B.2010,114 (12):4178-4182
    [76]S.Y. Lee. D.J. Mohan, I.A. Kang, G.H. Doh, S. Lee, S.O. Han. Nanocellulose Reinforced PVA Composite Films:Effects of Acid Treatment and Filler Loading. Fibers and Polymers.2009,10(1):77-82
    [77]H. M. C. Azeredo, L.H.C. Mattoso, R.J. Avena-Bustillos, G. C. Filho, M.L. Munford. D. Wood, T.H. McHugh. Nanocellulose Reinforced Chitosan Composite Films as Affected by Nanofiller Loading and Plasticizer Content. Journal of food science.2010,75 (1): N1-N7
    [78]A. Saxena, T.J. Elder, S. Pan, A.J. Ragauskas. Novel Nanocellulosic Xylan Composite Film. Composites Part B:Engineering.2009,40 (8):727-730
    [79]M.L. Auad, V.S. Contos, S. Nutt, M.I. Aranguren, N.E. Marcovich. Characterization of Nanocellulose-Reinforced Shape Memory Polyurethanes. Polymer International.2008. 57 (4):651-659
    [80]J. Juntaro, M. Pommet, A. Mantalaris, M. Shaffer, A. Bismarck. Nanocellulose Enhanced Interfaces in Truly Green Unidirectional Fibre Reinforced Composites. Composite Interfaces.2007,14 (7-9):753-762
    [81]A. Bhatnagar, M. Sain. Processing of Cellulose Nanofiber-Reinforced Composites. Journal of Reinforced Plastics and Composites,2005,24 (12):1259-1268
    [82]A. Iwatake, M. Nogi. H. Yano. Cellulose Nanofiber-Reinforced Polylactic Acid. Composites Science and Technology.2008.68 (9):2103-2106
    [83]H. Takagi, A. Asano. Effects of Processing Conditions on Flexural Properties of Cellulose Nanofiber Reinforced "Green" Composites. Composites Part A:Applied Science and Manufacturing.2008,39 (4):685-689
    [84]M. Jonoobi, J. Harun, A.P. Mathew, K. Oksman. Mechanical Properties of Cellulose Nanofiber (CNF) Reinforced Polylactic Acid (PLA) Prepared by Twin Screw Extrusion. Composites Science and Technology.2010,70 (12):1742-1747
    [85]M.S. Peresin, Y. Habibi, J.O. Zoppe, J.J. Pawlak, O.J. Rojas. Nanofiber Composites of Polyvinyl Alcohol and Cellulose Nanocrystals:Manufacture and Characterization. Biomacromolecules.2010,11 (3):674-681
    [86]A.N. Nakagaito, A. Fujimura, T. Sakai. Y. Hama, H. Yano. Production of Microfibrillated Cellulose (MFC)-Reinforced Polylactic Acid (PLA) Nanocomposites from Sheets Obtained by a Papermaking-Like Process. Composites Science and Technology.2009, 69(7):1293-1297
    [87]Y. Choi, J. Simonsen. Cellulose Nanocrystal-Filled Carboxymethyl Cellulose Nanocomposites. Journal of Nanoscience and Nanotechnology.2006,6 (3):633-639
    [88]S.A. Paralikar, J. Simonsen, J. Lombardi. Poly (Vinyl Alcohol)/Cellulose Nanocrystal Barrier Membranes. Journal of Membrane Science.2008,320 (1):248-258
    [89]L. Jiang, E. Morelius, J. Zhang, M. Wolcott, J. Holbery. Study of the Poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate)/Cellulose Nanowhisker Composites Prepared by Solution Casting and Melt Processing. Journal of Composite Materials. 2008,42 (24):2629-2645
    [90]R. Rusli, K. Shanmuganathan, S.J. Rowan, C. Weder, S.J. Eichhorn. Stress Transfer in Cellulose Nanowhisker Composites-Influence of Whisker Aspect Ratio and Surface Charge. Biomacromolecules.2011,12 (4):1363-1369
    [91]N.L.G. De Rodriguez, W. Thielemans, A. Dufresne. Sisal Cellulose Whiskers Reinforced Polyvinyl Acetate Nanocomposites. Cellulose.2006,13 (3):261-270
    [92]E. Ten, J. Turtle, D. Bahr, L. Jiang, M. Wolcott. Thermal and Mechanical Properties of Poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Cellulose Nanowhiskers Composites. Polymer.2010,51 (12):2652-2660
    [93]K. Oksman, A. Mathew, D. Bondeson, I. Kvien. Manufacturing Process of Cellulose Whiskers/Polylactic Acid Nanocomposites. Composites Science and Technology.2006, 66 (15):2776-2784
    [94]H. Lonnberg, K. Larsson, T. Lindstrom, A. Hult, E. Malmstrom. Synthesis of Polycaprolactone-Grafted Microfibrillated Cellulose for Use in Novel Bionanocomposites-Influence of the Graft Length on the Mechanical Properties. Acs Applied Materials & Interfaces.2011,3 (5):1426-1433
    [95]G. Siqueira, J. Bras, A. Dufresne. New Process of Chemical Grafting of Cellulose Nanoparticles with a Long Chain Isocyanate. Langmuir.2009,26 (1):402-411
    [96]G. Siqueira, J. Bras, A. Dufresne. Cellulose Whiskers Versus Microfibrils:Influence of the Nature of the Nanoparticle and Its Surface Functionalization on the Thermal and Mechanical Properties of Nanocomposites. Biomacromolecules.2008,10 (2):425-432
    [97]J.R. Capadona, O. Van Den Berg, L.A. Capadona, M. Schroeter, S.J. Rowan, D.J. Tyler, C. Weder. A Versatile Approach for the Processing of Polymer Nanocomposites with Self-Assembled Nanofibre Templates. Nature Nanotechnology.2007,2(12):765-769
    [98]M. Henriksson, L.A. Berglund, P. Isaksson, T. Lindstrom, T. Nishino. Cellulose Nanopaper Structures of High Toughness. Biomacromolecules.2008,9 (6):1579-1585
    [99]H. Sehaqui, Q. Zhou, O. Ikkala, L.A. Berglund. Strong and Tough Cellulose Nanopaper with High Specific Surface Area and Porosity. Biomacromolecules.2011,12 (10): 3638-3644
    [100]H. Sehaqui, A. Liu, Q. Zhou. L.A. Berglund. Fast Preparation Procedure for Large, Flat Cellulose and Cellulose/Inorganic Nanopaper Structures. Biomacromolecules.2010,11 (9):2195-2198
    [101]A. Liu, A. Walther, O. Ikkala, L. Belova, L.A. Berglund. Clay Nanopaper with Tough Cellulose Nanofiber Matrix for Fire Retardancy and Gas Barrier Functions. Biomacromolecules.2011,12 (3):633-641
    [102]H. Sehaqui, N. Ezekiel Mushi, S. Morimune, M. Salajkova, T. Nishino, L.A. Berglund. Cellulose Nanofiber Orientation in Nanopaper and Nanocomposites by Cold Drawing. Acs Applied Materials & Interfaces.2012,4 (2):1043-1049
    [103]A. Liu, L.A. Berglund. Clay Nanopaper Composites of Nacre-Like Structure Based on Montmorrilonite and Cellulose Nanofibers-Improvements Due to Chitosan Addition. Carbohydrate Polymers.2012,87 (1):53-60
    [104]C.N. Wu, T. Saito, S. Fujisawa, H. Fukuzumi, A. Isogai. Ultrastrong and High Gas-Barrier Nanocellulose/Clay-Layered Composites. Biomacromolecules.2012,13 (6):1927-1932
    [105]M. Henriksson, L. Fogelstrom, L.A. Berglund, M. Johansson, A. Hult. Novel Nanocomposite Concept Based on Cross-Linking of Hyperbranched Polymers in Reactive Cellulose Nanopaper Templates. Composites Science and Technology.2011, 71 (1):13-17
    [106]H. Sehaqui, S. Morimune, T. Nishino, L.A. Berglund. Stretchable and Strong Cellulose Nanopaper Structures Based on Polymer-Coated Nanofiber Networks:An Alternative to Nonwoven Porous Membranes from Electrospinning. Biomacromolecules.2012,13 (11):3661-3667
    [107]Z.D. Qi, T. Saito, Y. Fan, A. Isogai. Multifunctional Coating Films by Layer-by-Layer Deposition of Cellulose and Chitin Nanofibrils. Biomacromolecules.2012,13 (2): 553-558
    [108]S. Ifuku, M. Nogi, K. Abe, K. Handa, F. Nakatsubo, H. Yano. Surface Modification of Bacterial Cellulose Nanofibers for Property Enhancement of Optically Transparent Composites:Dependence on Acetyl-Group DS. Biomacromolecules.2007,8 (6): 1973-1978
    [109]Y. Okahisa, K. Abe. M. Nogi, A.N. Nakagaito, T. Nakatani, H. Yano. Effects of Delignification in the Production of Plant-Based Cellulose Nanofibers for Optically Transparent Nanocomposites. Composites Science and Technology.2011,71 (10): 1342-1347
    [110]Y. Shimazaki, Y. Miyazaki, Y. Takezawa, M. Nogi, K. Abe, S. Ifuku, H. Yano. Excellent Thermal Conductivity of Transparent Cellulose Nanofiber/Epoxy Resin Nanocomposites. Biomacromolecules.2007,8 (9):2976-2978
    [111]M. Nogi, S. Ifuku, K. Abe, K. Handa, A.N. Nakagaito, H. Yano. Fiber-Content Dependency of the Optical Transparency and Thermal Expansion of Bacterial Nanofiber Reinforced Composites. Applied physics letters.2006,88 (13):133124
    [112]M. Nogi, K. Handa, A.N. Nakagaito, H. Yano. Optically Transparent Bionanofiber Composites with Low Sensitivity to Refractive Index of the Polymer Matrix. Applied physics letters.2005,87 (24):243110
    [113]S. Iwamoto, A. Nakagaito, H. Yano, M. Nogi. Optically Transparent Composites Reinforced with Plant Fiber-Based Nanofibers. Applied Physics A.2005.81 (6): 1109-1112
    [114]M. Nogi, H. Yano. Optically Transparent Nanofiber Sheets by Deposition of Transparent Materials:A Concept for a Roll-to-Roll Processing. Applied physics letters.2009,94 (23):233117
    [115]C. Aulin, E. Johansson, L. Wagberg, T. Lindstrom. Self-Organized Films from Cellulose I Nanofibrils Using the Layer-by-Layer Technique. Biomacromolecules.2010.11 (4): 872-882
    [116]E. Karabulut, L. Wagberg. Design and Characterization of Cellulose Nanofibril-Based Freestanding Films Prepared by Layer-by-Layer Deposition Technique. Soft Matter. 2011,7 (7):3467-3474
    [117]E. Karabulut, T. Pettersson, M. Ankerfors, L. Wagberg. Adhesive Layer-by-Layer Films of Carboxymethylated Cellulose Nanofibril-Dopamine Covalent Bioconjugates Inspired by Marine Mussel Threads. ACS Nano.2012.6 (6):4731-4739
    [118]M. Nogi, S. Iwamoto, A.N. Nakagaito, H. Yano. Optically Transparent Nanofiber Paper. Advanced Materials.2009.21 (16):1595-1598
    [119]P. Podsiadlo, L. Sui, Y. Elkasabi, P. Burgardt, J. Lee, A. Miryala, W. Kusumaatmaja, M.R. Carman, M. Shtein, J. Kieffer. Layer-by-Layer Assembled Films of Cellulose Nano wires with Antireflective Properties. Langmuir.2007,23 (15):7901-7906
    [120]H. Yano. J. Sugiyama, A.N. Nakagaito, M. Nogi, T. Matsuura. M. Hikita, K. Handa. Optically Transparent Composites Reinforced with Networks of Bacterial Nanofibers. Advanced Materials.2005,17 (2):153-155
    [121]Y. Okahisa, A. Yoshida, S. Miyaguchi, H. Yano. Optically Transparent Wood-Cellulose Nanocomposite as a Base Substrate for Flexible Organic Light-Emitting Diode Displays. Composites Science and Technology.2009,69 (11):1958-1961
    [122]M. Nogi. N. Komoda, K. Otsuka, K. Suganuma. Foldable Nanopaper Antennas for Origami Electronics. Nanoscale.2013,5:4395-4399
    [123]M.C. Hsieh, C. Kim, M. Nogi, K. Suganuma. Electrically Conductive Lines on Cellulose Nanopaper for Flexible Electrical Devices. Nanoscale.2013, DOI: 10.1039/C3NR01951A
    [124]L. Hu, G. Zheng, J. Yao, N. Liu, B. Weil. M. Eskilsson, E. Karabulut, Z. Ruan, S. Fan, J.T. Bloking. Transparent and Conductive Paper from Nanocellulose Fibers. Energy & Environmental Science.2013,6 (2):513-518
    [125]Y. Zhou, C. Fuentes-Hernandez, T.M. Khan, J.C. Liu, J. Hsu, J.W. Shim, A. Dindar, J.P. Youngblood, R.J. Moon, B. Kippelen. Recyclable Organic Solar Cells on Cellulose Nanocrystal Substrates. Scientific reports.2013,3:1536
    [126]J. Huang, H. Zhu, Y. Chen, C. Preston, K. Rohrbach, J. Cumings, L. Hu. Highly Transparent and Flexible Nanopaper Transistors. ACS Nano.2013,7 (3):2106-2113
    [127]G. Zheng, Y. Cui, E. Karabulut, L. Wagberg, H. Zhu, L. Hu. Nanostructured Paper for Flexible Energy and Electronic Devices. MRS bulletin.2013,38 (4):320-325
    [128]A.C. Pierre, G.M. Pajonk. Chemistry of Aerogels and Their Applications. Chemical reviews.2002,102 (11):4243-4266
    [129]N. Husing, U. Schubert. Aerogels-Airy Materials:Chemistry, Structure, and Properties. Angewandte Chemie International Edition.1998,37 (1-2):22-45
    [130]F. Schwertfeger, U. Schubert. Generation of Carbonaceous Structures in Silica Aerogel. Chemistry of materials.1995,7 (10):1909-1914
    [131]D.W. Schaefer, K.D. Keefer. Structure of Random Porous Materials:Silica Aerogel. Physical review letters.1986,56:2199-2202
    [132]C.N. Chervin, B.J. Clapsaddle, H.W. Chiu, A.E. Gash, J.H. Satcher, S.M. Kauzlarich. Aerogel Synthesis of Yttria-Stabilized Zirconia by a Non-Alkoxide Sol-Gel Route. Chemistry of materials.2005,17 (13):3345-3351
    [133]A. Corrias, M.F. Casula, A. Falqui, G. Paschina. Evolution of the Structure and Magnetic Properties of FeCo Nanoparticles in an Alumina Aerogel Matrix. Chemistry of materials.2004,16 (16):3130-3138
    [134]X. Zhang, Z. Sui, B. Xu. S. Yue, Y. Luo, W. Zhan, B. Liu. Mechanically Strong and Highly Conductive Graphene Aerogel and Its Use as Electrodes for Electrochemical Power Sources. Journal of Materials Chemistry.2011,21 (18):6494-6497
    [135]M.A. Worsley, P.J. Pauzauskie, T.Y. Olson, J. Biener, J.H. Satcher Jr, T.F. Baumann. Synthesis of Graphene Aerogel with High Electrical Conductivity. Journal of the American Chemical Society.2010,132 (40):14067-14069
    [136]Z.S. Wu, S. Yang, Y. Sun. K. Parvez, X. Feng, K. Mullen.3D Nitrogen-Doped Graphene Aerogel-Supported Fe3O4 Nanoparticles as Efficient Electrocatalysts for the Oxygen Reduction Reaction. Journal of the American Chemical Society.2012,134 (22): 9082-9085
    [137]Z. Xu, Y. Zhang, P. Li, C. Gao. Strong, Conductive, Lightweight. Neat Graphene Aerogel Fibers with Aligned Pores. ACS Nano.2012,6 (8):7103-7113
    [138]W. Chen, S. Li. C. Chen, L. Yan. Self-Assembly and Embedding of Nanoparticles by in Situ Reduced Graphene for Preparation of a 3D Graphene/Nanoparticle Aerogel. Advanced Materials.2011,23 (47):5679-5683
    [139]H.P. Cong, X.C. Ren, P. Wang. S.H. Yu. Macroscopic Multifunctional Graphene-Based Hydrogels and Aerogels by a Metal Ion Induced Self-Assembly Process. ACS Nano. 2012,6 (3):2693-2703
    [140]H. Hu, Z. Zhao, W. Wan, Y. Gogotsi, J. Qiu. Ultralight and Highly Compressible Graphene Aerogels. Advanced Materials.2013,25(15):2219-2223
    [141]X. Wu, J. Zhou, W. Xing, G. Wang, H. Cui, S. Zhuo, Q. Xue, Z. Yan, S.Z. Qiao. High-Rate Capacitive Performance of Graphene Aerogel with a Superhigh C/O Molar Ratio. Journal of Materials Chemistry.2012,22 (43):23186-23193
    [142]L. Chen, X. Wang, X. Zhang, H. Zhang.3D Porous and Redox-Active Prussian Blue-in-Graphene Aerogels for Highly Efficient Electrochemical Detection of H2O2. Journal of Materials Chemistry.2012,22 (41):22090-22096
    [143]M.B. Bryning, D.E. Milkie, M.F. Islam, L.A. Hough, J.M. Kikkawa, A.G. Yodh. Carbon Nanotube Aerogels. Advanced Materials.2007,19 (5):661-664
    [144]A.E. Aliev, J. Oh, M.E. Kozlov, A.A. Kuznetsov, S. Fang, A.F. Fonseca, R. Ovalle, M.D. Lima, M.H. Haque, Y.N. Gartstein. Giant-Stroke, Superelastic Carbon Nanotube Aerogel Muscles. Science.2009.323 (5921):1575-1578
    [145]T. Bordjiba, M. Mohamedi, L.H. Dao. New Class of Carbon-Nanotube Aerogel Electrodes for Electrochemical Power Sources. Advanced Materials.2008,20 (4): 815-819
    [146]J. Zou, J. Liu, A.S. Karakoti, A. Kumar, D. Joung, Q. Li, S.I. Khondaker, S. Seal, L. Zhai. Ultralight Multiwalled Carbon Nanotube Aerogel. ACS Nano.2010,4(12):7293-7302
    [147]M.A. Worsley, S.O. Kucheyev, J.D. Kuntz, A.V. Hamza, J.H. Satcher, T.F. Baumann. Stiff and Electrically Conductive Composites of Carbon Nanotube Aerogels and Polymers. Journal of Materials Chemistry.2009,19 (21):3370-3372
    [148]R.R. Kohlmeyer, M. Lor, J. Deng, H. Liu, J. Chen. Preparation of Stable Carbon Nanotube Aerogels with High Electrical Conductivity and Porosity. Carbon.2011,49 (7):2352-2361
    [149]X. Zhang, J. Liu, B. Xu, Y. Su, Y. Luo. Ultralight Conducting Polymer/Carbon Nanotube Composite Aerogels. Carbon.2011,49 (6):1884-1893
    [150]K.H. Kim, Y. Oh, M. Islam. Graphene Coating Makes Carbon Nanotube Aerogels Superelastic and Resistant to Fatigue. Nature Nanotechnology.2012,7:562-566
    [151]S.N. Schiffres. K.H. Kim, L. Hu, A.J. McGaughey, M.F. Islam, J.A. Malen. Gas Diffusion, Energy Transport, and Thermal Accommodation in Single-Walled Carbon Nanotube Aerogels. Advanced Functional Materials.2012,22 (24):5251-5258
    [152]K.H. Kim, Y. Oh, M.F. Islam. Mechanical and Thermal Management Characteristics of Ultrahigh Surface Area Single-Walled Carbon Nanotube Aerogels. Advanced Functional Materials.2013,23 (3):377-383
    [153]C. Moreno-Castilla, F. Maldonado-Hodar. Carbon Aerogels for Catalysis Applications: An Overview. Carbon.2005,43 (3):455-465
    [154]J. Biener. M. Stadermann, M. Suss, M.A. Worsley, M.M. Biener, K.A. Rose, T.F. Baumann. Advanced Carbon Aerogels for Energy Applications. Energy & Environmental Science.2011.4 (3):656-667
    [155]X. Gui, J. Wei, K. Wang, A. Cao, H. Zhu. Y. Jia, Q. Shu. D. Wu. Carbon Nanotube Sponges. Advanced Materials.2010,22 (5):617-621
    [156]M. Paakko, J. Vapaavuori, R. Silvennoinen, H. Kosonen, M. Ankerfors, T. Lindstrom, L.A. Berglund, O. Ikkala. Long and Entangled Native Cellulose I Nanofibers Allow Flexible Aerogels and Hierarchically Porous Templates for Functionalities. Soft Matter. 2008.4 (12):2492-2499
    [157]M. Kettunen, R.J. Silvennoinen, N. Houbenov. A. Nykanen, J. Ruokolainen, J. Sainio, V. Pore, M. Kemell, M. Ankerfors, T. Lindstrom. Photoswitchable Superabsorbency Based on Nanocellulose Aerogels. Advanced Functional Materials.2011,21 (3): 510-517
    [158]J.T. Korhonen, P. Hiekkataipale, J. Malm. M. Karppinen, O. Ikkala, R.H. Ras. Inorganic Hollow Nanotube Aerogels by Atomic Layer Deposition onto Native Nanocellulose Templates. ACS Nano.2011,5 (3):1967-1974
    [159]R.T. Olsson, M.A. Samir, G. Salazar-Alvarez, L. Belova. V. Strom, L.A. Berglund, O. Ikkala, J. Nogues, U.W. Gedde. Making Flexible Magnetic Aerogels and Stiff Magnetic Nanopaper Using Cellulose Nanofibrils as Templates. Nature Nanotechnology.2010.5 (8):584-588
    [160]H.W. Liang, Q.F. Guan, Z. Zhu, L.T. Song, H.B. Yao, X. Lei. S.H. Yu. Highly Conductive and Stretchable Conductors Fabricated from Bacterial Cellulose. NPG Asia Materials.2012,4(6):e19
    [161]Z.Y. Wu. C. Li, H.W. Liang, J.F. Chen, S.H. Yu. Ultralight. Flexible, and Fire-Resistant Carbon Nanofiber Aerogels from Bacterial Cellulose. Angewandte Chemie International Edition.2013,125 (10):2997-3001
    [162]L.F. Chen. Z.H. Huang, H.W. Liang, Q.F. Guan, S.H. Yu. Bacterial-Cellulose-Derived Carbon Nanofiber@Mno2 and Nitrogen-Doped Carbon Nanofiber Electrode Materials: An Asymmetric Supercapacitor with High Energy and Power Density. Advanced Materials.2013, DOI:10.1002/adma.201204949
    [163]陈文帅,于海鹏,刘一星,蒋乃翔,陈鹏.木质纤维素纳米纤丝制备及形态特征分析.高分子学报.2010,(11):1320-1326
    [164]L. Segal, J. Creely, A. Martin, C. Conrad. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal.1959,29 (10):786-794
    [165]S. Iwamoto, K. Abe, H. Yano. The Effect of Hemicelluloses on Wood Pulp Nanofibrillation and Nanofiber Network Characteristics. Biomacromolecules.2008,9 (3):1022-1026
    [166]P.C.F. Tischer, M.R. Sierakowski, H. Westfahl Jr, C.A. Tischer. Nanostructural Reorganization of Bacterial Cellulose by Ultrasonic Treatment. Biomacromolecules. 2010,11(5):1217-1224
    [167]S. Wang, Q. Cheng. A Novel Process to Isolate Fibrils from Cellulose Fibers by High Intensity Ultrasonication, Part 1:Process Optimization. Journal of applied polymer science.2009,113 (2):1270-1275
    [168]Q. Cheng, S. Wang, Q. Han. Novel Process for Isolating Fibrils from Cellulose Fibers by High-Intensity Ultrasonication. II. Fibril Characterization. Journal of applied polymer science.2010,115 (5):2756-2762
    [169]P. Chen, H. Yu, Y. Liu, W. Chen, X. Wang, M. Ouyang. Concentration Effects on the Isolation and Dynamic Rheological Behavior of Cellulose Nanofibers Via Ultrasonic Processing. Cellulose.2013.20 (1):149-157
    [170]W. Chen, H. Yu, Y. Liu, P. Chen, M. Zhang, Y. Hai. Individualization of Cellulose Nanofibers from Wood Using High-Intensity Ultrasonication Combined with Chemical Pretreatments. Carbohydrate Polymers.2011,83 (4):1804-1811
    [171]H. Fukuzumi, T. Saito, T. Iwata, Y. Kumamoto, A. Isogai. Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation. Biomacromolecules.2008,10 (1):162-165
    [172]刘一星,赵广杰.木质资源材料学.中国林业出版社,2004
    [173]W. Chen, H. Yu, Y. Liu, Y. Hai, M. Zhang, P. Chen. Isolation and Characterization of Cellulose Nanofibers from Four Plant Cellulose Fibers Using a Chemical-Ultrasonic Process. Cellulose.2011,18 (2):433-442
    [174]C. Somerville, S. Bauer, G. Brininstool, M. Facette, T. Hamann, J. Milne, E. Osborne, A. Paredez, S. Persson, T. Raab. Toward a Systems Approach to Understanding Plant Cell Walls. Science.2004,306 (5705):2206-2211
    [175]K. Uetani, H. Yano. Semiquantitative Structural Analysis of Highly Anisotropic Cellulose Nanocolloids. ACS Macro Letters.2012,1 (6):651-655
    [176]A. Nakagaito, H. Yano. Novel High-Strength Biocomposites Based on Microfibrillated Cellulose Having Nano-Order-Unit Web-Like Network Structure. Applied Physics A. 2005,80(1):155-159
    [177]A.J. Svagan, M.A. Samir, L.A. Berglund. Biomimetic Foams of High Mechanical Performance Based on Nanostructured Cell Walls Reinforced by Native Cellulose Nanofibrils. Advanced Materials.2008,20 (7):1263-1269
    [178]H. Sehaqui, M. Salajkova, Q. Zhou, L.A. Berglund. Mechanical Performance Tailoring of Tough Ultra-High Porosity Foams Prepared from Cellulose I Nanofiber Suspensions. Soft Matter.2010,6(8):1824-1832
    [179]J. Burgess. Cellulose Microfibrils-an End in Sight? Nature.1979,278:212
    [180]Y. Xia. Nanomaterials at Work in Biomedical Research. Nature materials.2008,7 (10): 758-760
    [181]J. Xie, X. Li, Y. Xia. Putting Electrospun Nanofibers to Work for Biomedical Research. Macromolecular rapid communications.2008,29 (22):1775-1792
    [182]D. Li, Y. Xia. Electrospinning of Nanofibers:Reinventing the Wheel? Advanced Materials.2004,16(14):1151-1170
    [183]C.W. Kim, D.S. Kim, S.Y. Kang, M. Marquez, Y.L. Joo. Structural Studies of Electrospun Cellulose Nanofibers. Polymer.2006,47 (14):5097-5107
    [184]吕昂,张俐娜.纤维素溶剂研究进展.高分子学报.2007,10:937-944
    [185]H. Gesser, P. Goswami. Aerogels and Related Porous Materials. Chemical reviews.1989. 89 (4):765-788
    [186]K.H. Kim, M. Vural, M.F. Islam. Single-Walled Carbon Nanotube Aerogel-Based Elastic Conductors. Advanced Materials.2011,23 (25):2865-2869
    [187]J. Cai, S. Kimura, M. Wada. S. Kuga, L. Zhang. Cellulose Aerogels from Aqueous Alkali Hydroxide-Urea Solution. ChemSusChem.2008,1 (1-2):149-154
    [188]J. Cai, S. Liu, J. Feng, S. Kimura, M. Wada, S. Kuga, L. Zhang. Cellulose-Silica Nanocomposite Aerogels by in Situ Formation of Silica in Cellulose Gel. Angewandte Chemie.2012,124 (9):2118-2121
    [189]C. Tan. B. Fung, J. Newman, C. Vu. Organic Aerogels with Very High Impact Strength. Advanced Materials.2001,13 (9):644-646
    [190]F. Fischer, A. Rigacci, R. Pirard. S. Berthon-Fabry, P. Achard. Cellulose-Based Aerogels. Polymer.2006,47 (22):7636-7645
    [191]J. Innerlohinger, H.K. Weber, G. Kraft. Aerocellulose:Aerogels and Aerogel-Like Materials Made from Cellulose. Macromolecular Symposia.2006,244:126-135
    [192]O. Aaltonen, O. Jauhiainen. The Preparation of Lignocellulosic Aerogels from Ionic Liquid Solutions. Carbohydrate Polymers.2009.75 (1):125-129
    [193]R. Gavillon, T. Budtova. Aerocellulose:New Highly Porous Cellulose Prepared from Cellulose-NaOH Aqueous Solutions. Biomacromolecules.2007.9(1):269-277
    [194]R. Sescousse, R. Gavillon, T. Budtova. Aerocellulose from Cellulose-Ionic Liquid Solutions:Preparation. Properties and Comparison with Cellulose-NaOH and Cellulose-NMMO Routes. Carbohydrate Polymers.2011.83 (4):1766-1774
    [195]Z. Wang, S. Liu, Y. Matsumoto, S. Kuga. Cellulose Gel and Aerogel from LiCl/DMSO Solution. Cellulose.2012.19 (2):393-399
    [196]A.C. Leung, E. Lam, J. Chong, S. Hrapovic, J.H. Luong. Reinforced Plastics and Aerogels by Nanocrystalline Cellulose. Journal of Nanoparticle Research.2013,15 (5): 1-24
    [197]H. Jin, Y. Nishiyama, M. Wada, S. Kuga. Nanofibrillar Cellulose Aerogels. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2004,240 (1):63-67
    [198]D.O. Carlsson, G. Nystrom, Q. Zhou, L.A. Berglund, L. Nyholm. M. Str(?)mme. Electroactive Nanofibrillated Cellulose Aerogel Composites with Tunable Structural and Electrochemical Properties. Journal of Materials Chemistry.2012,22 (36): 19014-19024
    [199]M.D. Gawryla, O. van den Berg, C. Weder, D.A. Schiraldi. Clay Aerogel/Cellulose Whisker Nanocomposites:A Nanoscale Wattle and Daub. Journal of Materials Chemistry.2009,19 (15):2118-2124
    [200]C. Aulin, J. Netrval. L. Wagberg, T. Lindstrom. Aerogels from Nanofibrillated Cellulose with Tunable Oleophobicity. Soft Matter.2010,6 (14):3298-3305
    [201]W. Zhang, Y. Zhang, C. Lu, Y. Deng. Aerogels from Crosslinked Cellulose Nano/Micro-Fibrils and Their Fast Shape Recovery Property in Water. Journal of Materials Chemistry.2012,22 (23):11642-11650
    [202]H. Jin. M. Kettunen, A. Laiho, H. Pynnonen, J. Paltakari, A. Marmur, O. Ikkala, R.H. Ras. Superhydrophobic and Superoleophobic Nanocellulose Aerogel Membranes as Bioinspired Cargo Carriers on Water and Oil. Langmuir.2011,27 (5):1930-1934
    [203]E. Haimer, M. Wendland, K. Schlufter, K. Frankenfeld, P. Miethe, A. Potthast, T. Rosenau, F. Liebner. Loading of Bacterial Cellulose Aerogels with Bioactive Compounds by Antisolvent Precipitation with Supercritical Carbon Dioxide. Macromolecular Symposia,2010:64-74
    [204]J.T. Korhonen, M. Kettunen, R.H. Ras, O. Ikkala. Hydrophobic Nanocellulose Aerogels as Floating, Sustainable, Reusable, and Recyclable Oil Absorbents. ACS Applied Materials & Interfaces.2011,3 (6):1813-1816
    [205]M. Wang, I.V. Anoshkin, A.G. Nasibulin, J.T. Korhonen, J. Seitsonen, J. Pere, E.I. Kauppinen, R.H.A. Ras, O. Ikkala. Modifying Native Nanocellulose Aerogels with Carbon Nanotubes for Mechanoresponsive Conductivity and Pressure Sensing. Advanced Materials.2013,25(17):2428-2432
    [206]A. Javadi, Q. Zheng, F. Payen, A. Javadi, Y. Altin, Z. Cai, R. Sabo, S. Gong. Polyvinyl Alcohol-Cellulose Nanofibrils-Graphene Oxide Hybrid Organic Aerogels. ACS Applied Materials & Interfaces.2013,5 (13):5969-5975
    [207]W. Chen, H. Yu, Q. Li, Y. Liu, J. Li. Ultralight and Highly Flexible Aerogels with Long Cellulose I Nanofibers. Soft Matter.2011,7 (21):10360-10368
    [208]W.S. Shi, H.Y. Peng, Y.F. Zheng, N. Wang, N.G. Shang, Z.W. Pan, C.S. Lee, S.T. Lee. Synthesis of Large Areas of Highly Oriented, Very Long Silicon Nanowires. Advanced Materials.2000,12 (18):1343-1345
    [209]Y. Song, A.L. Schmitt, S. Jin. Ultralong Single-Crystal Metallic Ni2si Nanowires with Low Resistivity. Nano letters.2007,7 (4):965-969
    [210]W.I. Park, G. Zheng, X. Jiang, B. Tian, C.M. Lieber. Controlled Synthesis of Millimeter-Long Silicon Nanowires with Uniform Electronic Properties. Nano letters. 2008,8 (9):3004-3009
    [211]Z. Pan, S. Xie, B. Chang, C. Wang, L. Lu, W. Liu, W. Zhou, W. Li, L. Qian. Very Long Carbon Nanotubes. Nature.1998,394 (6694):631-632
    [212]L. Zheng, M. O'connell, S. Doom, X. Liao, Y. Zhao, E. Akhadov, M. Hoffbauer. B. Roop, Q. Jia, R. Dye. Ultralong Single-Wall Carbon Nanotubes. Nature materials.2004, 3 (10):673-676
    [213]S. Huang, B. Maynor, X. Cai, J. Liu. Ultralong, Well-Aligned Single-Walled Carbon Nanotube Architectureson Surfaces. Advanced Materials.2003,15 (19):1651-1655
    [214]T. Saito, M. Hirota, N. Tamura, S. Kimura, H. Fukuzumi, L. Heux, A. Isogai. Individualization of Nano-Sized Plant Cellulose Fibrils by Direct Surface Carboxylation Using TEMPO Catalyst under Neutral Conditions. Biomacromolecules. 2009,10(7):1992-1996
    [215]L. Heath, W. Thielemans. Cellulose Nanowhisker Aerogels. Green Chemistry.2010,12 (8):1448-1453
    [216]T. Saito, T. Uematsu. S. Kimura, T. Enomae, A. Isogai. Self-Aligned Integration of Native Cellulose Nanofibrils Towards Producing Diverse Bulk Materials. Soft Matter. 2011,7 (19):8804-8809
    [217]M. Roman, W.T. Winter. Effect of Sulfate Groups from Sulfuric Acid Hydrolysis on the Thermal Degradation Behavior of Bacterial Cellulose. Biomacromolecules.2004,5 (5): 1671-1677

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700