用户名: 密码: 验证码:
以卟啉为光敏体PSⅡ模型化合物的设计合成与光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卟啉类化合物构成叶绿素等生物大分子的核心部分,作为原初电子给体参与植物光合作用的一系列重要过程,因此也是模拟光合作用的重要化合物。在光合作用中,物质的转换和能量的的储备仅是宏观现象,而光反应中心电荷分离态的形成和电子的传递是决定这一过程的微观因素。因此建立光合作用模型化合物,研究其分子内部电子传递及电荷分离态的形成成为学者们研究的热点,本文即以卟啉类化合物为光敏体,通过引入不同性质的连接基团,设计合成了系列模型化合物,研究其分子内电子、能量传递情况及电荷分离态的形成。为进一步实现对光合作用PSII的模拟奠定了理论基础。
     自然界的光合作用以醌类化合物为原初电子受体,因此以醌类化合物作为电子受体建立模型化合物模拟绿色植物光合作用成为研究工作者们的首选。蒽醌类化合物为良好的电子受体,并且其结构与自然界光合作用电子受体的结构接近。因此本文以卟啉类化合物为光敏体,蒽醌类化合物为电子受体,设计合成了14种未见文献报道的新型卟啉-蒽醌模型化合物,分别为偶氮卟啉-蒽醌化合物(4)、以均三嗪为桥键的卟啉-蒽醌化合物(4)、以酰氨键相连的卟啉-蒽醌化合物(2)、以烷基链相连的卟啉-蒽醌化合物(2)及相应的金属络合物(2)。采用红外,核磁,质谱等分析手段对合成化合物进行结构表征,并用单晶衍射确定化合物46的分子结构。对化合物的光电性能进行了系统研究。荧光光谱表明合成的卟啉-蒽醌二元化合物均发生光诱导的分子内电子传递导致化合物的荧光猝灭,其中以化合物6为最大,猝灭百分率达到95%。采用时间分辨光致荧光光谱测定化合物46固态荧光寿命为315ps,荧光寿命的大幅度降低进一步表明卟啉-蒽醌体系中发生了分子内的电子传递。采用闪光光解光谱仪对合成化合物的瞬态光谱性能进行了测定。实验结果表明化合物27, 34在600nm, 650nm处出现卟啉阳离子自由基P~(·+)的特征吸收,这是由于体系中发生了光诱导的分子内电子传递,形成P~(·+)-AQ~(·-)的长寿命电荷分离态,改变了激发态电子运动途径所致。动力学衰减曲线拟合的电荷分离态寿命分别为1.42μs和1.33μs。较长寿命的电荷分离态P~(·+)-AQ~(·-)的形成,为进一步优化二元化合物体系提供了理论指导和基本思路,并且形成的电荷分离态的结构更接近自然界,因此化合物27, 34为性能优良的PSⅡ模型化合物
     设计合成了9种未见文献报道的新型卟啉-噁二唑模型化合物,分别为偶氮卟啉-噁二唑化合物(6)、以均三嗪为桥键的卟啉-噁二唑化合物(3)。采用红外,核磁,质谱等分析手段对合成化合物进行结构表征。通过MM2对分子进行简单的模拟计算,确定化合物22, 23, 36b的分子结构。核磁氢谱和红外光谱表明偶氮羟基卟啉-噁二唑化合物21, 22, 43, 44中存在着偶氮体和醌腙体的互变异构。化合物的光谱性能表明在卟啉-噁二唑二元化合物36b, 36c, 23, 37中,发生了由激发态噁二唑基团至卟啉基团的能量传递,导致噁二唑基团荧光猝灭,卟啉基团荧光增强。不存在分子内卟啉基团向噁二唑基团的电子回传竞争。此外,氧化还原性能的计算表明卟啉基团的最低空轨道和最高占据轨道夹在噁二唑的最低空轨道和最高占据轨道之间,因而可能发生从噁二唑基团向卟啉基团的电子传递。因此卟啉-噁二唑二元化合物可能成为模拟PSⅡ中电子给体方的优良模型化合物。
     以4,4’-二甲基-2,2’-联吡啶为原料,经NBS溴化,在强碱的作用下,与羟基卟啉TNPPOH发生烷基化反应,设计合成了以醚键相连的卟啉-联吡啶二元化合物35。以4,4’-二甲基-2,2’-联吡啶为原料,经二氧化锡,氧化银分步氧化,氯化亚砜氯化,再与氨基卟啉ATPP发生酰化反应生成以酰胺键相连的卟啉-联吡啶二元化合物38。采用核磁,质谱等分析手段对合成化合物进行结构表征确定。并对化合物35进行了稳态光谱性能、瞬态光谱性能及氧化还原性能的测试,为进一步建立卟啉-联吡啶锰络合物的模型化合物奠定了基础。
     采用Fmoc保护氨基酸,氯化亚砜对被保护的氨基酸中羧基进行活化,将氨基酸基团引入卟啉体系,设计合成了11种未见文献报道的新型卟啉-氨基酸二元化合物,分别为以酰氨键相连的卟啉-氨基酸化合物(6)、以酯键相连的卟啉-氨基酸化合物(5);设计合成了2种未见文献报道的新型卟啉-氨基酸三元化合物。采用红外,核磁,质谱等分析手段对合成化合物进行结构表征确定。对合成化合物进行了稳态光谱性能、瞬态光谱性能及氧化还原性能测试,为进一步建立含有氨基酸基团的卟啉-联吡啶锰络合物的模型化合物奠定了基础。另外,在合成以酯键相连的卟啉-氨基酸化合物时,得到了含有两个氨基酸链节的化合物17, 20, 29, 30,对其反应机理进行了探讨研究。
Porphyrins and their relatives are the cores of chlorophyll molecules. As the primary electron donor, they participate in a series of important process in photosynthesis. So porphyrins are the significant compounds in artificial photosynthesis. In nature photosythesis, the substance conversion and energy storage are only macroscopical phenomena, but the formation of charge-separation state and electron transfer are the determinative factors. Therefore building model compounds to investigate on the intramolecular electron transfer and charge-separated state formation attracted considerable attention of scholar. In this dissertation, a series of PSⅡmodel compounds with porphyrins as photosensitizer were design and synthesis, and the intramolecular electron and energy transfer and charge-separated state formation were studied to make theory foundation for the further modeling of PSⅡ.
     Quinone compound are the primary electron acceptor in nature photosynthesis, thus building model compounds of artificial photosynthesis with quinone as acceptor is the first selection to the scholar. In the dissertation, model compounds were built with porphyrin(P) as electron donor and anthraquinone(AQ) as acceptor. Firstly, a series of asymmetry porphyrins were synthesized, then 14 novel porphyrin- anthraquinone dyads were designed, synthesized and characterized by IR, 1H NMR and MS. They respectively connected with azo bond, with cyanuric chloride as bridge, with amido bond, with alkyl chain. Secondly, the photoelectric properties of the new compounds were studied in details. Fluorescence quenching of the dyads exhibit that intramolecular photoinduced electron transfer occurred in the porphyrin- anthraquinone molecules. And the great decrease of fluorescence lifetime (315ps) of compound 46 further confirms this. The P·+-AQ·-state can be observed by transient absorption spectroscopy because the absorption spectrum of the charge-separated state differs from that of the porphyrin excited triplet in 600~700nm. The experiment results of transient absorption spectroscopy illustrated that new absorption band appeared at 600nm and 650nm due to the formation of porphyrin cation in compounds 27, 34. The lifetime of charge-separated state is 1.42μs and 1.33μs respectively. The formation of long-lived charge-separated state provides theory guidance and essential idea for the optimization of dyads system. And the structure of the charge-separated state is more close to the nature. So porphyrin-anthraquinone dyads 27 and 34 are excellent PSII model compounds.
     9 novel porphyrin-oxadiazole dyads connected with azo bond and with cyanuric chloride as bridge were designed, synthesized and characterized by IR, 1H NMR and MS. The molecular structures of compounds 22, 23, 36b were further identified through MM2 simulating calculation. The spectral properties of new dyads were investigated in details. The experiment results show that intramolecular photoinduced energy transfer occurred from excited oxadiazole moiety to porphyrin moiety in the dyads 36b, 36c, 23 and 37, leading to the fluorescence quenching of oxadiazole moiety and the fluorescence enhancing of porphyrin moiety. And there is no return electron transfer from excited porphyrin moiety to oxadiazole moiety. Moreover, the results obtained from the redox property indicated that the HOMO and LUMO of porphyrin moiety sandwiched between the levels of the HOMO and LUMO of oxadiazole moiety. So electron transfer from oxadiazole moiety to porphyrin moiety becomes possible. The porphyrin-oxadiazole dyads will be the fine PSII model compounds.
     4,4’-dimethyl-2,2’-bipyridine reacted with NBS, then alkylation with hydroxyl porphyrin at the existence of NaOH to generated porphyrin-bipyridine dyad 35. Porphyrin-bipyridine dyad 38 was prepared from amino porphyrin and 4-dimethyl-4’-carboxylchlroride-2,2’-bipyridine. The structures of new compounds were confirmed by 1H NMR and MS. And the photoelectric property of compound 35 was studied to make foundation for the further synthesis of porphyrin-bipyridine-Mn model compounds.
     11 novel porphyrin-aminoacid dyads and 2 triads were prepared from porphyrin and amino acid through protection of amino group of amino acid with Fmoc-OSu, then activation of carboxyl group with SOCl2, and characterized by IR, 1H NMR and MS. The photoelectric properties of compounds were studied in detail to make foundation for the further synthesis of porphyrin-bipyridine-Mn model compounds containing amino acid moiety. In addition the reaction mechanism of compounds 17, 20, 29, 30, which synthesized through esterification and included two amino acid chains, was discussed.
引文
[1] 沈允钢,地球上最重要的化学反应-光合作用,清华大学出版社,北京, 2000
    [2] 张永平译,光合作用,科学出版社,北京,1984
    [3] 许大全,光合作用效率,上海科学技术出版社,上海,2002
    [4] Hammarstr?m L., Sun L., ?kermark B., et al. Artificial photosynthesis: towards functional mimic of photosystem Ⅱ?Biochi. Biophy. Acta, 1998, 1365:193-199
    [5] Kalyanasundaram K. Photochemistry of polychemistry and porphyrin complexes, Academic: London, 1992
    [6] Chu H., Gardner M. T., Brien J. P., Babcock G. T. Low-Frequency Fourier Transform Infrared Spectroscopy of the Oxygen-Evolving and Quinone Acceptor Complexes in Photosystem, Biochemistry, 1999, 38, 4533-4541
    [7] Vincent J. B., Christou G. A molecular “double-pivot” mechanis for water oxidation, Inorg. Chim. Acta. 1987, 136: 141-147
    [8] Hoganson C. W., Babcock G. T. A metalloradical mechanium for the generation of oxygen from water in photosynthesis, Science, 1997, 277: 1953-1956
    [9] Peloquin J. M., Campbell K. A., Britt R. D. 55Mn Pulsed ENDOR Demonstrate That the photosystem II “Split” EPR Signal Arises from a Magnetically-Coupled Mangano-Tyrosyl complex, J. Am. Chem. Soc., 1998, 120: 6840-6841
    [10] Baldwin M., Pecoraro V. L. Energetic of Proton-Coupled Electron Transfer in High-valent Mn(μ-O)2 System: Models for water Oxidation by the Oxygen-Evolving Complex of photosystem II, J. Am. Chem. Soc., 1996, 118: 11325-11326
    [11] 田禾,王利民译,分子器件与分子机器-通向纳米世界的捷径,化学工业出版社,北京,2005
    [12] Hammarstr?m L., Sun L., ?kermark B. et al. A biomimetic approach to artificial photosynthesis: Ru(II)-polypyridine photo-sensitisers linked to tyrosine and manganese electron donors, Spectrochimica Acta Part A, 2001, 37: 2145-2160
    [13] 杨新国,孙景志,卟啉类光电材料的研究进展,功能材料,2003,34(2):113-117
    [14] Kong J. L. Y., Loach R. A. Covallently-Linked Porphyrin-Quinone Complexes as Models For The Primary Event in A Bacterid Photosynthesis. J. Hetercycl. Chem.,1980, 17: 737
    [15] Tabushi I., Koga N., Yanagita M. EFFICIENT INTRAMOLECULAR QUENCHING AND ELECTRON TRANSFER IN TETRAPHENYL- PORPHYRIN ATTACHED WITH BENZOQUINONE OR HYDRO- QUINONE AS A PHOTOSYSTEM MODEL. Tetrahedron Lett., 1979, 257
    [16] Kuclauskas D., Liddell P.A., Hung S.-C., et al. Structural Effects on Photoinduced Electron Transfer in Carotenoid-Porphyrin-Quinone Triads. J. Phys. Chem., 1997, 101: 429-440
    [17] Khundkar H., Perry J.W., Hanson J. E. Weak Temperature Dependence of Electron Transfer Rates in Fixed-Distance Porphyrin-Quinone Model Systems. Am. Chem. Soc., 1996, 118: 11325-11326
    [18] Wasielewski M. R., Niemczyk M. P., Johnson D. G. et al. Ultrafast photoinduced electron transfer in rigid donor-spacer-acceptor molecules: modification of spacer energetics as a probe for super exchange. Tetrahedron, 1989: 4785-4860
    [19] Sakata Y., Imabori H., Tsue H. et al. Control of electron transfer and its utilization. Pure Appl. Chem., 1997, 68: 1951-1956
    [20] Dieks H., Sobet J., Tian P. et al. Covalented linked porphyrin ubiquinone(0) as model compounds for photosynthetic reaction center. Tetrahedron Lett., 1992, 33: 5951-5954
    [21] Heitele H., Pollinger F., Kremer K. et al. Electron transfer in porphyrin-quinone cyclophanes. Chem. Phys. Lett., 1992, 188: 270
    [22] Dieks H., Senge M. O., Kirste B. et al. Cyclohexylene-Bridged Porphyrin Quinones with Variable Acceptor Strength as Biomimetic Models for Photosnythesis: Evidence for Twist-Boat conformation, J. Org. Chem., 1997, 62: 8666-8680
    [23] Gulyas P. T., Langford S.J., Lokan N. R. et al. Convenient Synthetic Route to Rigid Donor-{Bridge}-Acceptor Systems Involving Porphyrin and Phem- anthroline Anulation of Norbornylogous Bridges via 2,3-Norbornanediones. J. Org. Chem., 1997, 62: 3038-3039
    [24] Sakata Y., Tsue H., O’Neil M. P. et al. Effect of Donor-Acceptor Orientation on Ultrafast Photoinduced Electron Transfer and Dark Charge Recombination in Porphyrin-Quinone Molecules. J. Am. Chem. Soc., 1994, 116: 6904-6909
    [25] Kurreck H., Aguirre S., Batchelor S. N. Mimicking primary processes in photosynthesis Photochmistry of covalently linked porphyrin quinines studied by EPR spectroscopy, Solar Energy Materials and Solar cells, 1995, 38:91-110
    [26] Cormier R. A., Posey M. R., Bell W. L. et al. SYNTHESIS AND CHARACTERIZATION OF A DIRECTLY LINKED PORPHYRIN- ANTHRAQUINONE MOLECULE. Tetrahedron, 1989, 45: 4831-4843
    [27] Wasielewski M. R., Gaines G. L., O’Neil M.P. el al. Photoinduced Spin-Polarized Radical Ion Pair Formation in a Fixed-Distance Photosynthetic Model System at 5K. J. Am. Chem. Soc., 1990, 112: 4559-4560
    [28] Moore A.L. Gust D., Mathis P., et a1., Photodriven charge separation in a carotenoporphyrin? quinone triad, Nature, 1984, 307: 630-631
    [29] Gust D., Moore T. A. Mimicking photosynthesis, Science, 1989, 244: 35-41
    [30] Gust D., Moore T. A., Liddell P. A. et al. Charge Separation in Caroteno porphyrin-quinone Triads: Synthetic, Conformational, and Fluorescence Lifetime Studies. J. Am. Chem. Soc., 1987, 109: 846-856
    [31] Wasielewski M. R. Photoinduced Electron Transfer In Supramolecilar systems for Artificial Phorosynthesis, Chem. Rev., 1992, 92: 435-461
    [32] Gust D., Moore T.A. Photosynthetic Model Systems, Topics in Current Chemistry, 1991, 159: 105-148
    [33] Wasielewski M. R., Niemczyk M. P., Svec W. A. et al. High-Quantum-Yield Long-lived Charge Separation in a Photosynthetic Reaction Center Model, J. Am. Chem. Soc., 1985, 107: 5562-5563
    [34] Wiehe A., Senge M. O., Sch?fer A. et al. Electron donor-acceptor compounds: exploiting the triptycene geometry for the synthesis of porphyrin quinine diads, triads, and tetrad, Tetrahedron, 2001, 57: 10089-10110
    [35] Wasielewski M. R., Johnson, D. G., Svec W. A. et al. Achieving High Quantum Yield Charge Separation in Porphyrin-Containing Donor-Acceptor Molecules at 10K. J. Am. Chem. Soc., 1988, 110: 7219-7221
    [36] Fether G., Allen J. P., Okamura M. Y. et al. Structure and function of bacterial photosynthetic reaction centers. Nature, 1989, 339: 111-116
    [37] Sessler J.L., Johnson M.R., Lin T. Y. et al. Quinone-Substituted Monometalated Porphyrin Dimers: Models for Photoinduced Charge Separation at Fixed Orientation and Energy. J. Am. Chem. Soc., 1990, 110: 3659-3661
    [38] Sessler J.L., Johnson M.R., Lin T. Y. et al. Absorption and static emission properties of monometalated quinine substituted porphrion dimers: evidence for “superexchange” mediated electron transfer in multicomponent photosynthetic model systems. Tetrahedron, 1989, 45: 4767-4787
    [39] Sakata Y., Nishitani A., Nishimizu N. et al. Synthesis of a model compound for the photosynthetic electron transfer. Tetrahedron Lett., 1985, 26: 5207-5210
    [40] Gust D., Moore T.A., Moore A.L., et a1., Photoinitiated charge separation in a carotenoid-porphyrin-diquinone tetrad: enhanced quantum yields via multistep electron transfers, J. Am. Chem. Soc., 1988, 110: 321-323
    [41] Gust D., Moore T. A., Moore A. L. et al. A carotenoid-porphyrin-diquinone tetrad: synthesis, electronchemistry and photoinitiated electron transfer. Tetrahedron, 1989, 45: 4867-4891
    [42] Gust D., Moore T.A., Moore A. L. et al. Efficient Multistep Photoinitiated Electron Transfer in a Molecular Pentad, Science, 1990, 248: 199
    [43] Yfrach G. S., Liddell P. A., Hung S.-C. et al. Conversion of light energy to proton to proton potential in liposomes by artificial photosynthetic reaction centres, Nature, 1997, 385: 239-240
    [44] Yfrach G.S., Rigaud J.L., Durantini E.N., et a1., Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane, Nature, 1998, 392: 479-482.
    [45] Liddell P. A., Sumida J. P., Macpherson A. N. et al. Preparation and photophysical studies of porphyrin-C60 dyads. Photochem. Photobiol., 1994, 60, 537-541
    [46] D’ Souza F., Gadde S., Zandler M. E. et al. Studies on Covalently Linked Porphyrin-C60 Dyads: Stabilization of Charge-Separated States by Axial Coordination. J. Phys. Chem. A, 2002, 106: 12393-12404
    [47] Imahori H., Hagiwara K., Aoki M. et al. Linkage and Solvent Dependence of Photoinduced Electron Transfer in Zincporphyrin-C60 dyads. J. Am. Chem. Soc., 1996, 118: 11771-11782
    [48] Ranasinghe M. G., Oliver A. M., Rothenfluh D.F. et al. A synthesis strategy for the construction of a novel series of buck minsterfullenrence(C60) Ball-and-chain molecules. Tetrahedron Lett., 1996, 37: 4797-4800
    [49] Kuciauskas D., Lin S., Seely G. R. et al. Energy and Photoinduced Electron Transfer in porphyrin-Fullerene Dyads. J. Phys. Chem. 1996, 100:15926- 15932
    [50] Drovetskaya T., Reed C. A., Boyd P. D. W. A Fullerence Porphyrin Conjugate. Tetrahedron Lett., 1995, 36: 7971-7974
    [51] Sun Y., Drovetskaya T., Bolskar R. D. et al. Fullerides of Pyrrolidine- Functionalized C60. J. Org. Chem. 1997, 62: 3642-3649
    [52] Liddell P.A., Kuclauskas D., Sumida J.P., et a1., Photoinduced Charge Separation and Charge Recombination to a Triplet State in a Carotene-Porphyrin-Fullerene Triad, J. Am. Chem. Soc., 1997, 119(6): 1400-1405
    [53] Luo C., Guldi D. M., Imahori H. et al. Sequential Energy and Electron Transferin an Artificial Reaction Center: Formation of a Long-Lived Charge-Separated State, J. Am. Chem. Soc., 2000, 122: 6535-6551
    [54] Fukuzumi S., Imahori H., Yamada H. et al. Catalytic Effects of Dioxygen on Intramolecular Electron Transfer in Radical Ion Pairs of Zinc Porphyrin-Linked Fullerenes, J. Am. Chem. Soc., 2001, 123: 2571-2575
    [55] Imahori H., El-Khouly M. E., Fujitsula M. et al. Solvent Dependence of Charge Separation and Charge Recombination Rate in Porphyrin-Fullerence Dyad, J. Phys. Chem. A, 2001, 105: 325-332
    [56] Imahori H., Tamaki K., Araki Y. et al. Stepwise Charge Separation and Charge Recombination in Ferrocence-meso, meso-Linked Porphyrin Dimer- Fullerence Triad, J. Am. Chem. Soc., 2002, 124: 5165-5174
    [57] Cowan J. A., Sanders J. K. M. Pyromellitimide-bridged porphyrin as photosynthetic system. 1. Synthesis and Steady state fluorescence properties. J. Chem. Soc., Perkin Trans. I 1985, 2435-2437
    [58] Tan Q., Kuciauskas D., Lin S. et al. Dynamics of Photoinduced Electron Transfer in a Carotenoid-Porphyrin- Dinitronaphthalenedicarboximide Molecular Triad. J. Phys. Chem. B, 1997, 101: 5214-5223
    [59] Osuka A., Marumo S., Mataga N. et al. A Stepwise Electron-Transfer Relay Mimicking the Primary Charge Separation in Bacterial Photosynthetic Reaction Center. J. Am. Chem. Soc., 1996, 118: 155-168
    [60] Xiao S.-Q., El-Khouly M. E., Li Y.-L. et al. Dyads and Triads Containing Perylenetetracarboxylic Diimide and Porphyrin: Efficient Photoinduced Electron Transfer Elicited via Both Excited Singlet States, J. Phys. Chem. B, 2005, 109: 3658-3667
    [61] Limburg J., Brudvig G. W., Crabtree R. H. O Evolution and Permanganate Formation from High-Valent Manganese2Complexes J. Am. Chem. Soc., 1997, 119: 2761-2762
    [62] Limburg J., Vrettos J. S., Liable-Sands L. M. et al. A Functional Model for O-O band Formation by the O2-Evolving Complex in Photosystem II, Science, 1999, 283: 1524-1527
    [63] Ruettinger W. F., Campana C., Dismukes G. C. Synthesis and Characterization of Mn O L Complexes with Cubane-like Core Structure: A New Class of Models of the Active Site of the Photosynthetic Water Oxidase.4 4 6J. Am. Chem. Soc., 1997, 119: 6670-6671
    [64] Huang P., Hogblom J., Anderlund M. F. et al. Light-induced multistep oxidation of dinuclear manganese complexes for artificial photosynthesis, J. Inorg. Biochem., 2004, 98: 733-745
    [65] Ramaraj R., Kira A., Kaneko M. Oxygen Evolution by Water OxidationMediated by Heterogeneous Manganese Complexes. Angew. Chem. Int. Ed. Engl., 1986, 25: 825-827
    [66] Naruta Y., Sasayama M., Sasaki T. Oxygen Evolution by Oxidation of water with Manganese Porphyrin Dimers, Angew. Chem. Int. Ed. Engl., 1994, 33(18): 1839-1841
    [67] Sun L.-C., Berglund H., Davydov R. et al. Binuclear Ruthenium-Manganese Complex as Simple Artificial Models for Photosystem II in Green Plants, J. Am. Chem. Soc., 1997, 119: 6996-7004
    [68] Sun L.-C., Hammarstrom L., Norrby T. et al. Intramolecular electron transfer from coordinated manganese(II) to photogenerated ruthenium(III), Chem. Commun., 1997, 607-608
    [69] Magnuson A., Berglund H., Korall P. et al. Mimicking Electron Transfer Reactions in Photosystem II: Synthesis and Photochemical Characterization of a Ruthenium(II) Tris(bipyridyl) Complex with a Covalently Linked Tyrosine, J. Am. Chem. Soc., 1997, 119: 10720-10725
    [70] Sun L.-C., Burkitt M., Tamm M. et al. Hydrogen-Bond Promoted Intramolecular Electron Transfer to Photogenerated Ru(III): A Functional Mimic of Tyrosine and Histidine 190 in Photosystem II, J. Am. Chem. Soc., 1999, 121: 6834-6842
    [71] Hammarstr?m L., Sun L.-C., ?kermark B. Mimicking photosystem II reactions in artificial photosynthesis: Ru(II)-polypyridine photosensitisers linked to tyrosine and manganese electron donor, Catalysis Today, 2000, 58: 57-69
    [72] Huang P., Magnuson A., Lomoth R. et al. Photo-induced oxidation of a dinuclear Mn2II,II complex to the Mn2III,IV state by inter and intramolecular electron transfer to RuIII tris-bipyridine, J. Inorg. Biochem., 2002, 91: 159-172
    [73] Burdinski D., Wieghardt K., Steenken S. Intramolecular Electron Transfer from Mn or Ligand Phenolate to Photochemically Generated RuIII Multinuclear Ru/Mn Complexes. Laser Flash Photolysis and EPR Studies on Photosystem II Models. J. Am. Chem. Soc., 1999, 121: 10781
    [74] Burdinski D., Bothe E., Wieghardt K. Encapsulation by a Chromium(III)- Containing Bicyclic Ligand Cage. Synthesis, Structures,and Physical Properties of Heterometal Complexes CrIIIMCrIII [M=(H+)2, Li(I), Mg(II),Cu(II), Ni(II), Ni(IV), Co(III), Fe(II), Fe(III), Mn(II)]. Inorg. Chem., 2000, 39: 105-116
    [75] Groves J. T., McClusky G. A. Aliphatic hydroxylation via oxygen rebound Oxygen transfer catalyzed by iron. J. Am. Chem. Soc., 1976, 98(3): 859-861
    [76] Adler A.D., Longo F.R., Shergalis W. Mechanistic Investigation of Porphyrin Syntheses. J. Am. Chem. Soc., 1964, 84: 3145-3149
    [77] 潘继刚,何明威,四苯基卟啉及其衍生物的合成,有机化学,1993, 13, 533-536
    [78] 郭灿城,何兴涛,邹纲要, 合成四苯基卟啉及其衍生物的新方法有机化学,有机化学,1991, 11(4): 416-419
    [79] Lindsey J.S., Schreiman I.S., Hsu H.C., et al. Rothemund and Adler-Longo Reactions Revisited: Synthesis of Tetraphenylporphyrins under Equilibrium Conditions. J. Org. Chem., 1984, 54: 827-836
    [80] Lindsey J.S., Hsu H.C. Synthesis of tetraphenylporphyrins under very mild conditions. Tetrahedron Lett., 1986, 27: 4969-4970
    [81] Wagner R.W., Lawrence D.S., Lindsey J.S. An improved synthesis of tetramesi porphyrin. Tetrahedron Lett., 1987, 28: 3069-3070
    [82] Lindsey J.S., MacCrum K.A., John S.T., et al. Investigation of a Synthesis of meso-Porphyrins Employing High Concentrations and an Electron Transport Chain for Aerobic Oxidation. J. Org. Chem., 1994, 59: 579-587
    [83] Lindsey, J.S., Wagner, R.W. Investigation of the synthesis of ortho-substituted tetraphenylporphyrins. J. Org. Chem., 1989, 54(4): 828-836
    [84] Wagner R.W., Ruffing J., Breakwell B.V., et al. Synthesis of facially- encumbered porphyrins-an approach to light-harvesting antenna. Tetrahedron Lett., 1991, 32(14): 1703-1706
    [85] Cornia M., Casiraghi G., Binacchi S., et al. Facile Entry to 5,10,15,20-Tetra-C- glycosyl porphyrins. J. Org. Chem., 1994, 59(5): 1226-1230
    [86] Anderson H.L., Wylie A.P., Prout K. meso-Tetraalkynylporphyrins. J. Chem. Soc., Perkin Trans. 1, 1998(10): 1607-1612
    [87] Petit A., Loupy A., Mailarde P., et al. Microwave irradiation in dry media – a new and easy method for synthesis of tetrapyrrolic compounds. Synthetic Communications, 1992, 22(18):1137-1142
    [88] 刘云,徐同宽,肖德宝等,四苯基卟啉的催化合成和微波合成研究,北京轻工业学院学报,1998, 16(4): 37-43
    [89] Arsenault G.P., Bullock E., MacDonald S.F. Pyrromethanes and Porphyrins Therefrom. J. Am. Chem. Soc., 1960, 82(16): 4384-4389
    [90] Wallace D.M., Smith K.M. Stepwise synthesis of unsymmetrical tetra-arylporphyrins –adaptation of the Macdonald dipyrrole self-condensation methodology. Tetrahedron Lett., 1990, 31(50): 7265-7268
    [91] Lee C.H., Li F.R., Iwamoto K., et al. Synthetic approaches to regioisomerically pure porphyrins bearing 4 different mesosubstituents. Tetrahedron, 1995, 51(43): 11645-11672
    [92] Littler B.J., Ciringh Y., Lindsey J.S. Investigation of conditions of conditions giving minimal scrambling in the synthesis of trans-porphyrins form dipyrromethanes and aldehydes. J. Org. Chem., 1999, 64: 2864-2872
    [93] Harmjanz M., Bozidarevic I., Scott M.J. MacDonald [2+2]-type condensation with vicinal diketones: synthesis and properties of novel spiro-tricyclic prophodimethenes. Org. Lett., 2001, 3: 2281-2284
    [94] Ogura H., Walker F.A. Trans-disubstituted trtraarylporphyrin as a precursor to larger molecular architectures: an application of MacDonald “2+2” porphyrin synthesis in aqueous anionic surfactant. Inorg. Chem., 2001, 40: 5729-5732
    [95] Pandey S.K., Gryshuk A.L., Graham A., et al. Fluorinated photosensitizers: synthesis, photophysical, electrochemical, intracellular localization, in vitro photosensitizing efficacy and determination of tumor-uptake by 19F in vivo NMR spectroscopy. Tetrahedron, 2003, 59: 10059-10073
    [96] Liu D., Ferrence G.M., Lash T.D. Oxybenziporphyrins, oxypyriporphyrins, benzocarba porphyrins, and their 23-oxa and 23-thia analogues: synthesis, spectroscopic characterization, metalation and structural characterization of a palladium(II) organometallic derivative. J. Org. Chem., 2004, 69: 6079-6093
    [97] Takahashi K., Kuraya N., Yamaquchi T., et a1. Three-layer organic solar cell with high-power conversion efficiency of 3.5%. Solar Energy Materials & Solar Cell, 2000, 61: 403-416
    [98] O’Neil M.P., Niemczyk M.P., Svec W.A., et al. Picosecond optical switching based on biphotonic excitation of an electron donor-acceptor-donor molecule. Science, 1992, 257: 63-65
    [99] Zhang X.H., Xie Z.Y., Wu F.P., et al. Red electroluminescence and photoluminescence properties of new porphyrin compounds. Chemical Physics Letters, 2003, 382: 561-566
    [100] Chen C.T. Evolution of red organic light-emitting diodes: materials and devices. Chem. Mater., 2004, 16: 4389-4400
    [101] Schell C., Hombrecher H. K. Synthesis and investigation of glycosylated mono and diarylporphyrin for. Bioorg. Med. Chem., 1999, 7: 1857-1865
    [102] Polo L., Valduga G., Jori G., et al. Low-density lipoprotein in the uptake of tumor photosensitizer by human and rat transformed fibroblasts. J Inorganic Biochemistry. 2002, 34: 10-23
    [103] Sternberg E. D., Dolphin D. Porphyrin-based photosensitizer for use in photodynamic therapy. Tetrahedron, 1998, 54(17): 4151-4202
    [104] Zhang J., Sun H. R., Yang G. Y., et al. Electrochemical and spectroelectrochemical characterization of covalently-linked donor-acceptor model compound. Electrochemical Acta, 1998, 43(18): 2693-2698
    [105] 王杏乔,王从笑,王清民,光诱导下卟啉-蒽醌化合物分子内电子转移过程的研究-荧光法,高等学校化学学报, 1997, 18(6): 834-839
    [106] 陶敏莉,刘东志,周雪琴,新型萘基卟啉-蒽醌化合物的合成,应用化学,2004, 21 (5): 479-482
    [107] Barasch D., Zipori O., Ringel I. et al. Novel anthraquinone derivatives with redox-active functional groups capable of producing free radicals by metabolism: are free radicals essential for cytotoxicity? J. Med. Chem., 1999, 34: 597-613
    [108] Bhargava P. N., Raghvan Nair M. G. SYNTHESIS OF NEW LOCAL ANAESTHETICS. J. Indian Chem. Soc., 1957, 34(1): 42-44
    [109] Luguya R., Jaquinod L., Fronczek F. R. Synthesis and reactions of meso-(p-nitrophenyl)porphyrins. Tetrahedron, 2004, 60: 2757-2763
    [110] 田雅珍,吴祖望,张淑芬等,偶氮染料的偶氮-醌腙互变异构的研究(Ⅰ),化工学报,1995, 46(2): 152-157
    [111] 田雅珍,王桂娟,吴祖望,偶氮染料的偶氮-醌腙互变异构的研究(Ⅱ),化工学报,1996, 47(1): 72-76
    [112] 石莹岩,郑文琦,李向清等,系列羟基卟啉化合物荧光性质的研究,高等学校化学学报, 2005, 26(1): 9-12
    [113] 郭喜明,师宇华,张忆华等,系列羟基苯基卟啉的合成及其荧光光谱研究,有机化学,2006, 26: 247-251
    [114] Gust D., Moore T. A. Intramolecular photoinduced electron-transfer reaction of porphyrins. The porphyrin handbook, 8: 2000, 153-190
    [115] 虞群,叶建平,寿涵森,激光闪光光解技术简介,化学通报,1989, 5: 51-53
    [116] 孙海虹,李全新,宋钦华等,凝聚相瞬态吸收光谱及动力学测量装置,量子电子学报,2004, 17: 180-184
    [117] Fukuzumi S., Endo Y., Kashiwagi Y. et al. Novel Photocatalytic Function of Porphyrin-Modified Gold Nanoclusters in Comparision with the Reference Porphyrin Compound. J. Phys. Chem. B, 2003, 107: 11979-11986
    [118] D’Souza F., Deviprasad G. R., Zandler M. E. et al. Electronic Interaction and Photoinduced Electron Transfer in Covalently Linked Porphyrin-C60(pyridine) Diads and Supramolecular Triads Formed by Self-Assembling the Diads and Zinc Porphyrin. J. Phys. Chem. B, 2002, 106: 4952-4962
    [119] Imahori H., Kashiwagi Y., Endo, Y. et al. Structure and Photophysical Properties of Porphyrin-Modified Metal Nanoclusters with Different Chain Lengths. Langmuir, 2004, 20: 73-81
    [120] Watson D. F., Marton A., Stux A. M. et al. Influence of Surface Protonation on the Sensitization Efficiency of Porphyrin-Derivatized TiO2. J. Phys. Chem. B, 2004, 108: 11680-11688
    [121] Rodriguez J., Kirmaier C., Holten D. Optical Properties of Metalloporphyrin Excited States. J. Am. Chem. Soc., 1989, 111: 6500-6506
    [122] 丁邦东,张积梅,朱文清等,一种简便测定有机电致发光材料能级的电化学方法,发光学报,2003, 24: 606-611
    [123] 陈兆斌,刘宇芳,含 1,3,4-噁二唑环系的电致发光材料的研究进展,化学通报, 2001, 64(6): 345-352
    [124] 陶敏莉,刘东志,周雪琴,萘基卟啉的合成与性能研究,化学工程,2005, 33 (5): 72-78
    [125] 陶敏莉,刘东志,周雪琴,Meso-四(对十六烷氧基萘基)卟啉的合成及光谱性能,化学工业与工程,2004, 21 (6): 410-413
    [126] Sirish M., Maiya B. G. Fluorescence studies on a supramolecular porphyrin bearing anthrance donor moieties. J. Photochem. Photobio. A: Chem., 1995, 85: 127-135
    [127] D’Souza F., Smith P. M., Zandler M. E. et al. Energy Transfer Followed by Electron Transfer in a Supramolecular Triad Composed of Boron Dipyrrin, Zinc Porphyrin, and Fullerence: A Model for the Photosynthetic Antenna-Reaction Center Complex. J. Am. Chem. Soc., 2004, 126: 7898-7907
    [128] 黄春辉,李富友,黄维,有机电致发光材料与器件导论[M],复旦大学出版社,上海,2005: 19-26
    [129] 王亦军,孟祥英,赵文元,联吡啶化合物合成方法研究,青岛大学学报,1995, 19: 25-28
    [130] 金晓敏,吴健,氨基酸卟啉衍生物的合成,浙江大学学报,2003, 30: 183-187
    [131] 许艳杰,陈立功,王东华等,9-芴甲氧羰基氨基保护试剂的合成与分析,精细化工,2004, 21: 352-355
    [132] Lapatsanis L., Milias G. Synthesis of N-2,2,2-(Trichloroethoxycarbonyl)- L-amino Acids and N-(9-Fluorenylmethoxycarbonyl)-L-amino Acids Involving Succinimidoxy Anion as Leaving Group in Amino Acid Protection. Synthesis, 1983, 671
    [133] Jeanne C., Donald R. J. Process for the solid phase synthesis of peptides which contain sulfated tyrosine. EP 0161468
    [134] Adamson J. G., Blaskovich M. A., Groenevalt H. et al. Simple and Convenienct Synthesis of tert-Buty Ethers of Fmoc-serine, Fmoc-threonine and Fmoc-tyrosine. J. Org. Chem., 1991, 56: 3447-3449
    [135] Carpino L. A., Han G. Y. The 9-Fluorenylmethoxycarbonyl Amino-Protecting Group. J. Org. Chem., 1972, 37: 3404-3409

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700