用户名: 密码: 验证码:
大黄酚脂质体对小鼠脑缺血再灌注损伤的神经保护作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑血管病是临床多发病、常见病之一,具有高发病率、高复发率、高致残率、高致死率的特点,并有年轻化趋势,影响患者的生活和工作,给社会和家庭带来沉重的医疗负担。在缺血性脑血管病的康复治疗中,恢复缺血区的血流供应是避免脑组织缺血损伤的首要条件,但与此同时带来的再灌注损伤也是目前医学研究热点。在脑缺血再灌注损伤发生发展过程中,有众多病理机制参与其中,如兴奋性氨基酸的过度释放、体内离子水平失衡、能量耗竭、炎症反应、氧化应激和细胞凋亡,这些因素相互作用最终导致脑组织的不可逆损害。因此,近年来化学药物如钙离子拮抗剂,自由基清除剂,以及神经保护剂等化学药物用于治疗脑缺血再灌注损伤。但是,用药后出现的一系列不良反应如抗药性、胃肠道反应,脑出血等超出了临床长期治疗所带来的治疗效果。近年来,临床应用和实验报道中药成分在治疗脑缺血再灌注损伤方面具有很大的优势。
     大黄Radixet rhizoma Rhei为蓼科植物药用大黄Rheum officinale Baill、掌叶大黄Rheum palmatum L、或唐古特大黄Rheum tanguticum Maxim的干燥根及根茎,主产于四川、青海、甘肃等地。大黄始载于《神农本草经》,苦寒,入脾、胃、大肠、心包、肝经,主攻积滞,可清湿热、泻火、凉血、祛瘀、解毒之功能。现代药理研究表明,大黄除具有泻热通肠、凉血解毒、逐瘀通经的作用外,尚具有清除自由基、降血脂、抗动脉硬化、抗癌、延缓衰老等药理作用。大黄的主要药效成分是蒽醌类化合物,大黄酚(Chrysophanol,Chry)属羟基蒽醌类,具有抗病毒、抗癌、抗炎、抗菌、降压和解痉等作用。
     本课题组前期实验证明大黄酚在体外可清除超氧自由基、DPPH自由基、羟基自由基,对离体大鼠肝、脑丙二醛(Malondiadehyde,MDA),超氧化物歧化酶(Superoxide dismutase,SOD)生成有明显的抑制作用;在小鼠脑缺血再灌注损伤后,大黄酚改善学习记忆功能并提高耐缺氧的能力,改善脑组织病理形态学损伤,结果表明大黄酚具有脑保护作用,但大黄酚对脑的保护作用机制尚不明确。
     大黄酚属于脂溶性化合物,在水中溶解度极小,见光易分解,性质极其不稳定,且对胃肠有刺激作用,且生物利用度不高,影响了药物的临床应用。因此,本研究首先从中药大黄中提取大黄酚粗品,再采用制备高效液相色谱法(PHPLC)进行单体分离,再完成大黄酚脂质体(Chrysophanolliposomes,Chr-lip)的制备,建立昆明种小鼠脑缺血再灌注模型,动态观察小鼠脑缺血再灌注后神经功能损伤评分,神经元超微结构,病理组织学改变以及SOD,谷胱甘肽过氧化物酶(Glutathione peroxidase,GSH-PX),一氧化氮合酶(Nitric oxide synthase,NOS)的活性,MDA,一氧化碳(Nitricoxide,NO)含量,以及Bax,Bcl-2,Cytc,caspase3等表达变化。确定缺血后与氧化损伤及凋亡的关系,并选用大黄酚脂质体进行干预,评价干预后神经功能缺损评分,以及大黄酚脂质体对氧化应激,自由基损伤,细胞凋亡信号通路的作用,初步探讨其在缺血再灌注损伤后的脑保护作用机制。本研究分三部分,现将各部分内容概述如下。
     第一部分大黄酚的提取纯化及大黄酚脂质体制备
     目的:建立从大黄中分离纯化大黄酚的PHPLC方法,考察大黄酚脂质体的处方和制备工艺进行研究,并评价其质量。
     方法:建立HPLC测定大黄酚的分析方法,采用Hypersil BDS C8(4.6×150mm,5μm),流动相为0.1%磷酸-甲醇溶液(15∶85),流速为1.0mL·min-1,柱温35℃,检测波长254nm;其次,建立从大黄提取液中分离纯化大黄酚的PHPLC法,采用ZORBAX SB-C18:(21.2mm×250mm,7μm),流动相:0.1%磷酸∶甲醇(15∶85),柱温:35℃,流速:20mL·min-1,检测波长:254nm,进样量:7mL,馏分收集:基于峰,阈值Min:2.2。制备所得大黄酚单体采用核磁共振(Nuclear Magnetic Resonance,NMR)进行结构鉴定,HPLC法检测其纯度;再次,对大黄酚脂质体的处方和制备工艺进行研究,采用薄膜-超声法制备大黄酚脂质体,并考察大黄酚脂质体的包封率、形态学、粒径分布、稳定性。
     结果:
     所得大黄酚单体经NMR结构鉴定为大黄酚,经HPLC法检测,其含量为98.9%。大黄酚脂质体包封率为88.5%。粒径较为均匀,相互之间无聚集现象,粒径均小于2μm,稳定性好。
     小结:
     建立PHPLC分离纯化大黄中大黄酚方法,该方法灵敏度高,操作简便,所得大黄酚单体含量为98.9%。大黄酚脂质体包封率为88.5%,可用于药理学研究。
     第二部分大黄酚脂质体对小鼠脑缺血再灌注损伤所致氧化应激的影响
     目的:动态观察小鼠脑缺血再灌注后神经功能损伤评分,神经元超微结构,病理组织学改变以及SOD,GSH-PX,NOS的活性,MDA,NO含量。研究大黄酚脂质体对脑缺血再灌注损伤所致氧化应激的作用,探讨大黄酚脂质体抗氧化作用的相关机制。
     方法:应用线栓法建立小鼠脑缺血再灌注模型,采用健康雄性昆明种小鼠,体质量24~26g。实验1:小鼠随机分为正常对照组、假手术组、脑缺血再灌注组(脑缺血1h后再灌注,按再灌注不同时间点分为3h、6h、12h、24h、48h、72h6个亚组。实验2:小鼠随机分为正常对照组、假手术组、脑缺血再灌注24h组、大黄酚脂质体(10.0,5.0,0.5mg·kg-1)三个剂量组。大黄酚脂质体组于脑缺血再灌注前3天连续腹腔给予大黄酚脂质体,每天一次。于规定时间检测小鼠神经功能损伤评分;采用HE法,透射电镜法观察小鼠脑组织病理组织学,神经元超微结构改变;采用试剂盒法检测SOD,GSH-PX,NOS的活性和MDA,NO含量。
     结果:
     1大黄酚脂质体减轻神经功能损伤正常对照组和假手术组,未见明显神经功能损害。脑缺血再灌注组神经功能评分显著高于假手术组(P<0.01);以24h神经功能评分最高。结果表明,脑缺血再灌注后可损伤小鼠神经功能。与脑缺血再灌注24h组比,大黄酚脂质体(10.0,5.0,0.5mg·kg-1)组神经功能缺陷评分均显著降低(P<0.05~P<0.01),以大黄酚脂质体(10.0mg·kg-1)组效果最为显著。结果表明,大黄酚脂质体减轻神经功能损伤。
     2大黄酚脂质体改善神经元超微结构正常对照组和假手术组神经元结构正常,可见丰富的细胞器。脑缺血再灌注3h可见神经元染色质密度增高,核膜皱缩、边集,线粒体轻微肿胀,可见空泡。脑缺血再灌注6h神经元染色质密度增高,核膜严重皱缩、边集,线粒体部分溶解,内质网部分溶解,细胞器数目减少,细胞质高度水肿,可见空泡。脑缺血再灌注12h可见核固缩,细胞核水肿,染色质边集,胞浆内有大量的空泡形成,有线粒体完全溶解;脑缺血再灌注24h可见细胞器明显减少,线粒体结构空泡状,外膜隐约可见,可见凋亡小体,粗面内质网脱颗粒;脑缺血再灌注48h神经元核固缩,核膜内陷,核染色质成团块状边集于核膜下,细胞质高度水肿,细胞器数目少,线粒体不同程度脱空,可见溶酶体。脑缺血再灌注72h组可见神经元核固缩,核膜溶解,核染色质成团块状边集于核膜下,线粒体不同程度断裂,粗面内质网脱颗粒,细胞器少。结果表明,脑缺血再灌注损伤小鼠神经元超微结构。大黄酚脂质体(10.0,5.0mg·kg-1)组神经元染色体比较均匀,核膜清楚,线粒体数目有所减少,粗面内质网有轻度肿胀,核糖体数目有一定的减少;大黄酚脂质体(0.5mg·kg-1)组对神经元超微结构也有改善作用。结果表明,大黄酚脂质体改善神经元超微结构。
     3大黄酚脂质体改善病理组织学损害正常对照组和假手术组未见明显病理损害改变。脑缺血再灌注组3h脑缺血半球组织细胞轻度水肿,大小不等的空泡在细胞间隙出现,神经元及胶质细胞固缩,无明显细胞坏死;脑缺血再灌注6h-12h之间时,胞质明显水肿等上述症状逐渐加重;脑缺血再灌注24h-48h时神经元核固缩、浓染,染色质浓缩集聚于核周围,呈凋亡前或凋亡改变,神经元结构明显破裂;脑缺血再灌注72h时神经元水肿逐渐减轻,部分神经元周围出现水肿。结果表明,脑缺血再灌注可致小鼠脑病理组织学改变。大黄酚脂质体治疗组明显改善脑缺血再灌注损伤后的病理组织学损伤。
     4大黄酚脂质体可增强抗氧化能力脑缺血再灌注3h MDA含量升高,12h后MDA含量达到最大,并持续到24h,48h-72h后有所下降,与假手术组比,脑缺血再灌注各时间点MDA含量增加有显著性差异(P<0.01)。脑缺血再灌注3h SOD活性明显降低,并于12h后SOD活性达到最低,24h-72h后有所增加,与假手术组比,脑缺血再灌注各时间点SOD活性降低有显著性差异(P<0.01)。脑缺血再灌注3h GSH-PX活性明显降低,并于24h后GSH-PX活性达到最低,48h-72h后有所增加;与假手术组比,脑缺血再灌注各时间点GSH-PX活性降低有显著性差异(P<0.01)。脑缺血再灌注3h NO含量升高,并于6h后NO含量达到最大,并持续到24h,48h-72h后有所下降;与假手术组比,脑缺血再灌注各时间点NO含量增加有显著性差异(P<0.01)。脑缺血再灌注3h NOS活性明显增加,并于12h后NOS活性达到最高,并持续到24h,48h-72h后有所减少;与假手术组比,脑缺血再灌注组NOS活性增加有显著性差异(P<0.01)。结果表明,脑缺血再灌注后,小鼠体内抗氧化能力减弱。与脑缺血再灌注24h组比,大黄酚脂质体(10.0,5.0,0.5mg·kg-1)组显著降低MDA含量(P<0.05~P<0.01),NO含量(P<0.05~P<0.01),NOS活性(P<0.01,P<0.05,P>0.05),显著增强SOD活性(P<0.01),GSH-PX活性(P<0.05~P<0.01)。以大黄酚脂质体(10.0mg·kg-1)组效果最为显著。结果显示,大黄酚脂质体可增强抗氧化能力。
     小结:
     脑缺血再灌注后,神经功能评分,病理组织学损伤,神经元超微结构损伤,GSH-PX,SOD,NOS的活性,MDA,NO含量呈动态改变,并且脑缺血再灌注12h~24h是脑缺血再灌注损伤过程的重要时间转折点。大黄酚脂质体能改善小鼠脑缺血再灌注损伤后神经功能评分,病理组织学损伤,神经元超微结构损伤,提高脑组织中SOD,GSH-PX活性,抑制NOS的活性,降低脑组织中MDA,NO的含量。因此,我们推测大黄酚脂质体可能通过抗氧化应激实现其对小鼠脑缺血再灌注损伤的神经保护作用。
     第三部分大黄酚脂质体对小鼠脑缺血再灌注损伤所致细胞凋亡的影响
     目的:动态观察小鼠脑缺血再灌注后神经元凋亡及Bax,Bcl-2,Cytc,caspase3等动态表达变化。研究大黄酚脂质体对脑缺血再灌注损伤小鼠的抗凋亡作用,探讨大黄酚脂质体抗凋亡作用的相关机制。
     方法:应用线栓法建立小鼠脑缺血再灌注模型,采用健康雄性昆明种小鼠,体质量24~26g。实验1:小鼠随机分为正常对照组、假手术组、脑缺血再灌注组(脑缺血1h后再灌注,按再灌注不同时间点分为3h、6h、12h、24h、48h、72h6个亚组。实验2:小鼠随机分为正常对照组、假手术组、脑缺血再灌注24h组、大黄酚脂质体(10.0,5.0,0.5mg·kg-1)三个剂量组。大黄酚脂质体组于脑缺血再灌注前3天连续腹腔给予大黄酚脂质体,每天一次。于规定时间采用Hoechst33258染色检测神经元凋亡;免疫组织化学法、western blot法、实时荧光定量PCR法分别检测Bax,Bcl-2,Cytc,caspase3阳性细胞数、蛋白、mRNA水平表达。
     结果:
     1大黄酚脂质体减少神经元凋亡数目结果显示,正常对照组和假手术组小鼠脑组织偶见神经元凋亡,脑缺血再灌注3h可有少量的染色体深染、核浓缩的凋亡细胞;随着再灌注时间的延长,神经元细胞核缩小,染色质断裂凝集显著增多,荧光强度逐渐增加。而在48h后核深染、核浓缩,凋亡神经元数目有所减少。与假手术组比,脑缺血再灌注各组神经元凋亡数目有显著性差异(P<0.05)。结果表明,脑缺血再灌注可致小鼠脑神经元凋亡。大黄酚脂质体(10.0,5.0,0.5mg·kg-1)组小鼠脑组织部分神经元染色体深染、核浓缩,神经元凋亡数目较脑缺血再灌注24h组均显著减少(P<0.05~P<0.01),以大黄酚脂质体(10.0mg·kg-1)组效果最为显著。结果显示,大黄酚脂质体可显著减少神经元凋亡数目。
     2大黄酚脂质体对细胞凋亡相关阳性细胞数变化的影响脑缺血再灌注组时Bax,Cytc,caspase3阳性细胞呈逐渐增多的趋势,于24h时达最高峰,再灌注48h、72h时有所下降。与假手术组比,脑缺血再灌注组Bax,Cytc,caspase3阳性细胞数目明显增多,具有显著性差异(P<0.01)。脑缺血再灌注组Bcl-2阳性细胞呈逐渐减少的趋势,24h时达低谷,再灌注48h-72h时有所上升。与假手术组比,脑缺血再灌注各组Bcl-2阳性细胞数目减少具有显著性差异(P<0.01)。结果表明,脑缺血再灌注后Bax,Cytc,caspase3阳性细胞数增加,Bcl-2阳性细胞数降低。与脑缺血再灌注24h组比,大黄酚脂质体(10.0,5.0,0.5mg·kg-1)组中Bax、Cytc、caspase3阳性细胞数均减少(P<0.05~P<0.01),Bcl-2阳性细胞数提高(P<0.05~P<0.01);以大黄酚脂质体(10.0mg·kg-1)组效果最为显著。
     3大黄酚脂质体细胞凋亡相关蛋白表达变化的影响脑缺血再灌注组时Bax,Cytc,caspase3蛋白表达呈逐渐增多的趋势,于24h时达最高峰,再灌注48h、72h时有所下降。与假手术组比,脑缺血再灌注组Bax,Cytc,caspase3蛋白明显上调(P<0.01);脑缺血再灌注组Bcl-2蛋白表达呈逐渐减少的趋势,24h时达低谷,再灌注48h-72h时有所上升,与假手术组比,Bcl-2蛋白表达下调(P<0.05~P<0.01)。结果表明,脑缺血再灌注增加Bax,Cytc,caspase3蛋白表达,降低Bcl-2蛋白表达。与脑缺血再灌注24h组比,大黄酚脂质体(10.0,5.0mg·kg-1)组Bax,Cytc,caspase3蛋白表达均减少(P<0.01),Bcl-2蛋白表达均提高(P<0.01);大黄酚脂质体(0.5mg·kg-1)组Bax,Bcl-2,Cytc,caspase3蛋白表达水平也有显著性差异(P<0.05~P<0.01)
     4大黄酚脂质体对细胞凋亡相关mRNA表达变化结果显示,与假手术组比,脑缺血再灌注各组Bax,Cytc,caspase3mRNA水平明显上调(P<0.05~P<0.01),于脑缺血再灌注24h时达到高峰;Bcl-2mRNA水平明显下调(P<0.01),于脑缺血再灌注24h时达到低谷。结果表明,脑缺血再灌注后可上调Bax,Cytc,caspase3mRNA表达,下调Bcl-2mRNA表达。与脑缺血再灌注24h组比,大黄酚脂质体(10.0,5.0,0.5mg·kg-1)组下调Bax,Cytc,caspase3mRNA水平(P<0.05~P<0.01),上调Bcl-2mRNA水平(P<0.01)。
     小结:
     脑缺血再灌注后神经元凋亡数目,Bax,Bcl-2,Cytc,caspase3表达呈动态改变,且脑缺血再灌注24h是脑缺血再灌注损伤过程的重要时间转折点。大黄酚脂质体降低神经元凋亡数目,下调Bax,Cytc,caspase3,上调Bcl-2表达。因此,我们推测大黄酚脂质体可能通过抗凋亡实现其对小鼠脑缺血再灌注损伤的神经保护作用。
Cerebrovascular disease is becoming a prominent public health concern.Due to high rates of morbidity, disability and mortality, this type of diseasenot only has a strong impact on the quality of life, but also accompanied byheavy economic burdens for the patients’ families and society in general.Currently, treatment of this disease is accomplished by surgically removingblocked blood vessels in order to improve the blood supply in and around thelesion. Once the blood supply improves, this area is extremely prone to getsevere cerebral reperfusion injury. There are several pathological mechanismsin the process of cerebral ischemic such as excessive release of excitatoryamino acids, loss of ionic homeostasis, energy failure, inflammatory response,increased oxidative stress and apoptosis. These mechanisms eventually causeirreversible damage of the brain tissue. So recent years, chemical drugs suchas calcium ion antagonist and radical scavengers as well as neuroprotectiveagents have been used for the treatment of CIR injury. However, side effectssuch as resistance to drugs, cerebral hemorrhage and gastrointestinalirritationmay exceed the clinical benefits for long-term therapy. Fortunately,clinical applications and experimental reports of traditional Chinese medicinesagainst CIR injury have been ascendant.
     Radixet rhizoma Rhei, dried roots and rhizome of Rheum officinale Baill,Rheum palmatum L, and Rheum tanguticum Maxim has been used as animportant traditional Chinese medicine in Chinese folk for a long history,which widely grows in Sichuan, Qinghai, and Gansu and so on. Sheng Nong'sherbal classic\said that it was “bitter in taste, cold-natured, into the spleen,stomach, large intestine, and pericardium, liver” and had the effects ofanti-indigestion, anti-fever, discharging fire, cooling blood, removing stasisand detoxicate. Modern pharmacological studies show that it could be used for purging heat flux of intestinal, removing pattogenic heat from the blood andtoxic material from the body, decreasing stagnated. Besides, it could have theeffects of anti-radical, anti-hyperlipidemia, anti-arteriosclerosis, and anti-cancer, anti-aging. The main medicinal composition of Rhubarb is anthraqui-none compound, which has the utility monomer Chry that belonging toanthraquinone compound. Chry have ability of anti-cancer, anti-bacterial,anti-inflammatory, depressurization, and spasmolysis.
     Chry can scavenge O2-, DPPH free radical in vitro, and inhibit lipidperoxidation in liver and brain tissue of rat. Chry has also been shown toimprove learning and memory function and to improve tolerance ability ofhypoxia CIR injury in mice. However, because of the lack of researchevidence in level of molecule, whether Chry protects against CIR by blockingapoptosis pathway remains unknown.
     However, Chry is indissolvable in water, irritates the stomach, has lowbioavailability, and its physical and chemical properties are unstable. Thesedisadvantages restrict applications of Chry in the clinical setting. In this study,we extracted crude product of Chry from Rhubarb, then separated monomerby PHPLC, finally completed the preparation of Chr-lip; kunming mice wereinduced into CIR by transient middle cerebral artery occlusion, neurologicaldeficits, neuronal ultrastructure, histopathological changes, the activity ofSOD, GSH-PX, NOS, the content of MDA, NO, expressions of Bax, Bcl-2,Cytc, caspase3were examined dynamic observed, then the relation wereconfirmed between oxidative damage, apoptosis with cerebral ischemia.Furthermore, Male mice were intraperitoneally injected with Chr-lip for threesuccessive days, and then subjected to brain ischemia induced by MCAO.After reperfusion24h, neurological deficits, neuronal ultrastructure,histopathological changes, oxidative stress-related biochemical parameters,neuronal apoptosis, and apoptosis-related proteins were assessed. The presentstudy was designed to evaluate the neuroprotective effects of Chr-lip, as wellas the underlying mechanisms by focusing on oxidative stress and neuronalapoptosis. The study was divided into three part list as below.
     PartⅠ Extraction of Chrysophanol and preparation of Chrysophanolliposomes
     Objective: PHPLC method was established for purifying the substancesof Chry from Rhubarb, the prescription and preparation technology of Chr-lipwas investigated; the quality of Chr-lip was evaluated.
     Methods: HPLC method was developed for determineation of Chry. Thecolumn was a Hypersil BDS C8(4.6×150mm,5μm) with a mixture of0.1%phosphoric acid solution-methanol-acetonitrile (15:85) as the mobile phase, ata flow rate of1.0mL·min-1. The column temperature was at35℃. Thedetection wavelength was254nm. Second, PHPLC method was establishedfor purifying the substances of Chry. The column was ZORBAX SB-C18:(21.2mm×250mm,7μm) with a mixture of0.1%phosphoric acid solution-methanol-acetonitrile (15:85) as the mobile phase, at a flow rate of20mL·min-1. The column temperature was at35℃. The detection wavelengthwas254nm. Fraction was collected: based on the peak, the threshold beingMin:2.2. Both NMR and HPLC are used for the structure and quantitativeanalysis of Chry. The prescription and preparation technology of Chr-lip wasinvestigated; film-ultrasonic dispersion method was used to prepare Chr-lip;the encapsulation efficiency, morphology, size distribution and stability qualityof Chr-lip was evaluated.
     Results: NMR analysis showed that the structure was Chry. HPLCanalysis showed that the purity of Chry was98.9%, the entrapment efficiencyof Chr-lip was88.5%. The grain diameter was relatively homogeneous, therewas no gathered phenomenon, and the grain diameter was less than2microns.
     Conclusions: PHPLC method was high sensitivity, easy operated forpurifying the substances of Chry. The purity of Chry was98.9%; theentrapment efficiency of Chr-lip was88.5%. It can be used for pharmacolo-gical study.
     PartⅡ Effects of Chrysophanol liposome on cereral ischemia-reperfu-sion injury induced oxidative stress in mice
     Objective: Neurological deficits, neuronal ultrastructure, histopatholo- gical changes, the activity of SOD, GSH-PX, NOS, the content of MDA, NO,were dynamic observed, then the relation were confirmed between oxidativedamage with CIR injury. We estimated the anti-oxidative of Chr-lip on CIRinjury in mice and explore its possible mechanisms.
     Methods: Kunming mice,24~26g weight, were subjected to middlecerebral artery occlusion. Experiment1: Kunming mice were randomlydivided into the control group, the sham group, the model group. The modelgroup were applied and reperfused after60min, and then the model groupswere divided into6subgroups according to different reperfusion time points,3h,6h,12h,24h,48h. Experiment2: Kunming male mice were randomlydivided into the control group, sham group, model group (reperfusion24h),and Chr-lip treatment (10.0,5.0,0.5mg·kg-1) groups. Chr-lip treatment groupsintraperitoneally injected with Chi-lip (10.0,5.0,0.5mg·kg-1) for threesuccessive days, then subjected to brain ischemia induced by MCAO.According to the different time points, neurological deficits of each mousewere determined; changes of neuronal ultrastructure, histopathological weremeasured by transmission electron microscopy, HE stainning; then the activityof SOD, GSH-PX, NOS, the content of MDA, NO were determined.
     Results:
     1Chr-lip alleviated neurological deficit: in the control and sham group,there were no obvious neurological functions in mice. In model groups theneurological scores remarkably increased comparing with sham group(P<0.01), the highest neurological scores of group was at reperfusion24h.The results showed that neurological deficit was induced by CIR in mice.After CIR24h, neurological deficit score of the model group wassignificantly higher than that of the sham group (P<0.01); whereas those ofChr-lip-treated groups (10.0,5.0,0.5mg·kg-1) were significantly lower thanthe value in the model group (P<0.05~P<0.01).
     2Chr-lip improved neuronal ultrastructure injury: in the control and shamgroup, neuron structure was regular, abundant organelles could be seen. Afterischemia reperfusion3h, shrunken neucleus and aggregated chromatin toward the nuclea membrane were observed. Obviously, slightly swollen mitocho-ndrion and vacuolus were observed. After ischemia reperfusion6h, neuronnuclear chromatin density increased, the nuclear membrane have seriousshrinkage, side set, partly dissolved mitochondria, endoplasmic reticulumpartly dissolved, cytoplasm height edema, vacuoles were observed, thenumbers of organelles reduced. After ischemia reperfusion12h, karyopy-knosis, swollen nucleus, edge chromatin, a large number of vacuolation incytoplasm were observed, mitochondria had completely dissolved. Afterischemia reperfusion24h, organelles were significantly decreased, vacuolatedmitochondria structure, disappeared outer, apoptosis body, and roughendoplasmic reticulum degranulation were observed. After ischemia reperfu-sion48h, karyopyknosis, nuclear membrane invagination, chromatin clumpsblock edge set under nuclear membrane, height edema cytoplasm, less numberof organelles, different degree of empty mitochondria, and lysosome wereseen. After ischemia reperfusion72h, karyopyknosis, nuclear membranedissolved, chromatin clumps block edge set under nuclear membrane, heightedema cytoplasm, different level of mitochondrial breakage, rough endoplas-mic reticulum degranulation, less number of organelles were seen. The resultsshowed neuronal ultrastructure was changed by CIR in mice. In the treatmentgroups, the chromosome distribution was relatively uniform, and the nuclearmembrane was clear. The mitochondria were reduced to some extent, butswelling of the rough endoplasmic reticulum was mild.
     3Chr-lip alleviated histopathological changes: the histopathologicalexamination revealed that there was no obvious damage in the control andsham group. After ischemia reperfusion3h, mild edema in infarcts ofsurrounding brain tissue, mott cell in intercellular space with a small amountof inflammatory cell infiltration, pyknosis degeneration of neurons and glialcells were seen; there was no clear cell necrosis; with the reperfusion6h-12h,the above change gradually aggravated; with the reperfusion24h-48h,karyopyknosis, thick dyeing, condensed chromatin gathered around thenucleus with the change before the apoptosis or apoptosis, significant damage of neuron structure were seen; after ischemia reperfusion72h, cell edemagradually alleviated, edema surrounding part of the nerve cells, inflammatorycell infiltration gradually reduced, gliocyte proliferation were observed. Theresults showed histopathological were changed by CIR in mice. Chr-lipmarkedly alleviated histopathological changes induced by CIR.
     4Chr-lip enhanceds antioxidant ability: the content of MDA reached apeak by12h, and was maintaining from24to48hours. Compared with shamgroup, the content of MDA significantly increased at different time points ofreperfusion (P<0.01). The activity of SOD reached a nadir by12h, andincreased from24to72hours. Compared with sham group, the activity ofSOD significantly decreased at different time points of reperfusion (P<0.01).The activity of GSH-PX reached a nadir by24h, and increased from48to72hours. Compared with sham group, the activity of GSH-PX significantlydecreased at different time points of reperfusion (P<0.01). The content of NOreached a peak by6h, and maintained from12to24hours. Compared withsham group, the content of NO significantly increased at different time pointsof reperfusion (P<0.01). The activity of NOS reached a peak by12h, andincreased from48to72hours. Compared with sham group, the activity ofNOS significantly decreased at different time points of reperfusion (P<0.01).The results showed that the antioxidant ability was decreased induced by CIR.Compared with model group, treatment with Chr-lip (10.0,5.0,0.5mg·kg-1)significantly reduced the content of MDA (P<0.05~P<0.01), NO (P<0.05~P<0.01), the activity of NOS (P<0.01, P<0.05, P>0.05), enhanced theactivity of SOD (P<0.01), GSH-PX (P<0.05~P<0.01).
     Conclusion: Neurological deficits, neuronal ultrastructure injury,pathologic histology injury, the activity of SOD, GSH-PX, NOS, the contentof MDA, NO, were dynamic changed, as well as cerebral ischemia reperfusion12to24hours was an important time turning point in the process of cerebralischemic injury. We demonstrated that Chr-lip protected against CIR injury byimproving neurological, neuronal ultrastructure and histological deficits, andthese beneficial effects were associated with inhibition of oxidative stress, such as elevation of SOD and GSH-PX activities, reduction of the activity ofNOS, the content of MDA, NO. So the protective mechanisms of Chr-lipagainst CIR injury might be involved to its anti-oxidant activities.
     PartⅢ Effects of Chrysophanol liposome on cereral ischemia-reperfus-ion injury induced apoptosis in mice
     Objective: neuronal apoptosis, the expression of Bax, Bcl-2, Cytc,caspase3, were dynamic observed, and then the relation was confirmedbetween oxidative damage with CIR injury. We estimated the apoptosis ofChr-lip on CIR injury in mice and explore its possible mechanisms.
     Methods: Kunming mice,24~26g weight, were subjected to middlecerebral artery occlusion. Experiment1: Kunming mice were randomlydivided into the control group, the sham group, the model group. The modelgroup were applied and reperfused after60min, and then the model groupswere divided into6subgroups according to different reperfusion time points,3h,6h,12h,24h,48h. Experiment2: Kunming male mice were randomlydivided into the control group, sham group, model group (reperfusion24h),and Chr-lip treatment (10.0,5.0,0.5mg·kg-1) groups. Chr-lip treatment groupsintraperitoneally injected with Chr-lip (10.0,5.0,0.5mg·kg-1) for threesuccessive days, then subjected to brain ischemia induced by MCAO.According to the different time points, neuronal apoptosis were detected byHoechst33258stainning; Immunohistochemistry was used for measuring thepositive cells of Bax, Bcl-2, Cytc, caspase3. The protein and mRNAexpression of Bax, Bcl-2, Cytc and caspase3were detected by western blotand real-time quantitative PCR.
     Results:
     1Chr-lip attenuated the neuronal apoptosis: neuronal injuries in theischemic hemispheres were analyzed by Hoechst33258staining. Apoptoticcells were sparsely detected in the control and sham group; after ischemiareperfusion3h, there was a small amount apoptotic cell with chromosomehyperchromatic and pyknosis; with the reperfusion extend, the number ofapoptotic cell with shrink and chromatin agglutination increased; however, after ischemia reperfusion48h, the number of apoptotic cell with nuclearhyperchromatism, pyknosis decreased. Compared with sham group, there wasa significant difference in the number of neurons apoptosis between modelgroups (P<0.05). Neuronal injuries in the ischemic hemispheres were analyzedby Hoechst33258staining. The treatment with Chr-lip (10.0,5.0,0.5mg·kg-1)effectively attenuated the neuronal apoptosis caused by CIR injury, asindicated by significant reduction of apoptotic rate (P<0.05~P<0.01).
     2Chr-lip effected on the positive cell of apoptosis-related: the number ofBax, Cytc, caspase3positive cell increased gradually, reached a peak atreperfusion24h, decreased from reperfusion48to72hours; compared withsham group, the number of Bax, Cytc, caspase3positive cell obviouslyincreased at different time points of reperfusion (P<0.01). The number ofBcl-2positive cell decreased gradually from reperfusion3to24hours, thenumber of Bcl-2positive cell reached a nadir at reperfusion24h, increasedfrom reperfusion48to72hours; compared with sham group, the number ofBcl-2positive cell obviously decreased at different time points of reperfusion(P<0.01). The results showed that the number of Bax, Cytc, and caspase3positive cell increased, Bcl-2positive cell obviously decreased after CIR.Compared with model group, treatment with Chr-lip (10.0,5.0,0.5mg·kg-1)significantly reduced the number of Bax positive cell, Cytc positive cell,caspase3positive cell (P<0.05~P<0.01), increased the number of Bcl-2positive cell (P<0.05~P<0.01).
     3Chr-lip effected on the proteins of apoptosis-related: the proteins ofBax, Cytc, caspase3increased gradually, reached a peak at reperfusion24h,decreased from reperfusion48to72hours; compared with sham group, theprotein of Bax, Cytc, caspase3levels was obviously up-regulated (P<0.01);the protein of Bcl-2decreased gradually, reached a nadir at reperfusion24h,increased from reperfusion48to72hours; the protein of Bcl-2levels wasobviously down-regulated (P<0.05~P<0.01). The results showed that theproteins of Bax, Cytc, and caspase3increased, Bcl-2obviously decreased afterCIR. Compared with model group, treatment with Chr-lip (10.0,5.0mg·kg-1) significantly reduced the protein of Bax, Cytc, and caspase3(P<0.01),increased the protein of Bcl-2(P<0.01). Treatment with Chr-lip (0.5mg·kg-1)significantly reduced the protein of Bax, Bcl-2, Cytc, caspase3showedsignificant differences (P<0.05~P<0.01).
     4Chr-lip effected on the mRNA expression of apoptosis-related:compared with sham group, the mRNA levels of Bax, Cytc, caspase3wasobviously up-regulated (P<0.05~P<0.01), reached a peak at reperfusion24h;the mRNA levels of Bcl-2was obviously down-regulated (P<0.05~P<0.01),reached a nadir at reperfusion24h. The results showed that the mRNA levelsof Bax, Cytc, and caspase3increased, Bcl-2obviously decreased after CIR.Compared with model group, treatment with Chr-lip (10.0,5.0,0.5mg·kg-1)significantly reduced the mRNA expression of Bax, Cytc, and caspase3(P<0.05~P<0.01), increased the mRNA expression of Bcl-2(P<0.01).
     Conclusion: Neuronal apoptosis, the expression of Bax, Bcl-2, Cytc andcaspase3, were dynamic changed, as well as cerebral ischemia reperfusion24h was an important time turning point in the process of cerebral ischemicinjury. We demonstrated that Chr-lip protected against CIR injury by reducingneuronal apoptosis, promoting of Bcl-2expression, inhibiting of Baxexpression and Cytc release, and suppressing of caspase3activation. So theprotective mechanisms of Chr-lip against CIR injury might be involved to itsanti-apoptotic.
引文
1Perju-Dumbrava L, Muntean ML and Muresanu DF. Cerebrovascu-larProfile Assessment in Parkinson's Disease Patients. CNS Neurol DisordDrug Targets,2013
    2Miralbell J, Lopez-Cancio E, Lopez-Oloriz J, et al. Cognitive patterns inrelation to biomarkers of cerebrovascular disease and vascular risk factors.Cerebrovasc Dis,2013,36(2): p.98-105
    3Chen XM, Chen HS, Xu MJ, et al. Targeting reactive nitrogen species: apromising therapeutic strategy for cerebral ischemia-reperfusion injury.Acta Pharmacol Sin,2013,34(1): p.67-77
    4Wang L, Huang Y, Wu J, et al. Effect of Buyang Huanwu decoction onamino acid content in cerebrospinal fluid of rats during ischemic/reperfusion injury. J Pharm Biomed Anal,2013,86: p.143-50
    5Shah K and Abbruscato T. The Role of Blood-Brain Barrier Transportersin Pathophysiology and Pharmacotherapy of Stroke. Curr Pharm Des,2013
    6Ten VS and Starkov A. Hypoxic-ischemic injury in the developing brain:the role of reactive oxygen species originating in mitochondria. NeurolRes Int,2012,2012: p.542976
    7Liu Y, Nakamura T, Toyoshima T, et al. Ameliorative effects ofyokukansan on behavioral deficits in a gerbil model of global cerebralischemia. Brain Res,2014,1543: p.300-7
    8Yan Y, Min Y, Min H, et al. n-Butanol soluble fraction of the water extractof Chinese toon fruit ameliorated focal brain ischemic insult in rats viainhibition of oxidative stress and inflammation. J Ethnopharmacol,2014,151(1): p.176-82
    9Guan J, Li H, Lv T, et al. Bone morphogenetic protein-7(BMP-7)mediates ischemic preconditioning-induced ischemic tolerance viaattenuating apoptosis in rat brain. Biochem Biophys Res Commun,2013,441(3): p.560-6
    10Chen L, Zhao Y, Zhang T, et al. Protective effect of Sheng-Nao-Kangdecoction on focal cerebral ischemia-reperfusion injury in rats. JEthnopharmacol,2014,151(1): p.228-36
    11He Y, Wan H, Du Y, et al. Protective effect of Danhong injection oncerebral ischemia-reperfusion injury in rats. J Ethnopharmacol,2012,144(2): p.387-94
    12Qi J, Hong ZY, Xin H, et al. Neuroprotective effects of leonurine onischemia/reperfusion-induced mitochondrial dysfunctions in rat cerebralcortex. Biol Pharm Bull,2010,33(12): p.1958-64
    13Zhao J, Yu S, Zheng W, et al. Curcumin improves outcomes and attenuatesfocal cerebral ischemic injury via antiapoptotic mechan-isms in rats.Neurochem Res,2010,35(3): p.374-9
    14Ngoc TM, Minh PT, Hung TM, et al. Lipoxygenase inhibitory constituentsfrom rhubarb. Arch Pharm Res,2008,31(5): p.598-605
    15Gu J, Zhang X, Fei Z, et al. Rhubarb extracts in treating complicat-ions ofsevere cerebral injury. Chin Med J (Engl),2000,113(6): p.529-31
    16Ding HQ and Wang L. Effect on the CRP and HCY levels byGuize-Dahong soup in patients with arteriosclerosis. Shaanxi Journal ofTraditional Chinese Medicine,2012(05): p.560-561
    17Huang Q, Lu G, Shen HM, et al. Anti-cancer properties of anthra-quinones from rhubarb. Med Res Rev,2007,27(5): p.609-30
    18Silveira JP, Seito LN, Eberlin S, et al. Photoprotective and antioxidanteffects of Rhubarb: inhibitory action on tyrosinase and tyrosine kinaseactivities and TNF-alpha, IL-1alpha and alpha-MSH production in humanmelanocytes. BMC Complement Altern Med,2013,13: p.49
    19Lu CC, Yang JS, Huang AC, et al. Chrysophanol induces necrosis throughthe production of ROS and alteration of ATP levels in J5human livercancer cells. Mol Nutr Food Res,2010,54(7): p.967-76
    20Wiart C. A note on the relevance of chrysophanol to food and anticancerresearch. Mol Nutr Food Res,2012,56(6): p.843
    21Rim HK, Moon PD, Choi IH, et al. SoSoSo or its active ingredientchrysophanol regulates production of inflammatory cytokines&adipokinein both macrophages&adipocytes. Indian J Med Res,2013,137(1): p.142-50
    22Kim DH, Park EK, Bae EA, et al. Metabolism of rhaponticin andchrysophanol8-o-beta-D-glucopyranoside from the rhizome of rheumundulatum by human intestinal bacteria and their anti-allergic actions. BiolPharm Bull,2000,23(7): p.830-3
    23Lee MS and Sohn CB. Anti-diabetic properties of chrysophanol and itsglucoside from rhubarb rhizome. Biol Pharm Bull,2008,31(11): p.2154-7
    24李淑娟,沈丽霞,张丹参.大黄酚对小鼠学习记忆的影响.张家口医学院学报,2002(05): p.25-27
    25李淑娟,沈丽霞,张丹参,等.大黄酚对小鼠缺氧及耐力的影响.张家口医学院学报,2002(06): p.13-15
    26王树,薛贵平,张丹参.大黄酚对大鼠脑过氧化脂质含量的影响.张家口医学院学报,2000(03): p.4
    27王树,张力,张丹参,等.大黄酚对脑缺血再灌注小鼠探索功能的影响.时珍国医国药,2007(12): p.3011-3013
    28王树,张丹参,薛贵平,等.大黄酚对脑缺血再灌注小鼠脑组织H2O2和CAT的影响.中药药理与临床,2008(04): p.22-24
    29王树,张丹参,张力,等.大黄酚对脑缺血再灌注小鼠记忆功能的保护作用.中国老年学杂志,2009(15): p.1934-1936
    30武海霞,张丹参,张力,等.大黄酚对β-淀粉样蛋白25~35致小鼠学习记忆障碍的改善作用.中国老年学杂志,2009(16): p.2052-2054
    31董晓华,张丹参.大黄酚对Aβ(25-35)所致AD大鼠学习记忆及LTP的影响.中国药理学通报,2009(05): p.682-685
    32董晓华,张力,张丹参,等.大黄酚对Aβ(25-35)致阿尔茨海默氏病模型小鼠学习记忆障碍及脑内谷氨酸含量的影响.河北北方学院学报(医学版),2010(02): p.1-3
    33Zhang J, Xiao Y, Feng J, et al. Selectively preparative purification ofaristolochic acids and aristololactams from Aristolochia plants. J PharmBiomed Anal,2010,52(4): p.446-51
    34Lo TC, Nian HC, Chiu KH, et al. Rapid and efficient purification ofchrysophanol in Rheum Palmatum LINN by supercritical fluid extractioncoupled with preparative liquid chromatography in tandem. J ChromatogrB Analyt Technol Biomed Life Sci,2012,893-894: p.101-6
    35Berezov TT, Iaglova NV, Dmitrieva TB, et al. Liposome-oriented transportof therapeutic drugs. Vestn Ross Akad Med Nauk,2004(5): p.42-7
    36Lei L, Song ZH, Tu PF, et al. Separation of echinacoside by reversed-phase preparative high performance liquid chromatogr-aphy. Se Pu,2001,19(3): p.200-2
    37Mozafari MR. Liposomes: an overview of manufacturing techniq-ues.Cell Mol Biol Lett,2005,10(4): p.711-9
    38Zhao X, Liu J, Hu Y, et al. Optimization on condition of glycyrrh-etinicacid liposome by RSM and the research of its immunological activity. Int JBiol Macromol,2012,51(3): p.299-304
    39Eid KA and Azzazy HM. Sustained broad-spectrum antibacterial effects ofnanoliposomes loaded with silver nanoparticles. Nanomedicine (Lond),2013
    40Ma H, You J and Liu Y. Cloud-point extraction combined with HPLC fordetermination of larotaxel in rat plasma: a pharmaco-kinetic study ofliposome formulation. J Sep Sci,2012,35(12): p.1539-46
    41Tian JM, Rao N, Xin XL, et al. Separation and Purification of chrysop-hanol and physcion by PHPLC. Chinese Traditional Patent Medicine,2013(01): p.190-192
    42Li JS. Investigation of dissolvability of danhuang gel extract. ChineseJournal of Experimental Traditional Medical Formulae,2012,21(18)
    43Wang RL, Wang LH, Li WS, et al. Preparation and quality evalu-ation ofchrysophanol liposomes. Chinese Traditional and Herbal Drugs,2011(06):p.1119-1121
    44Yu Y, Desjardins C, Saxton P, et al. Characterization of the pharma-cokinetics of a liposomal formulation of eribulin mesylate (E7389) in mice.Int J Pharm,2013,443(1-2): p.9-16
    45Liao HW, Li RZ and Chen FY. Study on method of extraction, isolationand purif ication of chrysophanol in Rheum Palmatum L. China Pharmacy,2006(12): p.956-958
    46Murata A, Engelhardt UH, Fleischmann P, et al. Purification and gaschromatography-combustion-isotope ratio mass spectrometry of aromacompounds from green tea products and comparison to bulk analysis. JAgric Food Chem,2013,61(47): p.11321-5
    47Kawamura K, Yamasaki T, Kumata K, et al. Binding potential of(E)-[(11)C]ABP688to metabotropic glutamate receptor subtype5isdecreased by the inclusion of its (11)C-labelled Z-isomer. Nucl Med Biol,2014,41(1): p.17-23
    48Podust VN, Sim BC, Kothari D, et al. Extension of in vivo half-life ofbiologically active peptides via chemical conjugation to XTEN proteinpolymer. Protein Eng Des Sel,2013,26(11): p.743-53
    49Jing WG, Zhang J, Zhang LY, et al. Application of a rapid and efficientquantitative analysis method for traditional Chinese medicines: the casestudy of quality assessment of Salvia miltiorrhiza Bunge. Molecules,2013,18(6): p.6919-35
    1Pei H, Cao D, Guo Z, et al. Bone morphogenetic protein-7amelioratescerebral ischemia and reperfusion injury via inhibiting oxidative stress andneuronal apoptosis. Int J Mol Sci,2013,14(12): p.23441-53
    2Ruan L, Huang HS, Jin WX, et al. Tetrandrine attenuated cerebralischemia/reperfusion injury and induced differential proteomic changes ina MCAO mice model using2-D DIGE. Neurochem Res,2013,38(9): p.1871-9
    3Heeba GH and El-Hanafy AA. Nebivolol regulates eNOS and iNOSexpressions and alleviates oxidative stress in cerebral ischemia/reperfusioninjury in rats. Life Sci,2012,90(11-12): p.388-95
    4Zhang S, Qi Y, Xu Y, et al. Protective effect of flavonoid-rich extract fromRosa laevigata Michx on cerebral ischemia-reperfusion injury throughsuppression of apoptosis and inflammation. Neurochem Int,2013,63(5): p.522-32
    5Zukhurova M, Prosvirnina M, Daineko A, et al. L-theanine administrationresults in neuroprotection and prevents glutamate receptoragonist-mediated injury in the rat model of cerebral ischemia-reperfusion.Phytother Res,2013,27(9): p.1282-7
    6Qin WY, Luo Y, Chen L, et al. Electroacupuncture Could Regulate theNF-kappaB Signaling Pathway to Ameliorate the Inflammatory Injury inFocal Cerebral Ischemia/Reperfusion Model Rats. Evid BasedComplement Alternat Med,2013,2013: p.924541
    7Wang Q, Kalogeris TJ, Wang M, et al. Antecedent ethanol attenuatescerebral ischemia/reperfusion-induced leukocyte-endothelial adhesiveinteractions and delayed neuronal death: role of large conductance,Ca2+-activated K+channels. Microcirculation,2010,17(6): p.427-38
    8Patockova J, Marhol P, Tumova E, et al. Oxidative stress in the braintissue of laboratory mice with acute post insulin hypoglycemia. PhysiolRes,2003,52(1): p.131-5
    9Vaibhav K, Shrivastava P, Tabassum R, et al. Delayed administration ofzingerone mitigates the behavioral and histological alteration viarepression of oxidative stress and intrinsic programmed cell death in focaltransient ischemic rats. Pharmacol Biochem Behav,2013,113: p.53-62
    10Louboutin JP, Agrawal L, Reyes BA, et al. HIV-1gp120-induced injury tothe blood-brain barrier: role of metalloproteinases2and9and relationshipto oxidative stress. J Neuropathol Exp Neurol,2010,69(8): p.801-16
    11Tang HW, Liao HM, Peng WH, et al. Atg9Interacts withdTRAF2/TRAF6to Regulate Oxidative Stress-Induced JNK Activationand Autophagy Induction. Dev Cell,2013,27(5): p.489-503
    12Lu CC, Yang JS, Huang AC, et al. Chrysophanol induces necrosis throughthe production of ROS and alteration of ATP levels in J5human livercancer cells. Mol Nutr Food Res,2010,54(7): p.967-76
    13Wiart C. A note on the relevance of chrysophanol to food and anticancerresearch. Mol Nutr Food Res,2012,56(6): p.843
    14Rim HK, Moon PD, Choi IH, et al. SoSoSo or its active ingredientchrysophanol regulates production of inflammatory cytokines&adipokinein both macrophages&adipocytes. Indian J Med Res,2013,137(1): p.142-50
    15Kim DH, Park EK, Bae EA, et al. Metabolism of rhaponticin andchrysophanol8-o-beta-D-glucopyranoside from the rhizome of rheumundulatum by human intestinal bacteria and their anti-allergic actions. BiolPharm Bull,2000,23(7): p.830-3
    16Lee MS and Sohn CB. Anti-diabetic properties of chrysophanol and itsglucoside from rhubarb rhizome. Biol Pharm Bull,2008,31(11): p.2154-7
    17Wang D, Yuan X, Liu T, et al. Neuroprotective activity of lavender oil ontransient focal cerebral ischemia in mice. Molecules,2012,17(8): p.9803-17
    18Clark WM, Lessov NS, Dixon MP, et al. Monofilament intraluminalmiddle cerebral artery occlusion in the mouse. Neurol Res,1997,19(6): p.641-8
    19Ni CH, Chen PY, Lu HF, et al. Chrysophanol-induced necrotic-like celldeath through an impaired mitochondrial ATP synthesis in Hep3B humanliver cancer cells. Arch Pharm Res,2012,35(5): p.887-95
    20Kim SJ, Kim MC, Lee BJ, et al. Anti-Inflammatory activity ofchrysophanol through the suppression of NF-kappaB/caspase-1activationin vitro and in vivo. Molecules,2010,15(9): p.6436-51
    21Ni CH, Yu CS, Lu HF, et al. Chrysophanol-induced cell death (necrosis)in human lung cancer A549cells is mediated through increasing reactiveoxygen species and decreasing the level of mitochondrial membranepotential. Environ Toxicol,2012
    22Li C and Zhang L. Comparison in tissue distribution andpharmacodynamics effects between three chrysophanol formulations inmice with cerebral ischemia reperfusion. Acta Neuropharmacologica,2011(04): p.16-25
    23Hritcu L, Cioanca O and Hancianu M. Effects of lavender oil inhalation onimproving scopolamine-induced spatial memory impairment in laboratoryrats. Phytomedicine,2012,19(6): p.529-34
    24Wang TF, Lei Z, Li YX, et al. Oxysophoridine protects against focalcerebral ischemic injury by inhibiting oxidative stress and apoptosis inmice. Neurochem Res,2013,38(11): p.2408-17
    25Yun X, Maximov VD, Yu J, et al. Nanoparticles for targeted delivery ofantioxidant enzymes to the brain after cerebral ischemia and reperfusioninjury. J Cereb Blood Flow Metab,2013,33(4): p.583-92
    26Chao XD, Ma YH, Luo P, et al. Up-regulation of heme oxygenase-1attenuates brain damage after cerebral ischemia via simultaneousinhibition of superoxide production and preservation of NO bioavailability.Exp Neurol,2013,239: p.163-9
    27Chan PH. Reactive oxygen radicals in signaling and damage in theischemic brain. J Cereb Blood Flow Metab,2001,21(1): p.2-14
    28Yan Y, Min Y, Min H, et al. n-Butanol soluble fraction of the waterextract of Chinese toon fruit ameliorated focal brain ischemic insult in ratsvia inhibition of oxidative stress and inflammation. J Ethnopharmacol,2014,151(1): p.176-82
    29Viswanatha GL, Shylaja H and Mohan CG. Alleviation of transient globalischemia/reperfusion-induced brain injury in rats with1,2,3,4,6-penta-O-galloyl-beta-d-glucopyranose isolated from Mangifera indica. Eur JPharmacol,2013,720(1-3): p.286-93
    30Warner DS, Sheng H and Batinic-Haberle I. Oxidants, antioxidants and theischemic brain. J Exp Biol,2004,207(Pt18): p.3221-31
    31Silva JP, Gomes AC and Coutinho OP. Oxidative DNA damage protectionand repair by polyphenolic compounds in PC12cells. Eur J Pharmacol,2008,601(1-3): p.50-60
    32Chen SH, Lin MT and Chang CP. Ischemic and oxidative damage to thehypothalamus may be responsible for heat stroke. Curr Neuropharmacol,2013,11(2): p.129-40
    33Shi GF, Wang GY and Chen XF. Screening of radical-scavenging naturalneuroprotective antioxidants from Swertia chirayita. Acta Biol Hung,2013,64(3): p.267-78
    34Lang ZF, Gao WJ, Yuan GH, et al. Dynamic change of SOD activity andMDA content in hippocampa on lischemia-reperfusion rats. Journal ofChengde Medical College,2001(03): p.190-191
    35Zhang XZ, Liu XP, Li WH, et al. Dynamic changes of cytokines and freeradicals in rats after ischemia-reperfusion. Chinese Journal of Gerontology,2005(08): p.962-963
    36Xue J, Feng JC, Yang YM, et al. experimental on effect of inflammationand free radical after cerebral ischemia reperfusion. Chinese Journal ofGerontology,2009(06): p.644-646
    37Ghosh S, Das N, Mandal AK, et al. Mannosylated liposomal cytidine5'diphosphocholine prevent age related global moderate cerebral ischemiareperfusion induced mitochondrial cytochrome c release in aged rat brain.Neuroscience,2010,171(4): p.1287-99
    38Zhao Y, Zhang QC, Zhu Q, et al. Effects and mechanism of five Chinesepatent medicines on focal cerebral ischemia. Zhong Yao Cai,2011,34(6):p.927-31
    39Pan HC, Kao TK, Ou YC, et al. Protective effect of docosahexaenoic acidagainst brain injury in ischemic rats. J Nutr Biochem,2009,20(9): p.715-25
    40Liu H, Wei X, Chen L, et al. Tetramethylpyrazine analogue CXC195protects against cerebral ischemia/reperfusion injury in the rat by anantioxidant action via inhibition of NADPH oxidase and iNOS expression.Pharmacology,2013,92(3-4): p.198-206
    41Yu K, Wu Y, Hu Y, et al. Neuroprotective effects of prior exposure toenriched environment on cerebral ischemia/reperfusion injury in rats: thepossible molecular mechanism. Brain Res,2013,1538: p.93-103
    42Wainwright MS, Grundhoefer D, Sharma S, et al. A nitric oxide donorreduces brain injury and enhances recovery of cerebral blood flow afterhypoxia-ischemia in the newborn rat. Neurosci Lett,2007,415(2): p.124-9
    43Deng S, Jiang H, Zhang S, et al. Effects of Qileng decoction on nitricoxide in rats after ischemia-reperfusion. Jilin Medical Journal,2011(05): p.835-836
    44Deng SF, Jiang HY, Zhang SW, et al. Effect of Qileng decoction on nitricoxide synthase in rats after ischemia-reperfusion. Hunan Journal ofTraditional Chinese Medicine,2012(02): p.107-108
    45Shen J, Zhang H, Lin H, et al. Brazilein protects the brain against focalcerebral ischemia reperfusion injury correlating to inflammatory responsesuppression. Eur J Pharmacol,2007,558(1-3): p.88-95
    46Tan H, He XY and Li XG. Experimental study on nitric oxide level offocal cerebral ischemia-reperfusion. China Journal of Modern Medicine,2008(09): p.1215-1216+1220
    47Wang FT and Fan SR. Distribution characteristics of inducible nitric oxidesynthasegroup in rats with focal cerebral ischemia. Sichuan MedicalJournal,2009(03): p.306-308
    48Yang YL. Changes of nitric oxide and nitric oxide synthase in rats withischemia/reperfusion injury. Chinese Journal of Applied Physiology,2008(03): p.337-338+381
    1Zhang S, Qi Y, Xu Y, et al. Protective effect of flavonoid-rich extract fromRosa laevigata Michx on cerebral ischemia-reperfusion injury throughsuppression of apoptosis and inflammation. Neurochem Int,2013,63(5): p.522-32
    2Pei H, Cao D, Guo Z, et al. Bone Morphogenetic Protein-7AmelioratesCerebral Ischemia and Reperfusion Injury via Inhibiting Oxidative Stressand Neuronal Apoptosis. Int J Mol Sci,2013,14(12): p.23441-53
    3Ruan L, Huang HS, Jin WX, et al. Tetrandrine attenuated cerebralischemia/reperfusion injury and induced differential proteomic changes ina MCAO mice model using2-D DIGE. Neurochem Res,2013,38(9): p.1871-9
    4Heeba GH and El-Hanafy AA. Nebivolol regulates eNOS and iNOSexpressions and alleviates oxidative stress in cerebral ischemia/reperfusioninjury in rats. Life Sci,2012,90(11-12): p.388-95
    5Zukhurova M, Prosvirnina M, Daineko A, et al. L-theanine administrationresults in neuroprotection and prevents glutamate receptor agonist-mediated injury in the rat model of cerebral ischemia-reperfusion.Phytother Res,2013,27(9): p.1282-7
    6Qin WY, Luo Y, Chen L, et al. Electroacupuncture Could Regulate theNF-kappaB Signaling Pathway to Ameliorate the Inflammatory Injury inFocal Cerebral Ischemia/Reperfusion Model Rats. Evid BasedComplement Alternat Med,2013,2013: p.924541
    7Wang Q, Kalogeris TJ, Wang M, et al. Antecedent ethanol attenuatescerebral ischemia/reperfusion-induced leukocyte-endothelial adhesiveinteractions and delayed neuronal death: role of large conductance,Ca2+-activated K+channels. Microcirculation,2010,17(6): p.427-38
    8Vaibhav K, Shrivastava P, Tabassum R, et al. Delayed administration ofzingerone mitigates the behavioral and histological alteration viarepression of oxidative stress and intrinsic programmed cell death in focaltransient ischemic rats. Pharmacol Biochem Behav,2013,113: p.53-62
    9Louboutin JP, Agrawal L, Reyes BA, et al. HIV-1gp120-induced injury tothe blood-brain barrier: role of metalloproteinases2and9and relationshipto oxidative stress. J Neuropathol Exp Neurol,2010,69(8): p.801-16
    10Tang HW, Liao HM, Peng WH, et al. Atg9Interacts withdTRAF2/TRAF6to Regulate Oxidative Stress-Induced JNK Activationand Autophagy Induction. Dev Cell,2013,27(5): p.489-503
    11Wang D, Yuan X, Liu T, et al. Neuroprotective activity of lavender oil ontransient focal cerebral ischemia in mice. Molecules,2012,17(8): p.9803-17
    12Clark WM, Lessov NS, Dixon MP, et al. Monofilament intraluminalmiddle cerebral artery occlusion in the mouse. Neurol Res,1997,19(6): p.641-8
    13Li T, Wang N and Zhao M. Neuroprotective effect of phosphocreatine onfocal cerebral ischemia-reperfusion injury. J Biomed Biotechnol,2012,2012: p.168756
    14Petito CK and Pulsinelli WA. Delayed neuronal recovery and neuronaldeath in rat hippocampus following severe cerebral ischemia: possiblerelationship to abnormalities in neuronal processes. J Cereb Blood FlowMetab,1984,4(2): p.194-205
    15Ginet V, Puyal J, Clarke PG, et al. Enhancement of autophagic flux afterneonatal cerebral hypoxia-ischemia and its region-specific relationship toapoptotic mechanisms. Am J Pathol,2009,175(5): p.1962-74
    16Lin HH, Hsu HL and Yeh NH. Apoptotic cleavage of NuMA at theC-terminal end is related to nuclear disruption and death amplification. JBiomed Sci,2007,14(5): p.681-94
    17Li JS, Zhang W, Kang ZM, et al. Hyperbaric oxygen preconditioningreduces ischemia-reperfusion injury by inhibition of apoptosis viamitochondrial pathway in rat brain. Neuroscience,2009,159(4): p.1309-15
    18Park HJ, Jeon YK, You DH, et al. Daidzein causes cytochrome c-mediatedapoptosis via the Bcl-2family in human hepatic cancer cells. Food ChemToxicol,2013,60: p.542-9
    19Zhao M, Li JH, Zhai XD, et al. Expression of TGF-β,caspase-3andapoptosis after cerebral ischemia and reperfusion in hypertensive rat.Chinese Journal of Integrative Medicine on Cardio-/CerebrovascularDisease,2010(02): p.205-206
    20Karatas H, Aktas Y, Gursoy-Ozdemir Y, et al. A nanomedicine transportsa peptide caspase-3inhibitor across the blood-brain barrier and providesneuroprotection. J Neurosci,2009,29(44): p.13761-9
    21Gao WJ, Zhang X and Liu SS. Caspase-3expression and dynamic changesof apoptosis in the hippocampal CA1region after cerebral ischemia andreperfusion. Chinese Journal of Gerontology,2013(24): p.6202-6204
    22Lin DR, Han JQ and Hu YT. Effect of nerve cell apoptosis and expressionof cytochrome C in ischemia-reperfusion rats with hyperglycemia. ChineseJournal of Gerontology,2013(16): p.3878-3880
    23Li H, Deng CQ, Chen BY, et al. Total saponins of Panax notoginsengmodulate the expression of caspases and attenuate apoptosis in ratsfollowing focal cerebral ischemia-reperfusion. J Ethnopharmacol,2009,121(3): p.412-8
    24Abas F, Alkan T, Goren B, et al. Neuroprotective effects ofpostconditioning on lipid peroxidation and apoptosis after focal cerebralischemia/reperfusion injury in rats. Turk Neurosurg,2010,20(1): p.1-8
    25Lin JW, Chen JT, Hong CY, et al. Honokiol traverses the blood-brainbarrier and induces apoptosis of neuroblastoma cells via an intrinsicbax-mitochondrion-cytochrome c-caspase protease pathway. Neuro Oncol,2012,14(3): p.302-14
    26Adams JM and Cory S. Bcl-2-regulated apoptosis: mechanism andtherapeutic potential. Curr Opin Immunol,2007,19(5): p.488-96
    27Brunelle JK and Letai A. Control of mitochondrial apoptosis by the Bcl-2family. J Cell Sci,2009,122(Pt4): p.437-41
    28Wei MC, Zong WX, Cheng EH, et al. Proapoptotic BAX and BAK: arequisite gateway to mitochondrial dysfunction and death. Science,2001,292(5517): p.727-30
    29Martinou JC and Youle RJ. Mitochondria in apoptosis: Bcl-2familymembers and mitochondrial dynamics. Dev Cell,2011,21(1): p.92-101
    30Kim HS, Park MS, Lee JK, et al. Time point expression of apoptosisregulatory proteins in a photochemically-induced focal cerebral ischemicrat brain. Chonnam Med J,2011,47(3): p.144-9
    31Chen L, Xiang Y, Kong L, et al. Hydroxysafflor yellow A protects againstcerebral ischemia-reperfusion injury by anti-apoptotic effect throughPI3K/Akt/GSK3beta pathway in rat. Neurochem Res,2013,38(11): p.2268-75
    32Zhou ZY, Tang YP, Xiang J, et al. Neuroprotective effects ofwater-soluble Ganoderma lucidum polysaccharides on cerebral ischemicinjury in rats. J Ethnopharmacol,2010,131(1): p.154-64
    33Xi HJ, Zhang TH, Tao T, et al. Propofol improved neurobehavioraloutcome of cerebral ischemia-reperfusion rats by regulating Bcl-2and Baxexpression. Brain Res,2011,1410: p.24-32
    34Wang C, Pei A, Chen J, et al. A natural coumarin derivative esculetinoffers neuroprotection on cerebral ischemia/reperfusion injury in mice. JNeurochem,2012,121(6): p.1007-13
    35Degterev A, Boyce M and Yuan J. A decade of caspases. Oncogene,2003,22(53): p.8543-67
    36Sung JH, Kim MO and Koh PO. Ferulic acid attenuates the focal cerebralischemic injury-induced decrease in parvalbumin expression. NeurosciLett,2012,516(1): p.146-50
    37Harrison DC, Medhurst AD, Bond BC, et al. The use of quantitativeRT-PCR to measure mRNA expression in a rat model of focalischemia--caspase-3as a case study. Brain Res Mol Brain Res,2000,75(1):p.143-9
    38Teschendorf P, Padosch SA, Spohr F, et al. Time course of caspaseactivation in selectively vulnerable brain areas following global cerebralischemia due to cardiac arrest in rats. Neurosci Lett,2008,448(2): p.194-9
    39Lin TK, Cheng CH, Chen SD, et al. Mitochondrial Dysfunction andOxidative Stress Promote Apoptotic Cell Death in the Striatum viaCytochrome c/Caspase-3Signaling Cascade Following Chronic RotenoneIntoxication in Rats. Int J Mol Sci,2012,13(7): p.8722-39
    40Genovese T, Mazzon E, Paterniti I, et al. Neuroprotective effects ofolprinone after cerebral ischemia/reperfusion injury in rats. Neurosci Lett,2011,503(2): p.93-9
    41Chetsawang J, Suwanjang W, Pirompul N, et al. Calpastatin reducesmethamphetamine-induced induction in c-Jun phosphorylation, Bax andcell death in neuroblastoma SH-SY5Y cells. Neurosci Lett,2012,506(1):p.7-11
    42Patassini S, Giampa C, Martorana A, et al. Effects of simvastatin onneuroprotection and modulation of Bcl-2and BAX in the rat quinolinicacid model of Huntington's disease. Neurosci Lett,2008,448(1): p.166-9
    43Zhang H, Song LC, Liu YY, et al. Pinacidil reduces neuronal apoptosisfollowing cerebral ischemia-reperfusion in rats through both mitochondrialand death-receptor signal pathways. Neurosci Bull,2007,23(3): p.145-50.
    44Torii K, Nishizawa K, Kawasaki A, et al. Anti-apoptotic action of Wnt5ain dermal fibroblasts is mediated by the PKA signaling pathways. CellSignal,2008,20(7): p.1256-66
    45Wang JJ and Cui P. Neohesperidin attenuates cerebral ischemia-reperfusion injury via inhibiting the apoptotic pathway and activating theAkt/Nrf2/HO-1pathway. J Asian Nat Prod Res,2013,15(9): p.1023-37
    46Qi J, Hong ZY, Xin H, et al. Neuroprotective effects of leonurine onischemia/reperfusion-induced mitochondrial dysfunctions in rat cerebralcortex. Biol Pharm Bull,2010,33(12): p.1958-64
    47Dohare P, Varma S and Ray M. Curcuma oil modulates the nitric oxidesystem response to cerebral ischemia/reperfusion injury. Nitric Oxide,2008,19(1): p.1-11
    48Salim LZ, Mohan S, Othman R, et al. Thymoquinone inducesmitochondria-mediated apoptosis in acute lymphoblastic leukaemia invitro. Molecules,2013,18(9): p.11219-40
    1罗志毅,黄新,包国荣.大黄中主要成分清除超氧阴离子自由基的ESR研究.中华中医药学刊,2007,25(3):612-614
    2沈传勇,鲁纯素,郑俊华.5种大黄蒽醌化合物抗氧化活性的研究.北京医科大学学报,1993,25(增刊5):85
    3Huang SS, Yeh SF, Hong CY. Effect of anthraquinone derivatives on lipidperoxidation in rat heart mitochondria: struck-ture activity relationship. JNat Prod,1995,58(9):365
    4Guo CY, HornWC, Pin DD. Extraction and identification of anantioxidative component from Jue Ming Zi (Cassia toraL.). J Agric FoodChem,1998,46:820
    5Gow CY, Pin DD, Da YC. Antioxidant activity of anthraquinonesanganthrone. Food Chem,2000,70:437
    6吕慧英,赵晨曦,吴海,等.大黄提取物抗氧化活性与游离蒽醌相关性的研究.中草药,2010,41(3):412-415
    7Yen GC, Dun PD, Chuang D Y. Antioxidant activity of anthraquinones andanthrone. Food Chemistry,2000,70:437-441
    8张丹参,张力.大黄酚对大鼠肝过氧化脂质含量的影响.张家口医学院学报,1999,16(1):1-2
    9张丹参,张力,薛贵平,等.大黄酚的抗衰老作用.中国医院药学杂志,2005,25(1):15-17
    10王树,薛贵平,张丹参.大黄酚对大鼠脑过氧化脂质含量的影响.张家口医学院学报,2000,17(3):3-4
    11朱成琳,张丹参,宋金艳,等.大黄酚脂质体对阿尔采末病模型小鼠学习记忆的改善作用.中国药理学通报,2012,28(7):978-982
    12宋金艳,张力,赵晓倩,等.大黄酚脂质体对脑缺血再灌注损伤小鼠海马神经元凋亡的影响.神经药理学报,2011,1(2):7-13
    13王树,张力,张丹参,等.大黄酚对脑缺血再灌注小鼠探索功能的影响.时珍国医国药,2007,18(12):3011-3013
    14王树,薛贵平,张丹参,等.大黄酚对脑缺血再灌注小鼠学习记忆障碍及耐缺氧的影响.陕西医学杂志,2008,37(4):402-404
    15王树,张丹参,张力,等.大黄酚对脑缺血再灌注小鼠记忆功能的保护作用.中国老年学杂志,2009,29(15):1934-1936
    16李超.大黄酚纳米囊、包合物、脂质体三种剂型的组织分布及药效学比较研究.河北北方学院,2012
    17Tominaga T, Kure S, Narisawa K, et al. Evidence of apoptosis cell deathafter focal cerebral ischemia. Brain Res,1993,624(1):32
    18Lin TK, Cheng CH, Chen SD, et al. Mitochondrial dysfunction andoxidative stress promote apoptotic cell death in the striatum viacytochrome c/caspase-3signaling cascade following chronic rotenoneintoxication in rats. International journal of molecular sciences,2012,13(7):8722-8739
    19Falc o A S, Silva R F M, Vaz A R, et al. Cross-Talk between Neurons andAstrocytes in Response to Bilirubin: Adverse Secondary Impacts.Neurotoxicity research,2013:1-15
    20Lin JW, Chen JT, Hong CY, et al. Honokiol traverses the blood-brainbarrier and induces apoptosis of neuroblastoma cells via an intrinsicbax-mitochondrion-cytochrome c-caspase protease pathway. Neuro-oncology,2012,14(3):302-314
    21Pradhan R K, Qi F, Beard D A, et al. Characterization of Mg2+inhibitionof mitochondrial Ca2+uptake by a mechanistic model of mitochondrialCa2+uniporter. Biophysical journal,2011,101(9):2071
    22Réus G Z, Abelaira H M, Agostinho F R, et al. The administration ofolanzapine and fluoxetine has synergistic effects on intracellular survivalpathways in the rat brain. Journal of psychiatric research,2012,46(8):1029-1035
    23Li Z, Zhang L, Liu Z, et al. Downregulation of Bim by brain-derivedneuro trophic factor activation of TrkB protects neurobl-astoma ceils frompaciitaxel but not etoposide or cisplatin-induced cell death. Celi DeathDiffer,2007,14(2):318-326
    24宋金艳,张丹参,宋志斌,等. Chr-lip对脑缺血再灌注损伤小鼠海马脑源性神经营养因子和胶质酸性纤维蛋白表达的影响[J].中国药理学与毒理学杂志,2012,26(3):418
    25宋金艳,张力,赵晓倩,等. Chr-lip对脑缺血再灌注损伤小鼠海马神经元凋亡的影响.神经药理学报,2011,1(2):7-13
    26Querfurth HW, LaFerla FM. Alzheimer’s disease. N Eng l J Med,2010,362(4):329-344
    27Csernansky J G, Bardgett M E, Sheline Y I, et al. CSF excitatory aminoacids and severity of illness in Alzheimer's disease[J]. Neurology,1996,46(6):1715-1720
    28Volicer L and Crino P B.Involvement of free radicals in dementia of theAlzheimer type: a hypothesis. Neurobiol Aging,1990,11(5):567-571
    29Francis P T, Palmer A M, Snape M, et al. The cholinergic hypothe-sis ofAlzheimer's disease: a review of progress. J Neurol Neurosurg Psychiatry,1999,66(2):137-147
    30Hardy J and Selkoe D J.The amyloid hypothesis of Alzheimer's disease:progress and problems on the road to therapeutics. Science,2002,297(5580):353-356
    31Varadarajan S, Yatin S, Aksenova M, et al. Review:Alzheimer's amyloidbeta-peptide-associated free radical oxidative stress and neurotoxicity. JStruct Biol,2000,130(2-3):184-208
    32Hommet C, Mondon K, Camus V, et al. Neuroinflammation and βAmyloid Deposition in Alzheimer's Disease: In vivo Quantification withMolecular Imaging. Dement Geriatr Cogn Disord,2013,37(1-2):1-18
    33Montgomery SL, Narrow WC, Mastrangelo MA, et al. Chronic neuron-and age-selective down-regulation of TNF receptor expression intriple-transgenic Alzheimer disease mice leads to significant modulation ofamyloid-and Tau-related pathologies. Am J Pathol,2013,182(6):2285-2297
    34Chico L, Simoncini C, Lo Gerfo A, et al. Oxidative stress and APO Epolymorphisms in Alzheimer's disease and in mild cognitive impairment.Free Radic Res,2013,47(8):569-76
    35Choi SH, Aid S, Kim HW, et al. Inhibition of NADPH oxidase promotesalternative and anti-inflammatory microglial activation duringneuroinflammation. J Neurochem,2012,120(2):292-301
    36Askarova S, Yang X, Sheng W, et al. Role of Abeta-receptor for advancedglycation endproducts interaction in oxidative stress and cytosolicphospholipase A activation in astrocytes and cerebral endothelial cells.Neuroscience,2011,199:375-385
    37Huang TC, Lu KT, Wu YY, et al. Resveratrol protects rats fromAbeta-induced neurotoxicity by the reduction of iNOS expression andlipid peroxidation. PLoS One,2011,6(12): e29102
    38Schubert D, Behl C, Lesley R, et al. Amyloid peptides are toxic via acommon oxidative mechanism. Proc Natl Acad Sci U S A,1995,92(6):1989-1993
    39Sutherland GT, Chami B, Youssef P, et al. Oxidative stress in Alzheimer'sdisease: Primary villain or physiological by-product?. Redox Rep,2013,18(4):134-141
    40Holmes C, Cunningham C, Zotova E, et al. Systemic inflammation anddisease progression in Alzheimer disease. Neurology,2009,73(10):768-774
    41Lucin KM, O'Brien CE, Bieri G, et al. Microglial beclin1regulatesretromer trafficking and phagocytosis and is impaired in Alzheimer'sdisease. Neuron,2013,79(5):873-86
    42Marchesi V T. Alzheimer's dementia begins as a disease of small bloodvessels, damaged by oxidative-induced inflammation and dysregulatedamyloid metabolism: implications for early detection and therapy. FASEBJ,2011,25(1):5-13
    43董晓华,张丹参.大黄酚对Aβ25-35所致AD大鼠学习记忆及LTP的影响.中国药理学通报,2009,25(5):682-685
    44张丹参.大黄酚对大鼠海马齿状回突触传递长时程增强的影响.中国药科大学学报,2009,40(2):152-156
    45朱成琳,张丹参,宋金艳,等.大黄酚脂质体对阿尔采末病模型小鼠学习记忆的改善作用.中国药理学通报,2012,28(7):978-982
    46李淑娟,沈丽霞,张丹参.大黄酚对小鼠学习记忆的影响.张家口医学院学报,2002,5(19):22-24
    47李淑娟,张力,张丹参,等.大黄酚抗衰老作用的实验研究.中国老年学杂志,2005,25:1362-1364

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700