用户名: 密码: 验证码:
基于燃气再循环的高压燃烧技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃气再循环(CGR)技术成功解决了热气机燃烧室的高压燃烧问题。CGR燃烧技术可以有效降低火焰温度,降低NO_x排放,提高发动机热效率,同时它具有结构简洁、效果突出、容易实现等优点。但对于这项技术的研究至今仍然十分有限。
     现在,实用的CGR燃烧室都采用引射器作为驱动部件。本文分别从燃烧化学平衡和燃烧室内一维气体动力学的角度出发对由引射驱动的CGR燃烧过程进行了分析,推导了CGR燃烧的化学平衡描述方程和气体动力学描述方程,建立了CGR燃烧的简单模型,给出了CGR燃烧过程状态参数的变化规律和计算方法。针对一个简单的CGR气体燃烧室的数值模拟表明,CGR燃烧可以有效的降低火焰温度。计算结果也证明本文建立的两个CGR燃烧描述方程是统一的。
     本文详细介绍了针对热气机外燃系统进行的一系列试验,包括:单根气体引射器高压引射试验、旋流燃烧室内燃油喷雾试验和热气机整机高压燃烧试验。试验对一些影响CGR燃烧的问题作了有益的探索,我们发现:在高背压条件下,引射器的引射比对入射气流的流量变化敏感,而对入射气流供气压力变化不敏感;燃烧室内旋流对燃油喷射雾化是有利的,在一定范围内,粒子群SMD随着旋流强度加强而减小;喷油嘴与旋流场的位置配合对燃油喷雾及粒子群SMD有明显的影响;适当升高油头位置导致加热管热电偶温度升高,火焰热电偶温度降低,火焰变长,火球直径略微变小。
     对高压燃烧室内物理量的测量总是极为困难而昂贵的。随着计算机技术和现代计算流体力学(CFD)的进展,燃烧室模拟技术在燃烧室设计和研究中发挥着越来越重要的作用。本文针对所涉及的旋流喷射燃烧室,对燃烧室模拟方法进行了研究。本文对热气机燃烧室进行了全面的数值模拟研究。数值模拟得到中空旋转火焰结构,高温区为贴近挡烟罩的中空环形区域;燃油粒
The technology of Combustion Gases Recirculation (CGR) has successfully solved the problem of high-pressure combustion of Stirling engine. The technology of CGR combustion declines the temperature of flame, depresses the emission of NOX, and enhances thermal efficiency of engine. Compared with other similar technologies, CGR combustion has advantages of simplicity, effectiveness, easy-to-use, and so on. But the researches on this technology are still insufficiency.Now, most of applied CGR combustors use gases ejector as driving component. Chemical stoichiometric analysis and one-dimension thermodynamic analysis are carried out in this thesis, and two kinds of descriptive equations are established. A simple model on CGR combustion is set up, which forecasts the manner of CGR combustion parameters. A numerical simulation on a simple CGR gas combustor is done, and the results show that the flame temperature is depressed obviously with CGR. The calculation results also validate the consistency of the two descriptive equations from two foundations.Experimental studies on external-combustion system of Stirling engine are introduced in this thesis, witch including: experiment of single ejector with high backpressure, experiment of fuel oil spray in combustor and experiment of high-pressure combustion on Stirling engine. Test results show that ejection efficiency of ejector with high pressure is in proportion to mass flow rate of injection flow, but litter influencing by pressure of injection flow; cyclone in combustor is in favor of fuel oil spray, enhancing cyclone results in decline of Sauter Meaning Diameter (SMD) of oil droplets; the cooperation of nozzle and cyclone in combustor do influences the SMD of oil droplets; mildly elevating the
    nozzle induces inclining of temperature of thermocouple of heat exchange tubes, declining of temperature of flame thermocouple, elongating of flame and minishing of diameter of fireball.Measuration in high-pressure combustor is always difficult and costly. With the development of computer technology and modern Computational Fluid Dynamic (CFD), numerical simulation of combustor is taking more and more important role on combustor design and research. In this thesis, studies on methodology of combustion simulation are done. And a series of numerical simulations are implemented on combustor and key components of external combustion system of Stirling engine. A cone rolling flame is got with an annular high temperature cohering obstruct cover in the combustor simulation. The traces of oil droplets are influenced by cyclone in combustor, and the droplets distributed asymmetric on circumferential direction. Other simulation results on flow, heat transfer and two-phase flow of gas ejector, fuel oil nozzle and cyclone generating baffles show that the pressure near gas nozzle do influences the ejection efficiency of ejector; the operation parameters of ejector affect the ejection efficiency greatly, and the optimal geometrical parameters of ejector changes with them; the static pressure on throat tube of ejector achieves minimum indicates the optimal operation condition of ejector; the diameter of gas nozzle impacts ejection efficiency, in some cases, minishing nozzle diameter makes for efficiency inclining; triangle oil slot mixes and warn-up oil effectively, which declines pressure loss and simplifies machining technics; cyclone generating baffles affect combustor internal flow greatly, and the flow changes the shape of droplet cluster, increases relative velocity of droplets, which is in favor of breakup of droplets.It is the first case to set up a simple model on CGR combustion driving by gas ejector. These works will be a very important reference to farther research on CGR combustion.
引文
[1] Heron of Alexandria. The Pneumatics. Taylor Walton and Maberly, Upper Gower Street and Ivy Lane Paternoster Row, 1851.
    [2] 邓康耀等.增压柴油机实现废气再循环(EGR)系统的模拟计算研究.内燃机学报.Vol.19(2001)No.2
    [3] 董刚等.改善涡流室柴油机供油系统和利用废气再循环降低排放研究.燃烧科学与技术.Vol.6(2000)No.1
    [4] 王政民.烟气直接入炉循环的节能作用.冶金能源.1999,(5):24-28页
    [5] Magnus Palsson, "Design and Testing of Stirling Engine Premix CGR Combustor for Ultra Low Emissions", 8th International Stirling Engine Conference and Exhibition, Ancona, Italy, May 27-30 1997.
    [6] Magnus Palsson, "Development of a LPP CGR Comustion System with Ultra-Low Emissions for a SOLO161 Stifling Engine based Micro-CHP unit", 10th International Stifling Engine Conference, Osnabruck, Germany, Sept 24-26 2001
    [7] Magnus Palsson, "Development and Field Test of a SOLO 161 Stirling Engine based Micro-CHP unit with Ultra-Low Emissions." Proceedings of the 10th International Stirling Engine Conference, Osnabruck, Germany, September 24-26 2001
    [8] Kunpeng Zhang, "Experimental Investigation and Numerical Simulation of Gas Ejector in a Combustor with Combustion Gases Recirculation", ASME-2003-IJPGC-40101, International Joint Power Generation Conference, Atlanta, Georgia, USA, June 16-19 2003.
    [9] Kunpeng Zhang, "Theoretical Investigation and Numerical Simulation of Turbulent Combustion in a Industrial Combustor with Combustion Gases Recirculation", PWR2004-52025, Electric Power 2004 Conference, Baltimore, Maryland, USA, March 30-April 1, 2004.
    [10] 姜正良等.气体引射器的一维流动特性计算及优化设计.空气动力学学报.Vol.13,No.4,Dec.,1995
    [11] 尹群.等截面混合气体引射器优化设计—解析计算基础.航空发动机.1997年,4期。
    [12] 赵静野等.引射器基本工作原理及应用.北京建筑工程学院学报.Vol.17,No.3,Sep.2001
    [13] 景思睿等.气流引射器混合室流场计算的积分方法.西安交通大学学报.Vol.26,No.6,Dec.,1992
    [14] 王献孚.受限共轴射流的湍流混合过程数值模拟.空气动力学报.Vol.14,No.3,Sep.,1996
    [15] 刘明宇等.可压缩轴对称射流流场近区的数值模拟.计算物理.Vol.17,No.4,Jul.,2000.
    [16] 马汉东等.非定常喷流有限插分方法数值试验.计算物理.Vol.18,No.4,Jul,2001.
    [17] 夏春林等.航空发动机圆套状尾喷管流场温度场数值模拟.航空动力学报.Vol.9,No.4,Oct,1994.
    [18] 薛飞.基于辐射图像的火焰温度场测量研究.浙江大学博士学位论文,pp:4,1999,5.
    [19] 蒋剑良等.燃烧过程光辐射度测量研究—理论、数值仿真和试验.内燃机学报.Vol.19(2001)No.4
    [20] 卫成业等.利用面阵CCD进行火焰温度分布测量(1)—二维投影温度场的测量.热能动力工程.2002,1.
    [21] 严建华等.运用代数迭代技术由火焰图像重建三维温度场.燃烧科学与技 术.Vol.6(2000)No.3
    [22] 薛飞.基于辐射图像的火焰温度场测量研究.浙江大学博士学位论文,pp:73-74,1999,5.
    [23] 邱坤赞等.基于火焰辐射图像的温度分布与浓度分布联合重建.燃烧科学与技术.Vol.8(2002)No.4
    [24] 刘明安等.柴油机缸内火焰辐射传热新模型.燃烧科学与技术.Vol.6(2000)No.1
    [25] 严兆大等.用蒙特卡洛法计算柴油机缸内多元热辐射.内燃机学报.Vol.18(2000)No.4
    [26] 李翠环等.黑体辐射数值反演的快速稳定算法.计算物理.Vol.19,No.2,Mar,2002.
    [27] 姚征等.CFD通用软件综述.上海理工大学学报.Vol.24,No.2,2002.
    [28] 朱培烨.三维非结构网格自动生成.计算物理.Vol.18,No.6,Nov,2001
    [29] 侯慧清等.无结构网格有限体积方法及在热对流中的应用研究.计算物理.Vol.17,No.4,Jul.,2000
    [30] 张宝琳等.非线性热传导方程的分组隐式解法及数值结果.计算物理.Vol.19,No.1,Jan,2002.
    [31] 范全林等.圆湍射流的轴对称大涡模拟.燃烧科学与技术.Vol.7(2001)No.4
    [32] 范全林等。气粒两相平面湍射流拟序结构的大涡模拟。燃烧科学与技术。Vol.7(2001)No.1
    [33] Lars Davidson. Large eddy simulations: a note on derivation of the equations for the subgrid turbulent kinetic energies. Inter skrift Nr 97/12
    [34] David E. Keyes, etc. Prospects for CFD on petaflops systems. 1999.
    [35] 尚智等。微分方程的神经网络数值解法。计算物理。Vol.18,No.3,May.2001
    [36] 吴晋湘等.雾化过程粘性耗散功分析.燃烧科学与技术.Vol.6(2000)No.2
    [37] Givi, P. Model free simulation of turbulent reactive flows. Prog. Energy Combust. Sci., 15, 1-17, 1989
    [38] Germano, M., U. Piomelli, etc. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids, A, 3, 1760-1765, 1991
    [39] Dopazo, C. Recent developments in pdf methods. In: Turbulent Reacting Flows, pp. 375-474. P. A. Libby and F. A. Williams Eds. Academic Press, London, U. K. 1994
    [40] Correa, etc. Computational models and methods for continuous gaseous turbulent combustion. Prog. Energy Combust. Sci., 13, 249-292, 1987
    [41] Marc Lange, etc. Massively parallel Direct Numerical Simulation of turbulent combustion. From NASA Website.
    [42] Kyle D. Squires, etc. Application of DNS and LES to dispersed two-phase turbulent flows. From NASA Website.
    [43] 赵艰行.燃烧的数值模拟.科学出版社.PP:81,2002。
    [44] H. Steiner, etc. Large eddy simulation of a turbulent diffusion flame with conditional source-term estimation. Annual Research Briefs 1999. Center for Turbulence Research.
    [45] Luc Vervisch. Numerical modeling of nonpremixed turbulent combustion. From NASA Website.
    [46] G. Klose, etc. Evaluation of advanced two-phase flow and combustion models for predicting low emission combustors. 45th ASME Gas Turbine & Aeroengine Congress, May 8th-11th, 2000, Munich, Germany.
    [47] 周力行等.湍流气粒两相流动有燃烧颗粒相概率密度函数输运方程理论.中国工程热物理学会燃烧学学术会议.1998.
    [48]Chris Stone, etc. Numerical simulation of combustion dynamics in a swirling flow dump combustor. High performance computing 2001, Grand challenges in computer simulation, Seattle, WA, April 22-27, 2001.
    [49]Shrikanth Rao, etc. A PDF time-scale for diesel combustion using Large Eddy Simulation.
    [50] CM. Sipperley, etc. Experimental validation studies for large-eddy simulation of a gas turbine main burner. Annual research briefs 1999, Center for Turbulence Research.
    [51]N. Branley, etc. Large eddy simulation of a turbulent non-premixed flame. Combustion and flame. 127:1914-1934(2001)
    [52]E. R. Hawkes, etc. Implications of a flame density approach to large eddy simulation of premixed turbulent combustion. Combustion and flame. 126:1617-1629(2001)
    [53]Ken-Chin Chang. Turbulent flow computation in combustors. Proc. Natl. Sci. Coumc. ROC (A). Vol.24, No. 6, 2000. pp413-421
    [54]L. Muniz, etc. Effects of heat release and buoyancy on flow structure and entrainment in turbulent nonpremixed flames. Combustion and flame. 126:1402-1420(2001)
    [55]H. Mobus, etc. Comparison of Eulerian and Lagrangian Monte Carlo PDF methods for turbulent diffusion flames. Combustion and flame. 124:519-534(2001)
    [56]Beth Anne V. Bennett, etc. Computational and experimental study of axiymmetric coflow partially premixed ethylene/air flames. Combustion and flame. 127:2004-2022(2001)
    [57]T. B. Gradinger, etc. Liquid-fuel/air premixing in gas turbine combustors: experiment and numerical simulation. Combustion and
     flame. 124:422-443(2001)
    [58] Soong, etc. Comparative numerical studies on Reynolds and Favre averagings of turbulent diffusion flame. Int' 1. J. Turbo Jet Engines, 9, 227-238, 1992.
    [59] Frnkel, etc. Modeling of the reactant conversion rate in a turbulent shear flow. Chem. Engng. Comm., 113, 197-209, 1992.
    [60] Miller, etc. On the validity of the assumed probability density function method for modeling binary mixing/reaction of evaporated vapor in gas/liquid-droplet turbulent shear flow. 27th Symp. On combust, pp1056-1072, the combustion institute, Pittsburgh, PA, USA, 1998.
    [61] Tomas Bohr, etc.湍流研究的动力系统方法.清华大学出版社.2000年.
    [62] 汪永斌等.废气再循环技术在温室柴油热风炉中的应用.农业工程学报.2002,(7):104-107.
    [63] 杜德兴.废气再循环成分对扩散燃烧中碳烟成核的影响.浙江大学学报.2001,(9):517-520.
    [64] 张煜盛等.排气再循环对柴油机性能影响的计算研究.小型内燃机与摩托车.2001,(4):1-4.
    [65] 任立红等.电控喷油五气门汽油机排气再循环性能的实验研究.燃烧科学与技术.2004,(2):17-22.
    [66] 王鹏等.废气再循环时增压柴油机性能和排放的模拟计算.江苏大学学报.2002,(9):74-77.
    [67] 王忠.排气再循环对柴油机工作过程参数、性能和排放的影响.内燃机学报.2002,(5):387-390.
    [68] 徐海涛等.FLUENT在超音速蒸汽喷射真空泵中的应用.FLUENT第二届用户大会.2002.
    [69] Magnus Palsson. On Premixed Gas Fuelled Stirling Engine Combustors with Combustion Gas Recirculation. Doctoral Thesis, Lund University, Sweden, 2002.
    [70] Kunpeng Zhang, Song Zhou, Weiming Pan, Fei Xue. Experimental Investigation and Numerical Simulation of Liquid Droplet Vaporization in a Compression System with Wet Compression. ASME Electric Power 2004 Conference, March 30-April 1, 2004, Baltimore, Maryland, USA. PWR2004-52029.
    [71] Kunpeng Zhang, Song Zhou, Haigui Wang, Weiming Pan, Fei Xue. Theory Analysis and Experimental Investigation of Liquid Droplets Evaporization in High Speed Flow. July 11-15, 2004, Westin Charlotte & Convention Center, Charlotte, North Carolina, USA. HI-FED-2004-56026.
    [72] 刘志强等.蒸汽喷射式热泵性能试验研究[J].大连理工大学学报.2001,(3):310-313.
    [73] 张博等.二维流动模型的喷射器性能分析研究.高等学校工程热物理研究会第十届全国学术会议.2003,(10):754-758页
    [74] 张鲲鹏等.高压气体引射器的试验研究和仿真.高等学校工程热物理研究会第十届全国学术会议.2003,(10):740-748页
    [75] 孟岚等.模型燃气轮机燃烧室三维反应流数值模拟.哈尔滨工程大学学报.2003,(2):35-40页
    [76] 赵坚行.燃烧的数值模拟.科学出版社.2002
    [77] 周力行.多相湍流反应流体力学.国防工业出版社。2002
    [78] 周力行.气粒两相流动和燃烧的理论与数值模拟.科学技术出版社.1994
    [79] A. Adeniji Fashola. Modeling of confined turbulent fluid particle flows using Eulerian and Lagrangian schemes. Int. J. Heat mass transfer, 1990 (4):691-701.
    [80] 范维澄,万跃鹏.流动及燃烧的模型与计算.中国科技大学出版社.1992
    [81] 岑可法,樊建人.燃烧流体力学.水利电力出版社.1991
    [82] Zeng Qing-chuan, etc. Numerical simulation methods for the motion of particles in turbulent flows. Journal of Sichuan University of Science and Technology. 2001.
    [83] L. Duchanmp de lageneste, H. Pitsch. Progress in large-eddy simulation of premixed and partially-premixed turbulent combustion. Center for Turbulence Research Annual Research Brefs 2001.
    [84] Charles David Pierce. Progress-variable approach for large-eddy simulation of turbulent combustion. Ph. D. Dissertation. The Stanford University. 2001
    [85] Warsi, Z. V. A. Conservation form of the Navier-Stokes equation in general nonsteady coordinates. AIAA J., 19, pp. 240-242. 1981
    [86] Jones, W. P. Models for turbulent flows with variable density and combustion. Prediction methods for turbulent flow. Hemisphere, Washington, D. C. 1980
    [87] Milne-Thompson, L. M. Theoretical Hydrodynamics. 5th edition, McMillan & Co, New York, 1968
    [88] Harpole G M. Droplet Evaporation in High Temperature Environments. Transactions of the ASME. 1981, 103:86-91P
    [89] O. Pinkus. Liquid particle dynamics and rate of evaporation in the rotating field of centrifugal compressors. Transactions of the ASME, 1983(1):80-87
    [90] H. A. Frediani. Mathematical model for spray cooling systems. Journal of engineering for power, 1977(4):279-283
    [91] S. J. Palaszewski, etc. A three-dimensional air-vapor-droplet local interaction model for spray units. Transactions of the ASME, 1981(8): 514-521
    [92] Qun Zhen, Yufeng Sun, Shuying Li and Yunhui Wang. Thermodynamic Analyses of Wet Compression Process in the Compressor of a Gas Turbine. Proceedings of ASME Turbo Expo 2002, June 3-6 2002, Amsterdam, The Netherlands. GT-2002-30590
    [93] Wilson D C. Thermal Performance of Powered Spray Modules. Masters Thesis, University of Illinois, Urbana-Champaigh, 1972
    [94] Ross L. L., Hoffman T. W. Evaporation of Droplets in a high Temperature Environment. 3rd international Heat Transfer Conf. 1966, (5): 50-59P
    [95] Fucha N. A. Evaporation and Droplet Growth in Gaseous Media. Pergamon Press, New York.1959
    [96] Beard K V, Pruppacher H R. A Wind Tunnel Investigation of the Rate of Evaporation of Small Water Drops Falling at Terminal Velocity in Air. Journal of Atmospheric Science. 1971, (28) : 1455-1464P
    [97] Pruppacher H R, Rasmussen R. A Wind Tunnel Investigation of the Rate of Evaporation of Large Water Drops Falling at Terminal Velocity in Air. Journal of Atmospheric Sciences. 1979, (36): 1255-1260P
    [98] Woo S W, Hsmielec A E. A Numerical Method of Determining the Rate of Evaporation of Small Water Drops Falling at Terminal Velocity in Air. Journal of Atmospheric Sciences. 1971, (28): 1448-1454P
    [99] Johns L E, Beckmann R B. Mechanism of Dispersed-Phase Mass Transfer in Viscous, Singe Drop Extraction Systems. AIChE Journal. 1966, (12):10-16P
    [100] Watada H, Hamielec A E, Johnson A I A Theoretical Study of Mass
     Transfer with Chemical Reaction in Drops. Canadian Journal of Chemical Engineering. 1970, (48) : 255-260P
    [101] 王云辉.湿压缩及湿压缩系统性能研究.哈尔滨工程大学博士论文.2002年
    [102] 刘建成.燃气轮机喷水中冷及湿压缩过程的数值模拟.中国舰船研究院硕士论文.2002年
    [103] T. -H. Shih, W. W. Liou, A. Shabbir, Z. Yang, and J. Zhu. A New k-εEddy-Viscosity Model for High Reynolds Number Turbulent Flows-Model Development and Validation. Computers Fluids, 24(3):227-238, 1995.
    [104] S. Sarkar and L. Balakrishnan. Application of a Reynolds-Stress Turbulence Model to the Compressible Shear Layer. ICASE Report 90-18, NASA CR 182002, 1990.
    [105] Ye Zhou and Charles G Speziale.湍流基础问题研究进展:能量传递,相互作用尺度,各向同性衰减的自保持性.力学进展,2000(2):95-144页
    [106] Spalding D B. Combustion and mass transfer [M]. Pergamon Press, 1979.
    [107] Spalding D B. Turbulence model [R]. imperial college Report, 1980.
    [108] Brny, K. N. C. and Moss, J. B. A unified statistical model of the premixed turbulent flame. Acta Astronautic, Vol. 4, No. 3-4, p. 291, 1977.
    [109] G. Klose, etc. Evaluation of advanced two-phase flow and combustion models for predicting low emission combustors. 45th ASME Gas Turbine & Aeroengine Congress. May 8th-11th, 2000, Munich, Germany.
    [110] G. Riccio, etc. Improvement of gas turbine injection systems by combined experimental/numerical approach. ASME Turbo Expo 2002. June 3-6, 2002, Amsterdam, The Netherlands.
    [111] A. Coppalle and P. Vervisch. The Total Emissivities of High-Temperature Flames. Combust. Flame, 49:101-108, 1983.
    [112] T. F. Smith, Z. F. Shen, and J. N. Friedman. Evaluation of Coefficients for the Weighted Sum of Gray Gases Model. J. Heat Transfer, 104:602-608, 1982.
    [113] M. K. Denison and B. W. Webb. A Spectral Line-Based Weighted-Sum-of-Gray-Gases Model for Arbitrary RTE Solvers. J. Heat Transfer, 115:1002-1012, 1993.
    [114] M. F. Modest. The Weighted-Sum-of-Gray-Gases Model for Arbitrary Solution Methods in Radiative Transfer. J. Heat Transfer, 113:650-656, 1991.
    [115] 徐海涛,桑芝富.蒸汽喷射式热泵变工况性能分析.热能动力工程,2003(7):395-398页.
    [116] R. H. Perry, D. W. Gree, and J. O. Maloney. Perry's Chemical Engineers' Handbook. McGraw Hill, New York, 6th edition, 1984.
    [117] Smith and Van Winkle. Am. Inst. Chem. Eng. J., 4:266-268, 1958
    [118] FLUENT6.0 User' s Guide Volume 3. Fluent Inc. 2001
    [119] 潘卫明.热气机中若干流体力学问题的研究.中国舰船研究院博士后研究工作报告.2001年

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700