用户名: 密码: 验证码:
疏勒河流域地下水~(14)C年龄校正
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水准确年龄的获取一直是水文地质学研究的热点和难点,受埋藏条件限制,水文地质参数获取困难,使得传统方法获取的地下水运移信息十分有限。环境同位素作为水体本身组成或溶解成分自始至终都随水体演化,从而成为追踪水文过程有力的工具,其中,放射性同位素14C就是估计地下水年龄最重要的手段,然而,由于地下水溶解无机碳来源复杂,如何恢复14C初始值成为地下水14C年龄校正的关键。论文针对这一问题,选取疏勒河流域为研究对象,通过分析微量元素特征以及离子相互关系,识别了研究区不同层位地下水发生的地球化学反应及其影响因子;对研究区水化学场、同位素场分析,结合水文地质条件,划分了研究区地下水典型水流系统;在以上研究的基础上,运用反向水文地球化学模拟技术,定量识别出不同地带地下水演化过程中14C浓度变化的主要反应路径及其影响程度,从而对地下水14C年龄进行了校正,主要成果如下:
     疏勒河流域地下水从山前隔壁带到中游细土平原区再到下游荒漠区,地下水以碱土金属离子、弱酸根离子为优势成分逐渐演替为以碱金属、强酸根离子为主。阳离子由无明显离子特征过渡到以Na++K+为主,阴离子则从HCO3-过渡到无明显特征,最后向S042-型水演化。经过主成分分析,提取了两个主成分,其方差贡献率分别为58.159%和14.621%,分别指示了蒸发浓缩作用、溶滤作用以及地下水演化的碱性环境和同离子效应。
     地下水87Sr/86Sr介于0.711041到0.714029,与蒸发岩特征值很接近,Sr2+分别于Ca2+和S042-具有很好的相互关系,说明研究区地下水发生了明显的蒸发岩溶解反应。结合离子相互关系,发现芒硝、石膏、岩盐、碳酸盐溶解沉淀,反向阳离子交换是研究区地下水主要的地球化学过程。根据Cl-与K+、HCO3-以及N03-关系识别出人为活动、补给水源等作用对潜水水化学演化影响较大。
     玉门—踏实盆地地下水稳定同位素在垂向无明显分异,潜水与承压水联系紧密,交换频繁。瓜州盆地地下水随着井深的增加,稳定同位素在潜水和承压水中呈现不同的变化规律,呈现出同位素分层特点,指示各含水层岩组垂向水力联系较弱,地下水主要以水平径流为主。敦煌盆地下游承压水同位素垂向变化与瓜州盆地相似,但是在60m深度处潜水与承压水出现重叠分布,指示了在含水层过渡地带上下含水层发生联系。
     瓜州水流路径GZ11-GZ10,GZ04-X01,敦煌DH01-DH03反向地球化学模拟结果显示,三条路径上均发生了阳离子交换,岩盐,芒硝的溶解反应,GZ11-GZ10路径上发生了明显的蒸发效应,蒸发因子为1.177,二氧化碳的溶解升高了地下水14C的浓度,该路径上地下水的运移时间约为740a。GZ04-X01路径上文石的溶解,Ca/Na、Mg/Na交换是促使碳酸盐变化的主要原因,该过程导致了起点地下水14C被稀释了3倍多,径流路径上的传输时间约为10281a。敦煌DH01-DH03水流路径上发生了混合作用,方解石,文石都参与了反应路径,但对地下水放射性碳影响不大,从起点到终点地下水运移经历了约12851a。
     研究区第四纪地下水年龄分布范围较大,从现代到数万年,大多数承压水年龄分布在3000-7000年间,反映了中全新世大暖期暖湿的气候对地下水补给的重要作用。瓜州盆地东部补给区潜水很年轻,循环速率为16.2-17.5m/a。各盆地细土平原区深层潜水从现代到2000年不等,说明深部地下水循环交替也比较迟缓。研究区承压水普遍年龄很老,从3000年到1.6万年,地下水的循环速度介于2.4-3.7m/a,更新能力较差。
Groundwater age determining has been a focus and difficult problem in the hydrogeology, because it is very difficult to obtain accurate hydrogeological parameters from the aquifer system. Environmental isotopes extensively exist in various kinds of water in nature, and they can change into as part of the water molecule itself or dissolved constituents in the water system.14C, which is used widely in the groundwater age study. However, it is extraordinary hard to get the initial value of the14C, because it may influence by many processes and reactions. As an issue of concern about the difficulty in the14C age correction, this thesis attempts to carry out some works in the Shule River Basin. Firstly, the groundwater hydrochemical evolution would be determined by using relationship between the dissolved ions, trace element and87Sr/86Sr, Secondly, the groundwater flow system will be characterized by the stable isotope and chemical indices. Then, the groundwater14C age will be corrected using different method (experiential model and reverse hydrogeochemical model) which can quantify the initial radioisotopic14C along the groundwater evolution path in the different zones. The main conclusions are as follows:
     The chemical type of the groundwater in the Shule River Basin changed from no-dominated to Na++K+for cations and HCO3-to no-dominated to SO42-for anions moving along the possible flow path from the piedmont of each basin to the fine soil plain areas and then downstream to the desert regions. The advantage of the alkaline earth metal ions replaced by the alkali metal cations, while the weak acid ions were permuted by the strong acid ions. The variance contribution were58.159%and14.621%calculated from the principal component analysis, which revealed that the groundwater chemistry is influenced mainly by evaporation and dissolution of evaporite minerals, as well as the alkalinity environment and common ion effect.. The dissolution of the Glauber's salt, halite, gypsum and the carbonate minerals play significant role in the groundwater'evolution. It is also found that the reverse cation exchange widely exist in the aquifers.
     The87Sr/86Sr value was between0.711041to0.714029and the relationship between Sr2+and Ca2+and SO42-were good in the groundwater indicating the reaction of the evaporite rocks. In addition, recharge source of the surface water and the human activities influenced the phreatic water in some regions.
     There is no distinct distribution of the stable isotope values with the depth showing that the groundwater system has close connection between phreatic groundwater confined groundwater in the Yumen-tashi Basin. The stable isotope of the Guazhou groundwater presents a different variation with increasing depth, and showing different character in unconfined and pressurized water. In the phreatic groundwater, the values increase above the depth of60m indicating the influence from the evaporation. However, it decreases below the60m denoting the groundwater was recharged by various stages. In the confined groundwater, the stable isotope was quite steady with low values indicating a steady-going flow system. These indicate that the vertical hydraulic connection between the phreatic groups and the confined layers are weak, groundwater mainly moves as horizontal flow from the east to the west. It has similar distribution in confined groundwater in the Dunhuang Basin, however, in the southwest of the basin, the overlapping aquifer may have close connection with the under layers.
     It has found the dissolution of halite and Glauber's salt, as well as the reverse cation exchange were dominated process along the flow path of GZ11-GZ10and GZ04-X01in the Guazhou Basin and the path of DH01-DH03in the Dunhuang Basin. Evaporation acts on the flow path of GZ11-GZ10in the phreatic groundwater, the evaporation factor was1.177. The groundwater14C concentration elevated owing the dissolvtion of carbon dioxide along the flow path, and the time of transmission is about740a. On the path of GZ04-X01, the dissolution of aragonite and cation exchange of the Mg/Na and Mg/Na are the main process which changed the concentration of the carbon element, this reaction led to the groundwater14C of the starting point was diluted by nearly three times, and the groundwater flows through nearly10281a from the starting point of GZ04to the ending point of X01. Along the DH01-DH03flow of the Dunhuang basin, both of the calcite and aragonite were involved during the reaction path, but has little effect on concentration of the groundwater radiocarbon, the transmission time was approximately12851a.
     The corrected14C age of the groundwater is between modern and16ka, indicating that the groundwater recharge mainly occurred during the Holocene and late Pleistocene. Most of the groundwater was recharged in the middle Holocene with the warm and humid climate. The circulation rate of the phreatic groundwater is between16.2-17.5m/a in the Guazhou Basin, indicating a well circulation condition, the confined groundwater has very slow circulation rate of2.4-3.7m/a in the whole basin, showing the groundwater resources are non-renewable.
引文
Aeschbach-Hertig W, Peeters F, Beyerle U, et al. Palaeotemperature reconstruction from noble gases in ground water taking into account equilibration with entrapped air[J]. Nature,2000, 405(6790):1040-1044.
    Allen D M, Mackie D C, Wei M. Groundwater and climate change:a sensitivity analysis for the Grand Forks aquifer, southern British Columbia, Canada[J]. Hydrogeology Journal,2004, 12(3):270-290.
    Araguas-Araguas L, Froehlich K, Rozanski K. Stable isotope composition of precipitation over southeast Asia[J]. Journal of Geophysical Research:Atmospheres (1984-2012),1998, 103(D22):28721-28742.
    Aravena R, Robertson W D. Use of multiple isotope tracers to evaluate denitrification in ground water:Study of nitrate from a large-flux septic system plume[J]. Ground Water,1998,36(6): 975-982.
    Aravena R, Wassenaar L I, Plummer L N. Estimating 14C groundwater ages in a methanogenic aquifer[J]. Water Resources Research,1995,31(9):2307-2317.
    Asahara Y, Tanaka T, Kamioka H, et al. Provenance of the north Pacific sediments and process of source material transport as derived from Rb-Sr isotopic systematics[J]. Chemical Geology, 1999,158(3):271-291.
    Ashley R P, Lloyd J W. An example of the use of factor analysis and cluster analysis in groundwater chemistry interpretation[J]. Journal of Hydrology,1978,39(3):355-364.
    Basu A R, Jacobsen S B, Poreda R J, et al. Large groundwater strontium flux to the oceans from the Bengal Basin and the marine strontium isotope record[J]. Science,2001,293(5534): 1470-1473.
    Bath A H, Edmunds W M, Andrews J N. Palaeoclimatic trends deduced from the hydrochemistry of a Triassic sandstone aquifer, United Kingdom[J]. Proceedings Series-International Atomic Energy Agency,1979.436-437:92-101.
    Bates B L, McIntosh J C, Lohse K A, et al. Influence of groundwater flowpaths, residence times and nutrients on the extent of microbial methanogenesis in coal beds:Powder River Basin, USA[J]. Chemical Geology,2011,284(1):45-61.
    Bishop P K, Smalley P C, Emery D, et al. Strontium isotopes as indicators of the dissolving phase in a carbonate aquifer:implications for 14 C dating of groundwater[J]. Journal of Hydrology, 1994,154(1):301-321.
    Boaretto E, Thorling L, Sveinbjornsdottir A E, et al. Study of the effect of fossil organic carbon on 14C in groundwater from Hvinningdal, Denmark[J]. Radiocarbon,2006,40(2):915-920.
    Bullen T D, Krabbenhoft D P, Kendall C. Kinetic and mineralogic controls on the evolution of groundwater chemistry and 87Sr/86Sr in a sandy silicate aquifer, northern Wisconsin, USA[J]. Geochimica et Cosmochimica Acta,1996,60(10):1807-1821.
    Burgess W G, Hoque M A, Michael H A, et al. Vulnerability of deep groundwater in the Bengal Aquifer System to contamination by arsenic[J]. Nature Geoscience,2010,3(2):83-87.
    Carey A E, Dowling C B, Poreda R J. Alabama Gulf Coast groundwaters:4He and 14C as groundwater-dating tools[J]. Geology,2004,32(4):289-292.
    Cartwright I, Weaver T, Petrides B. Controls on 87Sr/86Sr ratios of groundwater in silicate-dominated aquifers:SE Murray Basin, Australia[J]. Chemical Geology,2007,246(1): 107-123.
    Craig H. Standard for reporting concentrations of deuterium and oxygen-18 in natural waters[J]. Science,1961,133(3467):1833-1834.
    Chebud Y, Melesse A. Spatiotemporal Surface-Groundwater Interaction Simulation in South Florida[J]. Water Resources Management,2012,26(15):4449-4466.
    Chen F, Yu Z, Yang M, et al. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews,2008,27(3): 351-364.
    Chen Z, Nie Z, Zhang G, et al. Environmental isotopic study on the recharge and residence time of groundwater in the Heihe River Basin, northwestern China[J]. Hydrogeology Journal,2006, 14(8):1635-1651.
    Chidambaram S, Anandhan P, Prasanna M V, et al. Hydrogeochemical Modelling for Groundwater in Neyveli Aquifer, Tamil Nadu, India, Using PHREEQC:A Case Study[J]. Natural Resources Research,2012,21(3):311-324.
    Clark I D, Fritz P. Environmental isotopes in hydrogeology[M]. CRC press,1997.
    Clark I D, Phipps G C, Bajjali W T. Constraining super 14C ages in sulphate reducing groundwaters:Two case studies from arid regions[J]. International Atomic Energy Agency. Proceedings Series.1996:43-56.
    Conrad R. Quantification of methanogenic pathways using stable carbon isotopic signatures:a review and a proposal[J]. Organic geochemistry,2005,36(5):739-752.
    Cooper D M, Wilkinson W B, Arnell N W. The effects of climate changes on aquifer storage and river baseflow[J]. Hydrological sciences journal,1995,40(5):615-631.
    Craig H. Isotopic variations in meteoric waters[J]. Science,1961,133(3465):1702-1703.
    Dahl-Jensen D, Mosegaard K, Gundestrup N, et al. Past temperatures directly from the Greenland icesheet[J]. Science,1998,282(5387):268-271.
    Daniele L, Vallejos A, Corbella M, et al. Hydrogeochemistry and geochemical simulations to assess water-rock interactions in complex carbonate aquifers:The case of Aguadulce (SE Spain)[J]. Applied Geochemistry,2013,29:43-54.
    Delmelle P, Bernard A, Kusakabe M, et al. Geochemistry of the magmatic-hydrothermal system of Kawah Ijen volcano, East Java, Indonesia[J]. Journal of volcanology and geothermal research,2000,97(1):31-53.
    Demetriades A. General ground water geochemistry of Hellas using bottled water samples[J]. Journal of Geochemical Exploration,2010,107(3):283-298.
    Dogramaci S S, Herczeg A L. Strontium and carbon isotope constraints on carbonate-solution interactions and inter-aquifer mixing in groundwaters of the semi-arid Murray Basin, Australia[J]. Journal of Hydrology,2002,262(1):50-67.
    Douglas A A, Osiensky J L, Keller C K. Carbon-14 dating of ground water in the Palouse Basin of the Columbia River basalts[J]. Journal of Hydrology,2007,334(3):502-512.
    Edmunds W M, Guendouz A H, Mamou A, et al. Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia:trace element and isotopic indicators[J]. Applied Geochemistry,2003,18(6):805-822.
    Edmunds W M, Ma J, Aeschbach-Hertig W, et al. Groundwater recharge history and hydrogeochemical evolution in the Minqin Basin, North West China[J]. Applied geochemistry,2006,21(12):2148-2170.
    Edmunds W, Tyler S. Unsaturated zones as archives of past climates:toward a new proxy for continental regions[J]. Hydrogeology Journal,2002,10(1):216-228.
    Famiglietti J S, Lo M, Ho S L, et al. Satellites measure recent rates of groundwater depletion in California's Central Valley[J]. Geophysical Research Letters,2011,38(3):90-93.
    Fantong W Y, Satake H, Ayonghe S N, et al. Hydrogeochemical controls and usability of groundwater in the semi-arid Mayo Tsanaga River Basin:far north province, Cameroon[J]. Environmental geology,2009,58(6):1281-1293.
    Faure G. Principles and applications of geochemistry:a comprehensive textbook for geology students[M]. New Jersey:Prentice Hall,1998.
    Fetter C W, Fetter C W. Applied hydrogeology[M]. New Jersey:Prentice Hall,2001.
    Fontes J C, Bortohmi G, Zuppi G M. Hydrologic isotopique du Massif du Montlane[A].Isotope Hydrology[C].IAEA, Vienna,1978,411-440.
    Fontes J C, Gamier J M. Determination of the initial 14C activity of the total dissolved carbon:A review of the existing models and a new approach[J]. Water Resources Research,1979,15(2): 399-413.
    Freeze R A, Cherry J A. Groundwater[M]. Englewood Cliffs, New Jersey:Prentice-Hall,1979.
    Fritz P, Drimmie R J, Frape S K, et al. Isotopic composition of precipitation and groundwater in Canada[J].1987,539-549.
    Gascoyne M. Hydrogeochemistry, groundwater ages and sources of salts in a granitic batholith on the Canadian Shield, southeastern Manitoba[J]. Applied Geochemistry,2004,19(4):519-560.
    Gat J R, Gonfiantini R. Stable isotope hydrology. Deuterium and oxygen-18 in the water cycle[J]. International Atomic Energy Agency. Vienna, Technical Reports Series,1981, (210), 1987-2001.
    Gates J B, Edmunds W M, Darling W G, et al. Conceptual model of recharge to southeastern Badain Jaran Desert groundwater and lakes from environmental tracers[J]. Applied Geochemistry,2008,23(12):3519-3534.
    Geyh M A. An overview of (super 14) C analysis in the study of groundwater[J]. Radiocarbon, 2006,42(1):99-114.
    Geyer S, Wolf M, Wassenaar L I, et al. Isotope investigations on fractions of dissolved organic carbon for 14 C groundwater dating[C]//International Symposium of Isotopes Techniques in Studying Past and Current Environmental Changes in the Hydrosphere and the Atmosphere. 1993:359-380.
    Geyh M A, Backhaus G, Andres G, et al. Isotope study on the Keuper sandstone aquifer with a leaky cover layer[C]//Proceedings of IAEA-SM-270 Symposium, IAEA, Vienna.1984: 499-513.
    Geyh M A, Kunzl R. Methane in groundwater and its effect on 14C groundwater dating[J]. Journal of Hydrology,1981,52(3):355-358.
    Geyh M A, Wendt I. Results of water sample dating by means of the model by Muennich and Vogel[C]//Proceedings of radiocarbon and tritium dating conference.1965:597-603.
    Geyh M A. Numerical modeling with groundwater ages[M]//Radiocarbon After Four Decades. Springer New York,1992:276-287.
    Geyh M A, Kunzl R. Methane in groundwater and its effect on 14C groundwater dating[J]. Journal of Hydrology,1981,52(3):355-358.
    Giordano M. Global groundwater? Issues and solutions[J]. Annual review of environment and resources,2009,34:153-178.
    Gleeson T, Wada Y, Bierkens M F P, et al. Water balance of global aquifers revealed by groundwater footprint[J]. Nature,2012,488(7410):197-200.
    Glynn P D, Plummer L N. Geochemistry and the understanding of groundwater systems[J]. Hydrogeology Journal,2005,13(1):263-287.
    Gonfiantini R. Notes on isotope hydrology[J]. Internal Publication. Isotope Hydrology section, IAEA, Vienna, Austria,1971.323:786-802.
    Godwin H. Radiocarbon Dating fifth international conference. Nature,1962,195,943-945.
    Goodchild R G. EU policies for the reduction of nitrogen in water:the example of the Nitrates Directive[J]. Environmental pollution,1998,102(1):737-740.
    Goslar T, Van der Knaap W O, Hicks S, et al. Radiocarbon dating of modern peat profiles:pre-and post-bomb 14C variations in the construction of age-depth models[J]. Radiocarbon,2008, 47(1):115-134.
    Gosselin D C, Harvey F E, Frost C D. Geochemical evolution of ground water in the Great Plains (Dakota) Aquifer of Nebraska:Implications for the management of a regional aquifer system[J]. Ground Water,2001,39(1):98-108.
    Granger J, Sigman D M, Lehmann M F, et al. Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria[J]. Limnology and Oceanography, 2008,53(6):2533.
    Griffioen J. Potassium adsorption ratios as an indicator for the fate of agricultural potassium in groundwater[J]. Journal of Hydrology,2001,254(1):244-254.
    Guendouz A, Moulla A S, Edmunds W, et al. Paleoclimatic information contained in groundwater of the Grand Erg Oriental. N. Africa[C]//Proceeding symposium. IAEA, Vienna.1997,349.
    Hackley K C. A chemical and isotopic investigation of the groundwater in the Mahomet Bedrock Valley Aquifer:Age, recharge and geochemical evolution of the groundwater[D]. University of Illinois at Urbana-Champaign,2002.
    Hackley K C, Panno S V, Anderson T F. Chemical and isotopic indicators of groundwater evolution in the basal sands of a buried bedrock valley in the midwestern United States: Implications for recharge, rock-water interactions, and mixing[J]. Geological Society of America Bulletin,2010,122(7-8):1047-1066.
    Happell J D, Price R M, Top Z, et al. Evidence for the removal of CFC-11, CFC-12, and CFC-113 at the groundwater-surface water interface in the Everglades[J]. Journal of Hydrology,2003, 279(1):94-105.
    He J, Ma J, Zhang P, et al. Groundwater recharge environments and hydrogeochemical evolution in the Jiuquan Basin, Northwest China[J]. Applied Geochemistry,2012,27(4):866-878.
    Hem J D. Chemistry and occurrence of cadmium and zinc in surface water and groundwater[J]. Water Resources Research,1972,8(3):661-679.
    Hoque M A, Burgess W G.14C dating of deep groundwater in the Bengal Aquifer System, Bangladesh:implications for aquifer anisotropy, recharge sources and sustainability[J]. Journal of Hydrology,2012.444-445:209-220.
    Hua Z, Dehai M, Cheng W. Optimization of the spatial interpolation for groundwater depth in Shule River basin[C]//Environmental Science and Information Application Technology,2009. ESIAT 2009. International Conference on. IEEE,2009,2:415-418.
    Huang P, Wang Z. Impact of Human Activity on Groundwater Recharge in Shule River Basin, Northwest China[C]//AGU Fall Meeting Abstracts.2010,1:1057.
    Ichiyanagi K, Yamanaka M D. Interannual variation of stable isotopes in precipitation at Bangkok in response to El Nino Southern Oscillation[J]. Hydrological processes,2005,19(17): 3413-3423.
    Ingerson E, Pearson F J. Estimation of age and rate of motion of groundwater by the 14C-method[J]. Recent Researches in the Fields of Atmosphere, Hydrosphere and Nuclear Geochemistry,1964:263-283.
    Ingerson E, Person F J Jr. Estimation of age and rate of motion of the groundwater by the 14C method[C]//Proceedings of Sugawara Festival on recent researches in the fields of atmosphere, hydrosphere,and nuclear geochemisrtry. Tokyo:Maruzen,1964:237-266.
    Ingraham N L, Matthews R A. Fog drip as a source of groundwater recharge in northern Kenya[J]. Water Resources Research,1988,24(8):1406-1410.
    Iwatsuki T, Xu S, Mizutani Y, et al. Carbon-14 study of groundwater in the sedimentary rocks at the Tono study site, central Japan[J]. Applied geochemistry,2001,16(7):849-859.
    Jenden P D, Kaplan I R. Comparison of microbial gases from the Middle America Trench and Scripps Submarine Canyon:implications for the origin of natural gas[J]. Applied Geochemistry,1986,1(6):631-646.
    Jing J, Hui Q, Yu-Fei C, et al. Assessment of Groundwater Quality Based on Matter Element Extension Model[J]. Journal of Chemistry,2013, http://dx.doi.org/10.1155/2013/715647
    Kazemi G A, Lehr J H, Perrochet P. Groundwater age[M]. Wiley-Interscience,2006.
    Keating E H, Fessenden J, Kanjorski N, et al. The impact of CO2 on shallow groundwater chemistry, observations at a natural analog site and implications for carbon sequestration[J]. Environmental Earth Sciences,2010,60(3):521-536.
    Kebede S, Travi Y, Alemayehu T, et al. Groundwater recharge, circulation and geochemical evolution in the source region of the Blue Nile River, Ethiopia[J]. Applied Geochemistry, 2005,20(9):1658-1676.
    Kent D B, Fox P M. The influence of groundwater chemistry on arsenic concentrations and speciation in a quartz sand and gravel aquifer[J]. Geochemical Transactions,2004,5(1):1-12.
    Kim K, Kim H J, Choi B Y, et al. Fe and Mn levels regulated by agricultural activities in alluvial ground-waters underneath a flooded paddy field[J]. Applied Geochemistry,2008,23(1): 44-57.
    Kingsbury T M. Ground water conditions of the unglaciated area in the southern part of Indiana[C]//Proceedings of the Indiana Academy of Science.2013,63:228-229.
    Kipfer, R., Aeschbach-Hertig, W., Peeters, F., Stute, M.,2002.Noble gases in lakes and ground waters. In:Porcelli, D.,Ballentine, C., Wieler R. (Eds.), Noble Gases in geochemistry and Cosmochemistry. Rev. Mineral. Geochem.,47, pp.615-700.
    Lambrakis N, Antonakos A, Panagopoulos G. The use of multicomponent statistical analysis in hydrogeological environmental research[J]. Water Research,2004,38(7):1862-1872.
    Lauriol B, Clark I D. An approach to determine the origin and age of massive ice blockages in two arctic caves[J]. Permafrost and Periglacial Processes,1993,4(1):77-85.
    Lehmann, M.F., Reichert, P., Bernasconi, S.M., Barbieri, A., McKenzie, J.A.,2003. Modelling nitrogen and oxygen isotope fractionation during denitrification in a lacustrine redox-transition zone. Geochim. Cosmochim. Acta 67,2529-2542.
    Lipson D S, McCray J E, Thyne G D. Using PHREEQC to Simulate Solute Transport in Fractured Bedrock[J]. Ground Water,2007,45(4):468-472.
    Longinelli A, Anglesio E, Flora O, et al. Isotopic composition of precipitation in Northern Italy: reverse effect of anomalous climatic events[J]. Journal of Hydrology,2006,329(3):471-476.
    Ma J, He J, Qi S, et al. Groundwater recharge and evolution in the Dunhuang Basin, northwestern China[J]. Applied Geochemistry,2013.28:19-31.
    Ma J, Pan F, Chen L, et al. Isotopic and geochemical evidence of recharge sources and water quality in the Quaternary aquifer beneath Jinchang city, NW China[J]. Applied Geochemistry, 2010,25(7):996-1007.
    Ma J, Zhang P, Zhu G, et al. The composition and distribution of chemicals and isotopes in precipitation in the Shiyang River system, northwestern China[J]. Journal of Hydrology,2012. 436-437:92-101.
    Maloszewski P, Zuber A. Comment on "A New Coupling Term for Dual-Porosity Models" by RC Dykhuizen[J]. Water resources research,1991,27(8):2151-2152.
    Maloszewski P, Zuber A. Influence of matrix diffusion and exchange reactions on radiocarbon ages in fissured carbonate aquifers[J]. Water Resources Research,1991,27(8):1937-1945.
    Maloszewski P, Zuber A. Interpretation of artificial and environmental tracers in fissured rocks with a porous matrix[J]. Isotope hydrology,1983:635-651.
    Marty B, Jambon A. C. C3He in volatile fluxes from the solid Earth:implications for carbon geodynamics[J]. Earth and Planetary Science Letters,1987,83(1):16-26.
    Mas-Pla J, Font E, Astui O, et al. Development of a stream-aquifer numerical flow model to assess river water management under water scarcity in a Mediterranean basin[J]. Science of the Total Environment,2012,440:204-218.
    Moser H, Stichler W. Deuterium and oxygen-18 contents as an index of the properties of snow covers[J]. International Association of Hydrological Sciences Publication,1974,114: 122-135.
    Mullaney J R, Lorenz D L, Arntson A D. Chloride in groundwater and surface water in areas underlain by the glacial aquifer system, northern United States[M]. Reston, VA:US Geological Survey,2009.
    Munnich K O. Heidelberg natural radiocarbon measurements[J]. Science,1957,126(3266): 194-199.
    Negrel P, Pauwels H. Interaction between different groundwaters in Brittany catchments (France): characterizing multiple sources through strontium-and sulphur isotope tracing[J]. Water, Air, and Soil Pollution,2004,151(1-4):261-285.
    Nimmo J R, Healy R W, Stonestrom D A. Aquifer recharge[J]. Encyclopedia of Hydrological Sciences,2003. DOI:10.1002/0470848944.hsa161a
    Okay C, Akkoyunlu B O, Tayanc M. Composition of wet deposition in Kaynarca, Turkey[J]. Environmental Pollution,2002,118(3):401-410.
    Oki T, Kanae S. Global hydrological cycles and world water resources[J]. Science,2006, 313(5790):1068-1072.
    Oxburgh E R, O'nions R K, Hill R I. Helium isotopes in sedimentary basins[J]. Nature,1986,324: 632-635.
    Parkhurst D L, Appelo C A J. User's guide to PHREEQC (Version 2):A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations[M].1999.
    Parkhurst D L, Plummer L N, Thorstenson D C. Balance-A Computer Program for Calculating Mass Transfer for Geochemical Reactions in Ground Water[J].1982. Water-Resources Investigations 82-14,29. Reston, Virginia:U.S. Geological Survey.
    Pestle W J, Simonetti A, Curet L A.87Sr/86Sr variability in Puerto Rico:Geological complexity and the study of paleomobility[J]. Journal of Archaeological Science,2013,40(5):2561-2569.
    Phillips F M, Tansey M K, Peeters L A, et al. An isotopic investigation of groundwater in the central San Juan Basin, New Mexico:Carbon 14 dating as a basis for numerical flow modeling[J]. Water Resources Research,1989,25(10):2259-2273.
    Piper A M. A graphic procedure in the geochemical interpretation of water-analyses [J]. Transactions, American Geophysical Union,1944,25:914-928.
    Plummer L N, Bexfield L M, Anderholm S K. How ground-water chemistry helps us understand the aquifer[J]. Ground-water resources of the Middle Rio Grande Basin. US Geological Survey Circular,2003,1222:92-93.
    Plummer L N, Busenberg E. Chlorofluorocarbons[M]//Environmental tracers in subsurface hydrology. Springer US,2000.
    Plummer L N, Prestemon E C, Parkhurst D L. An interactive code (NETPATH) for modeling net geochemical reactions along a flow path Version 2.0:US Geological Survey Water-Resources Investigations Report 94-4169, Reston, Virginia[J].1994.
    Postel S L, Daily G C, Ehrlich P R. Human appropriation of renewable fresh water[J]. Science-AAAS-Weekly Paper Edition,1996,271(5250):785-787.
    Rodell M, Velicogna I, Famiglietti J S. Satellite-based estimates of groundwater depletion in India[J]. Nature,2009,460(7258):999-1002.
    Rojas R, Feyen L, Dassargues A. Conceptual model uncertainty in groundwater modeling: Combining generalized likelihood uncertainty estimation and Bayesian model avcraging[J]. Water Resources Research,2008,44(12).W12418,doi:10.1029/2008WR006908.
    Rogojin V, Carmi I, Kronfeld J.14C and 34U-excess dating of groundwater in the Haifa Bay region, Israel[J]. Radiocarbon,1998,40(2):945-951.
    Ryan M C. An investigation of inorganic nitrogen compounds in the groundwater in the valley of Mexico[J]. Geofisica Internacional,1989,28(2):417-434.
    Sanchez-Martos F, Jimenez-Espinosa R, Pulido-Bosch A. Mapping groundwater quality variables using PCA and geostatistics:A case study of Bajo Andarax, southeastern Spain[J]. Hydrological sciences journal,2001,46(2):227-242.
    Scanlon B R, Goldsmith R S. Field study of spatial variability in unsaturated flow beneath and adjacent to playas[J]. Water Resources Research,1997,33(10):2239-2252.
    Scanlon B R, Healy R W, Cook P G. Choosing appropriate techniques for quantifying groundwater recharge[J]. Hydrogeology Journal,2002,10(1):18-39.
    Scanlon B R, Mukherjee A, Gates J, et al. Groundwater recharge in natural dune systems and agricultural ecosystems in the Thar Desert region, Rajasthan, India[J]. Hydrogeology Journal, 2010,18(4):959-972.
    Schlosser P, Kromer B, Ostlund G, et al. On the 14C and 39Ar distribution in the central Arctic Ocean:implications for deep water formation [J]. Radiocarbon,1994,36(3):327-343.
    Schoell M. The hydrogen and carbon isotopic composition of methane from natural gases of various origins[J]. Geochimica et Cosmochimica Acta,1980,44(5):649-661.
    Schoeller H. Hydrodynamique dans le karst[J]. Chronique d'Hydrogeologie,1967,10:7-21.
    Siebert S, Burke J, Faures J M, et al. Groundwater use for irrigation—a global inventory[J]. Hydrology and Earth System Sciences,2010,14(10):1863-1880.
    Simmers I, Hendrickx G P, Kruseman G P, et al. Recharge of phreatic aquifers in semi-arid areas (IAH International Contributions to Hydrogeology 19)[M]. London:Taylor & Francis,1997.
    Singer A, Shamay Y, Fried M, et al. Acid rain on Mt Carmel, Israel[J]. Atmospheric Environment. Part A. General Topics,1993,27(15):2287-2293.
    Sivan O, Herut B, Yechieli Y, et al. Radiocarbon dating of porewater; correction for diffusion and diagenetic processes[J]. Radiocarbon,2006,43(2B):765-771.
    Smith R C. Measured characteristics of pulsed-neutron assaying of uranium ore deposits[J]. Nuclear Science, IEEE Transactions on,1979,26(1):1579-1583.
    Smith R L, Bohlke J K, Garabedian S P, et al. Assessing denitrification in groundwater using natural gradient tracer tests with 15N:in situ measurement of a sequential multistep reaction[J]. Water Resources Research,2004,40(7):W07101.
    Stallard R F, Edmond J M. Geochemistry of the Amazon:2. The influence of geology and weathering environment on the dissolved load[J]. Journal of Geophysical Research:Oceans (1978-2012),1983,88(C14):9671-9688.
    Turner J V. Kinetic fractionation of carbon-13 during calcium carbonate precipitation[J]. Geochimica et Cosmochimica Acta,1982,46(7):1183-1191.
    Vengosh A, Gill J, Lee Davisson M, et al. A multi-isotope (B, Sr, O, H, and C) and age dating (3H-3He and 14C) study of groundwater from Salinas Valley, California:Hydrochemistry, dynamics, and contamination processes[J]. Water Resources Research,2002,38(1):9-1-9-17.
    Verhagen B T, Butler M J, van Wyk E, et al. A multi-tracer study of the origns, systematics and hydrological linkages of high nitrate concentrations in groundwater in Bochum District, Limpopo Province.Water Reserch Commission[J].2009. WRC Report No.1328/1/09
    Vogel J C. Investigation of groundwater flow with radiocarbon[J]. Vienna, International Atomic Energy Agency,1967,1968. pp 355-69
    Vorosmarty C J, Green P, Salisbury J, et al. Global water resources:vulnerability from climate change and population growth[J]. Science,2000,289(5477):284.
    Wassenaar L, Aravena R, Hendry J, et al. Radiocarbon in dissolved organic carbon, a possible groundwater dating method:Case studies from western Canada[J]. Water Resources Research, 1991,27(8):1975-1986.
    Welker J M. Isotopic (δ180) characteristics of weekly precipitation collected across the USA:an initial analysis with application to water source studies[J]. Hydrological Processes,2000, 14(8):1449-1464.
    Whiticar M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology,1999,161(1):291-314.
    Wigley T M L, Plummer L N, Pearson Jr F J. Mass transfer and carbon isotope evolution in natural water systems[J]. Geochimica et Cosmochimica Acta,1978,42(8):1117-1139.
    Williams E L, Szramek. K J, Jin L, et al. The carbonate system geochemistry of shallow groundwater-surface water systems in temperate glaciated watersheds (Michigan, USA): Significance of open-system dolomite weathering[J]. Geological Society of America Bulletin, 2007,119(5-6):515-528.
    Yang Y, Xiao H, Wei Y, et al. Hydrological processes in the different landscape zones of alpine cold regions in the wet season, combining isotopic and hydrochemical tracers[J]. Hydrological Processes,2012,26(10):1457-1466.
    Yang Y, Xiao H, Zou S, et al. Hydrochemical and hydrological processes in the different landscape zones of alpine cold region in China[J]. Environmental Earth Sciences,2012,65(3): 609-620.
    Yokoo Y, Nakano T, Nishikawa M, et al. Mineralogical variation of Sr-Nd isotopic and elemental compositions in loess and desert sand from the central Loess Plateau in China as a provenance tracer of wet and dry deposition in the northwestern Pacific[J]. Chemical Geology,2004,204(1):45-62.
    Yurtsever Y. Worldwide survey of stable isotopes i precipitation[J]. Rep. Sect. Isotope Hydrol., IAEA,1975,40.
    Zhu C. Estimate of recharge from radiocarbon dating of groundwater and numerical flow and transport modeling[J]. Water Resources Research,2000,36(9):2607-2620.
    陈德华,王昭,靳盛海.疏勒河流域水文特征及径流量变化趋势分析[J].地球学报,2002,23(Sup.):9-13.
    陈建耀,王亚,张洪波,等.地下水硝酸盐污染研究综述[J].地理科学进展,2006,25(1):34-44.
    陈隆亨,曲耀光.河西地区水土资源及其合理开发利用[M].科学出版社,1992.
    陈梦熊.西北干早区水资源与第四纪盆地系统[J].第四纪研究,1997(2):97-104.
    陈文俊,黄显强,宋怀则,等.中国南方岩溶地下水[J].地质学报,198 1,55(2):149-160.
    陈植华,徐恒力.确定干旱-半干旱地区降水入渗补给量的新方法-氯离子示踪法[J].地质科技情报,1996,15(3):87-92.
    陈志辉,范鹏飞,赵春燕.疏勒河中游水资源利用方案优化[J].水文地质工程地质,2002,2:34-37.
    陈宗宇,齐继祥,张兆吉.北方典型盆地同位素水文地质学方法应用[M].科学出版社,2010.
    程国栋.黑河流域水-生态-经济系统综合管理研究[M].科学出版社,2009.
    程远顺.河西走廊玉门市花海盆地地下水现状分析[J].甘肃农业,2011,9:8-9.
    丁宏伟,姚吉禄,何江海.张掖市地下水位上升区环境同位素特征及补给来源分析[J].干旱区地理,2009,32(1):1-8.
    丁宏伟,尹政,李爱军,等.疏勒河流域水资源特征及开发利用存在的问题[J].干早区资源与环境,2002,16(1):48-53.
    丁宏伟,张荷生.河西走廊西端地下水资源[J].甘肃地质学报,2000,9(1):80-84.
    丁宏伟,赵成,黄晓辉.疏勒河流域的生态环境与沙漠化[J].干旱区研究,2001,18(2):11-1
    丁宏伟,徐大录,赵玉苹,等.甘肃省黑河干流中游地区泉水动态特征及预报[J].干旱区地理,2009,32(5):726-732.
    丁贞玉,马金珠,何建华.腾格里沙漠西南缘地下水水化学形成特征及演化[J].干旱区地理,2009,32(006):948-957.
    董锋.疏勒河流域水利规划简介[J].甘肃水利水电技术,1993,(2):6-7.
    董维红,苏小四,侯光才,等.鄂尔多斯白垩系地下水盆地地下水水化学类型的分布规律[J].吉林大学学报:地球科学版,2007,37(2):288-292.
    董维红,苏小四,林学钰,等.反向水文地球化学模拟技术在深层地下水14C年龄校正中的应用-以鄂尔多斯白垩系地下水盆地为例[J].水文,2007,28(5):43-46.
    董维红.反向水文地球化学模拟技术在鄂尔多斯白垩系自流水盆地深层地下水14C年龄校正中的应用[D].吉林大学,2005.
    段志俊.玉门市地下水位持续下降成因及治理对策[J].甘肃水利水电技术,2009,45(8):18-19.
    范锡朋.河西走廊地下水与河水的互相转化及水资源合理利用问题[J].水文地质工程地质,1981,68(4):1-6.
    冯绳武.疏勒河水系的变迁[J].兰州大学学报:自然科学版,1981,4:138-143.
    高前兆,仵彦卿.河西内陆河流域的水循环分析[J].水科学进展,2004,15(3):391-396.
    郭华明,王焰新,沉艳玲.地下水有机污染的水文地球化学标志物探讨[J].地球科学,2001,26(1):304-308.
    郭显光.如何用SPSS软件进行主成分分析[J].统计与信息论坛,1998,2:60-64.
    郭占荣,聂振龙,焦鹏程,等.三屯河流域平原区地下水化学组成特征及变化[J].勘察科学技术,2002,3:34-38.
    韩冬梅.忻州盆地第四系地下水流动系统分析与水化学场演化模拟[D].中国地质大学博士学位论文,2007.
    韩巍,胡立堂,陈崇希,等.疏勒河流域玉门—踏实盆地地下水流模型设计中几个问题的探讨[J].勘察科学技术,2005,1:15-18.
    侯光才,林学钰,苏小四,等.鄂尔多斯白垩系盆地地下水系统研究[J].吉林大学学报:地球科学版,2006,36(3):391-398.
    侯光才,苏小四,林学钰,等.鄂尔多斯白垩系地下水盆地天然水体环境同位素组成及其水循环意义[J].吉林大学学报:地球科学版,2007,37(2):255-260.
    黄天明.应用环境同位素研究巴丹吉林沙漠地下水补给来源[D].兰州:兰州大学硕士学位论文,2007.
    黄勇,周志芳,高正夏.基于水化学动力学方法的水文地质参数确定[J].Chinese Journal of Rock Mechanics and Engineering,2007,26:2988-2991.
    贾宁.党河流域水资源保护与可持续利用研究[D].兰州:兰州大学硕士学位论文,2008.
    康尔泗,程国栋,董增川.中国西北干旱区冰雪水资源与出山径流[M].北京,科学出版社,2002.
    李峰,杨富元,王培龙,等.疏勒河流域地下水水位浅析[J].中国水运,2012,(12):177-179.
    李文赞,严平,刘永刚,等.库姆塔格沙漠东北缘浅层地下水补给来源[J].中国沙漠,2011,31(006):1617-1622.
    李学礼,孙占学,刘金辉.水文地球化学[M].北京,原子能出版社.2010.
    刘进达,赵迎昌.中国大气降水稳定同位素时—空分布规律探讨[J].勘察科学技术,1997(3):34-39.
    刘卫国,宁有丰,安芷生,等.黄土高原现代土壤与古土壤有机碳同位素对植被的响应[J].中国科学(D辑),2002,32(10):830-836.
    刘心彪,周斌,魏玉涛.基于环境同位素的陇东盆地地下水分析[J].干旱区研究,2009,26(6):804-810.
    刘忠方,田立德,姚檀栋,等.中国大气降水中δ18O的空间分布[J].科学通报,2009,54(6):804-811.
    吕俊梅,陶诗言,张庆云,等.气候平均状况下亚洲夏季风的季节内演变过程[J].高原气象,2006,25(5):814-823.
    马德海.疏勒河流域水资源开发利用研究[J].水利水电技术,2006,37(5):1-4.
    毛洪亮,赵华,卢演俦,等.甘肃疏勒河冲积扇绿洲全新世孢粉组合和环境演化[J].地球学报,2007,28(6):528-534.
    庞洪喜,何元庆,张忠林.季风降水中δ18O与高空风速关系[J].科学通报,2004,49(9):905-908.
    庞洪喜,何元庆,张忠林.重要海-气-天文事件与新德里季风降水中δ18O的关系[J].冰川冻土,2004,26(1):42-47.
    钱会,连珺,窦妍.地下水混合作用的碳酸钙溶解沉淀效应[J].地球科学与环境学报,2007,29(1):55-65.
    屈君霞,喻生波.疏勒河干流地表水与地下水水化学特征及相互转化关系[J].甘肃科技,2007,23(4):119-119.
    桑学锋,张明泉,王浩,等.敦煌盆地地下水数值模拟及可视化与管理[J].兰州大学学报:自然科学版,2007,43(3):18-22.
    桑学锋.敦煌盆地地下水数值模拟及可视化与管理[D].兰州:兰州大学硕士学位论文,2006.
    沈照理,朱宛华,钟佐燊.水文地球化学基础[M].地质出版社,1993.
    司书红,朱高峰,苏永红.西北内陆河流域的水循环特征及生态学意义[J].干旱区资源与环境,2010,24(9):37-44.
    宋献方,柳鉴容,孙晓敏,等.基于CERN的中国大气降水同位素观测网络[J].地球科学进展,2007,22(7):738-747.
    苏小四,林学钰,董维红,等.反向地球化学模拟技术在地下水年龄校正中应用的进展与思考[J].吉林大学学报:地球科学版,2007,27(2):217-277.
    苏小四,吴春勇,董维红,等.鄂尔多斯沙漠高原白垩系地下水锶同位素的演化机理[J].成都理工大学学报(自然科学版),2011,3:019.
    孙国武.青藏高原及其邻近地区大气环境的季节变化与甘肃受旱研究[C]//青藏高原气象会议论文集.北京:科学出版社.1977,1978:129-141.
    田立德,姚檀栋,孙维贞.青藏高原南北降水中D和18O关系及水汽循环[J].中国科学(D辑),2001,31(3):214-220.
    田立德.中国西部降水中δD的初步研究[J].冰川冻土,1998,20(2):175-179.
    王大纯,水文地质学.水文地质学基础[M].北京,地质出版社,1986.
    王东升.氮同位素比(15N/14N)在地下水氮污染研究中的应用基础[J].地球学报:中国地质科学院院报,1997,18(2):220-223.
    王好芳,郭乐,窦实.基于主成分分析的东江流域水资源承载能力评价[J].水文,2008,28(4):16-19.
    王继和,廖空太,俄有浩,等.库姆塔格沙漠综合科学考察的初步结果[J].甘肃科技,2005,21(10):6-11.
    王建强.疏勒河流域水资源可持续利用与保护探讨[J].水资源保护,2006,22(1):68-69.
    王宁练,张世彪,贺建桥,等.祁连山中段黑河上游山区地表径流水资源主要形成区域的同 位素示踪研究[J].科学通报,2009(015):2148-2152.
    王昭,陈德华.疏勒河流域水资源开发及其对生态环境的影响[J].地球学报,2002,23(Sup.):14-17.
    卫克勤.同位素水文地球化学[J].地球科学进展,1992,7(5):67-68.
    徐兆祥.河西走廊疏勒河流域中游地区水资源综合利用.干早区资源与环境[J].1988,2(2):46-51.
    闫成云.疏勒河流域中下游三大盆地地下水潜力评价[J].甘肃地质,2006,15(2):81-84.
    杨湘奎.基于同位素技术的松嫩平原地下水补给及更新性研究[D].北京:中国地质大学博士学位论文,2008.
    杨郧城,沈照理,文冬光,等.鄂尔多斯白垩系盆地地下水的形成与演化,来自Cl-及其同位素36Cl的证据[J].地质学报,2011,85(4):586-595.
    于津生,张鸿斌,虞福基,等.西藏东部大气降水氧同位素组成特征[J].地球化学,1980(2):113-121.
    余学林.疏勒河径流时空分布规律及其变化趋势分析[J].甘肃水利水电技术,2000,36(3):145-147.
    袁利娟,庞忠和.地下水硝酸盐污染的同位素研究进展[J].水文地质工程地质,2010,37(002):108-113.
    袁兆盾.上海地区第四纪承压水水化学类型的成因[J].上海地质,1981,2:2:8-13.
    张明泉,赵转军,曾正中.敦煌盆地水环境特征与水资源可持续利用[J].干旱区资源与环境,2003.17(4):71-77.
    张之淦,张洪平,孙继朝,等.河北平原第四系地下水年龄、水流系统及咸水成因初探-石家庄至渤海湾同位素水文地质剖面研究[J].水文地质工程地质.1987.4:1-6.
    章新平,刘晶淼,田立德等.亚洲降水中6180沿不同水汽输送路径的变化.地理学报,2004,59(5):699-708.
    赵华,卢演俦,王成敏,等.疏勒河冲积扇绿洲全新世古水文演化释光年代学[J].核技术,2007,30(11):893-898.
    赵琦经,顾慰祖,顾文燕,等.中国降水同位素站网[J].水文,1995,(5):25-27.
    周琴南.关于新疆降水水汽来源问题的研究[A].北方天气文集4.北京,北京大学出版社,1983.p179-181.
    周志芳.裂隙双重介质地下水运动参数反演分析[J].水动力学研究与进展,2003,18(6):742-747.
    周祖权,宋汉周.水-岩作用模拟中饱和指数的灵敏度分析[J].河海大学学报,2001,29(6).
    朱学愚,谢春红.地下水运移模型[M].中国建筑工业出版社,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700