用户名: 密码: 验证码:
TaMS-MADSbox和TaG3BP基因在小麦温敏雄性不育系育性转换中的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作物温光敏雄性不育系的利用为两系利用作物杂种优势提供了新的途径,然而,由于环境条件的复杂性,也加大了其生产利用的风险。揭示作物温光敏雄性不育系育性转换的分子基础,将为温光敏雄性不育系的合理高效利用提供理论基础,同时也为探索防控该类型不育系利用风险的措施,建立调控作物雄性不育育性转换的方法和技术奠定理论基础。YS型小麦温敏雄性不育系已应用于两系杂交小麦的选育,为了揭示YS型小麦温敏雄性不育系育性转换的分子基础,为其安全合理利用提供理论和技术,本研究对小麦TaMS-MADSbox和TaG3BP在YS型小麦温敏雄性不育系育性转换中的功能进行了较为深入的分析,旨在阐明其在该类型小麦温敏雄性不育系育性转换中的作用。
     本研究选取YS型小麦温敏雄性不育系A3017不育和可育条件下小孢子各发育时期(减数分裂期、单核期、单~二核期、二核期及三核期)的花药和三种K型小麦细胞质雄性不育系及其保持系(K3314A/3314B、KTsp732A/Tsp732B和KTm3314A/Tm3314B)小孢子发育在单核~二核期的幼穗为主要材料,对TaMS-MADSbox和TaG3BP在YS型小麦温敏雄性不育系育性转换中的功能进行分析,获得的主要研究结果如下:
     1 TaMS-MADSbox在育性转换中的功能分析
     利用RACE技术从A3017中克隆了TaMS-MADSbox的1,131bp的全长cDNA序列(GenBank登录号:JN874386)。序列分析表明TaMS-MADSbox编码269个氨基酸,具有MADS-box转录因子典型的K-box结构域。该基因编码蛋白的pI/Mw为9.30/30.35。同源比对表明该基因与小麦MIKC-type MADS-box转录因子WM2及小麦MADS-box转录因子WAG高度同源。
     采用Reverse transcription quantitative real-time PCR(RT-qPCR)技术对TaMS- MADSbox的表达模式分析表明,TaMS-MADSbox在A3017的育性转换关键时期(花粉发育的单核期~二核期)呈上调表达,且在不育条件下的表达量高于同时期可育条件下的表达量;TaMS-MADSbox在三种K型不育系幼穗中的表达量高于在其保持系中的表达量。表明该基因与小麦温敏雄性不育系的育性转换相关,该基因在育性转换关键时期的大量表达与其不育性密切相关。
     采用BSMV-VIGS技术,在可育温度条件下,有效地沉默了TaMS-MADSbox在A3017穗部的表达。沉默植株出现部分花药瘦小、不开裂等不育性状,自交结实率降低。其中植株A3017-M-4自交结实率为0,表现完全雄性不育。RT-qPCR检测结果表明,随着该基因的沉默程度的加深,植株自交结实率也相应降低。综上分析表明,该基因的适量表达对小麦雄性不育系的育性非常关键,过高或过低的表达都会导致其雄性育性的降低。
     2 TaG3BP在育性转换中的功能分析
     采用RACE技术从A3017中克隆了TaG3BP的全长cDNA序列。序列分析表明该基因在A3017中存在1,311 bp和1,308 bp两个拷贝,分别命名为TaG3BP1和TaG3BP2(GenBank登录号:JF830798和JF830800),分别编码436或435个氨基酸。序列分析表明该基因具有Ras-GTPase激活蛋白(G3BP)的典型结构域NTF2和RRM。根据获得的全长cDNA序列设计引物,在A3017中分离了TaG3BP1和TaG3BP2的完整基因组DNA序列(GenBank登录号:JF830799和JF830801)。基因组DNA与cDNA序列的比对分析表明该基因两种拷贝中均含有9个外显子和8个内含子,同一拷贝的外显子与cDNA编码区完全重叠。两种拷贝间在内含子区域有较大的差异,编码区无明显差异。采用GenomeWalker技术在A3017中获得了该基因814bp的5′侧翼序列,分析表明该序列具有启动子的典型结构及多个顺式调控元件。进一步在上述三种K型不育系及其保持系中分离了该基因的全长cDNA、基因组DNA及5′侧翼序列。序列多重比对分析表明,在不同试验材料间该基因同一拷贝的序列存在多处单碱基差异,但对编码蛋白无显著影响。
     RT-qPCR分析表明,TaG3BP在YS型小麦温敏雄性不育系A3017的育性转换关键时期(花粉发育的单核期~二核期)呈上调表达,且在可育条件下的表达量高于同时期不育条件下的表达量。该基因在三种K型不育系幼穗中的表达量低于在其保持系中的表达量。表明该基因与小麦温敏雄性不育系的育性转换相关,该基因在可育条件下的大量表达可能具有修复细胞质雄性不育系花药发育中的基因表达缺陷的作用,进而引起育性的恢复。
     利用原核表达载体系统成功诱导了TaG3BP编码蛋白的表达,并制备了该蛋白的多克隆抗体Anti-TaG3BP。以Anti-Beta-Actin (Rabbit) (Biosynthesis, Beijing, China)为内参抗体,通过Western blot分析该基因编码蛋白的表达模式,结果表明在两种育性条件下,A3017小孢子各发育时期的花药中均检测到了约50-kDa的目标蛋白条带,TaG3BP的编码蛋白在可育条件下各时期花药中的表达量均高于同时期不育条件下的表达量,而且该基因的编码蛋白在A3017育性转换的关键时期(单~二核期)呈上调表达。
     采用BSMV-VIGS技术,在可育条件下,使TaG3BP在YS型小麦温敏雄性不育系A3017的穗部表达得到了有效沉默。沉默植株出现部分花药瘦小,不开裂等不育性状,自交结实率降低。其中植株A3017-G-1自交结实率相对于对照植株显著降低。
     综上分析表明,该基因的上调表达对小麦温敏雄性不育系的育性恢复有重要作用,TaG3BP可能是育性转换中的重要调控基因。这也是首次对植物中的G3BP基因的功能分析。
     3小麦穗部BSMV-VIGS技术体系的初步建立
     本研究中通过对植株叶片的持续侵染,在可育条件下,在YS型小麦温敏雄性不育系A3017穗部实现了TaMS-MADSbox及TaG3BP的有效沉默。不仅在叶片部位观察到病毒侵染的表型,而且RT-qPCR分析表明其在穗部花药中的表达明显降低。初步建立了在小麦穗部特异表达基因功能研究的BSMV-VIGS技术体系,拓宽了该技术在植物基因功能研究中的应用。
The utilization of thermo or photoperiod (or both) sensitive male sterility (TMS or PMS), either genic or cytoplasmic, is a break-through development for the utilization of heterosis in crop production. But the environmental conditions are complex, the risk for the utilization of TMS or PMS in production increased. A greater understanding of the mechanism of TMS or PMS will promote the proper use of those lines in crop production and could result in lasting benefits for food security world-wide. In this study, to investigate the function of TaMS-MADSbox and TaG3BP in fertility modulation of YS type thermo-sensitive cytoplasmic male sterile (TCMS) wheat line A3017, more function analysis were performed. The objective of this study was to reveal the molecular basis of fertility modulation and provide some theoretical basis and technical strategies for the safe utilization of this TCMS wheat lines.
     The anthers in the middle florets of YS-type TCMS wheat line A3017 at meiosis, uninucleate, uni-binucleate, binucleate and trinucleate stages of microsporogenesis, the young spikes at the critical developmental stage (uni-binucleate stages) of microsporogenesis of three kinds of K-type cytoplasmic male sterile (CMS) wheat lines and their maintainers, including the 1B/1R (K3314A and 3314B), non 1B/1R with 1B chromosome fragment from T. spelta (KTsp732A and Tsp732B), and non 1B/1R with 1B chromosome fragment from T. macha (KTm3314A and Tm3314B), were used in this study to characterize the function of TaMS-MADSbox and TaG3BP in fertility modulation of YS type thermo-sensitive cytoplasmic male sterile (TCMS) wheat line A3017. The main results were as follows:
     1. The function analysis of TaMS-MADSbox in the modulation of male fertility
     The full length cDNA sequence of TaMS-MADSbox with 1,131 bp was isolated from A3017 by 3′RACE and 5′RACE, including 58-bp of 5′UTR, 263-bp of 3′UTR and an 810-bp open reading frame (GenBank accession No. JN874386). TaMS-MADSbox was predicted to encode a protein of 269 amino acids, and the typical K-box domain of MADS box proteins were found in the deduced protein sequence of TaMS-MADSbox by the conserved domain analysis. The predicted protein has a theoretical pI of 9.3, and molecular weight of 30.35KDa. Phylogenetic analysis showed that TaMS-MADSbox is closely related to MIKC-type MADS-box transcription factor WM2 (CAM59041.1) and MADS-box transcription factor WAG (BAC22939.1) of wheat.
     The expression patterns of TaMS-MADSbox at various stages of microsporogenesis in anthers of A3017 grown under temperature regimes favoring either sterile pollen or fertile pollen development were investigated by Reverse transcription quantitative real-time PCR (RT-qPCR). The results indicated that the transcript levels of TaMS-MADSbox in anthers under conditions favoring male sterility were higher than under conditions favoring male fertility at all stages of microsporogenesis, especially at uni-binucleate stages. RT-qPCR anaylsis revealed the transcription level of TaMS-MADSbox in young spikes at the critical developmental stage (uni-binucleate stages) of microsporogenesis of the three K-type CMS wheat lines were higher than in their maintainers. The results indicated TaMS-MADSbox associated with the male fertility modulation of wheat.
     The transcription of TaMS-MADSbox was effectively silenced by BSMV-VIGS under male fertile conditions, which caused pollen abortion and the decrease of seedset rate in the infected A3017 plants.
     2 The function analysis of TaG3BP in the modulation of male fertility
     The cDNA, genomic DNA and 5’flanking sequences of TaG3BP were cloned from YS-type TCMS wheat line A3017, three kinds of K-type CMS wheat lines and their maintainers. Two cDNA of TaG3BP with 1,311 or 1,308 bp were assembled, encoding a protein with 436 or 435 amino acids residues, and designated TaG3BP1 and TaG3BP2. The conserved domain analysis of the TaG3BP deduced protein sequence indicated that there were the typical NTF2 and RRM domains of Ras-GTPase activating protein SH3 domain-binding protein (G3BP). Two genomic DNA sequences were obtained with 2843 bp and 2872 bp, respectively. Alignment of the two genomic DNA sequences with the two cDNA sequences obtained previously revealed that each of the two genomic DNA sequences aligned with a different one of the two cDNA sequences, and there were nine exons and eight introns included in both of the two TaG3BP genomic DNA sequences. Many variations were observed in the intron regions of the two genomic DNA sequences. An 819-bp 5′flanking sequence of TaG3BP was obtained by genome walking and analysis indicated the typical structures for a promoter, and some cis-acting regulatory elements were included in the sequence.
     RT-qPCR analysis indicated that the transcript levels of TaG3BP in anthers of A3017 grown under conditions favoring male fertility were higher than under conditions favoring male sterility at all stages of microsporogenesis, especially at uni-binucleate stages. And the transcription level of TaMS-MADSbox in young spikes at the critical developmental stage (uni-binucleate stages) of microsporogenesis of the three K-type CMS wheat lines were lower than in their maintainers also via RT-qPCR.
     The recombinant protein of TaG3BP was obtained by the IPTG induction, and used for the specific polyclonal antibody preparation of TaG3BP. ELISA analysis on the specific polyclonal antibody obtained indicated that the titer (the highest dilution factor) of the antiserum reached 1:10,000. Anti-Beta-Actin (Rabbit) (Biosynthesis, Beijing, China) was employed as an endogenous control to adjust all templates to be the same amounts. The western blot results showed a 50-kDa protein band in the anthers of A3017 at meiosis, uninucleate, uni-binucleate, binucleate and trinucleate stages grown under male sterile and fertile conditions. The protein expression levels were higher in male fertile anthers than in sterile anthers at all the stages, and the protein level greatly deceased in male sterile anthers at the trinucleate stage, but intensified in male fertile anthers at the same stage. The expression difference of TaG3BP between male sterile and male fertile anthers suggested that TaG3BP may play an important role in modulation of male fertility in the YS-type TCMS wheat line.
     The transcription of TaG3BP was also effectively silenced by BSMV-VIGS under male fertile conditions, which caused pollen abortion and the decrease of seedset rate in the infected A3017 plants.
     3 Application of BSMV-VIGS for silencing genes expressed in wheat spikes
     In this study, TaMS-MADSbox and TaG3BP were successful silenced in spikelets by repetitive inoculations with BSMV-VIGS vector. Phenotypic changes were observed in leaves and also in anthers, which resulted in reducing selfed seedset rate that paralleled the transcriptional levels of TaMS-MADSbox and TaG3BP in the spikes. These results suggest that the effect of gene silencing by BSMV-inoculated on leaves could impact on the spikes. Therefore, BMSV-VIGS may be a powerful tool to help characterize the functions of genes expressed in the reproductive organs in wheat and may assist in constructing a more complete model of floral development.
引文
曹双河,郭小丽,刘冬成,张相岐,张爱民. 2004.小麦光温敏核雄性不育基因的初步定位.遗传学报,1(3): 293~298
    陈凌,郭盛,郝春莉,吴良霞,张建华. 2010.重组小鼠白细胞介素-17F/His融合蛋白的原核表达、纯化及生物活性.中国生物制品学杂志, 23(7): 673~677
    陈晓军,叶春江,吕慧颖,徐民新,李葳,张利明,王超,罗淑萍,朱保葛. 2006. GmHSFA1基因克隆及其过量表达提高转基因大豆耐热性.遗传, 28 (11): 1411~1420
    邓景场,高忠丽. 1980.太谷核不育小麦的发现和鉴定.作物学报, (2):84~98
    方永军,张兵,薛庆中. 2005. EST数据注释及多序列比对.见:胡松年(主编).基因表达序列标签(EST)数据分析手册.浙江:浙江大学出版社: 104~126
    傅大雄,阮仁武. 1993. KM型核质互作小麦光温敏雄性不育的发现与两系杂交小麦的拓建.见:黄铁城,张爱民(主编).杂种小麦研究进展.北京:农业出版社:201~206
    傅新晖,黄晓卉,陈锡林,曹良启,谭浩翔,汪谦. 2008.实时荧光定量RT-PCR检测肝细胞癌中PTCH基因的表达.热带医学杂志, 8(6): 541~543
    高明尉. 1980.雄性不育与杂种优势育种(二) .作物学报, 6 (1): 57~62
    何蓓如,宁毓华,刘曙东,封玉印. 1987. 1B/1R类型的K型小麦雄性不育系初步研究.西北农林科技大学学报(自然科学版), 15 (3): 107~109
    何蓓如. 1994.一种选育小麦雄性不育保持系和不育系的方法.中国专利, ZL94116837.X
    何蓓如,孟荣华,宋喜悦,胡银岗,马翎建,奚亚军,徐浩,刘曙东,杨存义. 1999.粗厚山羊草(Ae.crassa)细胞质普通小麦核代换系在中国不同光温条件地点的雄性育性变异.西北植物学报, 19(6): 10~16
    何蓓如. 2000.一种选育适应中国黄淮麦区的小麦温敏不育系的方法.中国专利, ZL00105488.0
    何蓓如,董普辉,宋喜悦,马翎建,胡银岗,蒋通关,王俊鹏,李宏斌. 2003.小麦温度敏感不育系A3314温敏特性研究.麦类作物学报, 23 (1): 1~6
    何觉民,戴君惕,邹应斌,周美兰,张海清,刘雄伦. 1992.两系杂交小麦研究I.生态雄性不育小麦的发现、培育及其利用价值.湖南农业科学, 5: 1~3
    蒋华仁,戴大庆. 1988.小麦粘型细胞质雄性不育性的初步研究.中国农业科学, 21(2): 95
    李继耕. 1987.高等植物叶绿体分子遗传学.北京:北京农业大学出版社: 87~88
    李罗江,茹振刚,高庆荣,姜辉,郭凤芝,吴世文,孙哲. 2009. BNS小麦的雄性不育性及其温光特性. 中国农业科学, 42(9): 3019~3027
    缪颖,陈睦传. 2000.植物雄性不育基因的研究进展.植物学通报, 17(1): 1~10
    刘秉华,正山荭,杨丽. 1996.一个新的小麦核不育材料的发现和鉴定.遗传, 18(6): 9~11
    刘博,崔素萍,王晓杰,黄丽丽,康振生. 2007.条锈菌诱导的小麦β-1,3-葡聚糖酶基因编码区的克隆及原核表达.西北农林科技大学学报(自然科学版), 35(6):125~129
    刘春光,吴郁文. 1997.粗厚山羊草细胞质对普通小麦遗传效应的初步研究.遗传学报, 27(3): 241~ 247.
    刘东涛,张改生,刘宏伟,王军卫,王小利.小麦雄性不育的育性基因定位研究进展.麦类作物学报, 19(4): 6~11
    刘曙东,宋喜悦,奚亚军,杨存义,何蓓如. 1998. D2型细胞质对普通小麦籽粒品质的影响.西北农业大学学报(自然科学版), 26(2): 7~11
    刘西燕,柏锡,李莹,李杰. 2008. OsMAPK4基因的原核表达及蛋白纯化.东北农业大学学报, 39(8): 59~63
    刘忠祥,周宽基,王世红. 2004.兰州核不育小麦在杂交小麦育种中的应用研究.甘肃农业科技, 7:11~14
    孟慧,张霞,曾日中,范云六,赵军. 2007.转录因子ABP9基因过表达对植物生长发育的影响分析. 中国农学通报, 23(6): 94~98
    梁凤山,王斌. 2003.小麦雄性不育遗传及基因定位研究进展.遗传, 25(4): 461~465
    罗钊,宋喜悦,何蓓如,李宏斌,胡银岗,马翎健,肖海峰. 2010. YM型小麦雄性不育系KTM3314A的温敏特性.麦类作物学报, 30(4): 612-616
    马翎健,何蓓如,宋喜悦,胡银岗. 2004.小麦光敏雄性不育系A31在不同生态地点的育性变异.中国农学通报, 20(2): 76~78
    彭世清,陈守才. 2002.巴西橡胶树Ployubiquitin基因5′调控序列的克隆及分析.农业生物技术学报, 10(1): 56~59
    荣德福,李少华,郭拥军,周世文. 2001.两极光温敏感型小麦雄性不育系337S的选育.湖北农业科学, 5: 13~16
    宋国琦,胡银岗,林凡云,董普辉,马翎健,宋喜悦,何蓓如. 2006a. YS型小麦温敏雄性不育A3017控温条件下的花粉育性比较.麦类作物学报, 26(1): 17~20
    宋国琦,胡银岗,林凡云,董普辉,何蓓如. 2006b. YS型小麦温敏不育系育性转换基因的cDNA- AFLP分析.西北植物学报, 26(4): 0661~0666
    宋国琦,胡银岗,林凡云,董普辉,何蓓如. 2006c. YS型小麦温敏雄性不育系A3017育性相关基因的SSH分析.西北植物学报, 26(7): 1031~1038
    宋国琦. 2006d. YS型小麦温敏雄性不育系A3017不育和可育条件下基因表达谱的比较分析[博士学位论文].陕西杨凌:西北农林科技大学
    宋喜悦,何蓓如,马翎健,胡银岗,李宏斌. 2005.小麦温敏不育系A3314温敏不育性的遗传研究.中国农业科学, 38 (6): 1095~1099
    宋亚珍,雷国材,耿东梅,周桂莲,王强,陈天佑,路明. 2003.一种普通小麦光温敏雄性不育种质初探.中国农学通报, 19 (5): 34~36
    沈霞,郭霭光. 2005.小麦中高分子量麦谷蛋白的高效分离回收.西北植物学报, 25(10): 2103~2106
    谭昌华,余国东,扬沛丰,张宗华,潘鹰,郑坚. 1992.重庆温光型核不育小麦的不育性研究初报.西南农业学报, 5(4): 1~6
    王建革,李集临,薛玺. 1995.小麦细胞质雄性不育研究的回顾.生物工程进展, 15(4): 32~36
    王培田. 1989.光照及温度对K型小麦不育系花粉育性的影响.中国科学院遗传研究所《研究工作年报(1987-1988)》, 59~60
    王学德,朱英国. 1998.水稻雄性不育与可育花药的mRNA差别显示和cDNA差别片段的分析.中国科学(C辑), 28(3): 257~263
    王艳,蒋磊,李韶山. 2005.拟南芥CHS基因表达的实时荧光定量PCR检测.植物学通报, 22(5): 594~598
    吴丹,高翔,于旭,董剑,赵万春,陈其皎,庞红喜,李哲清. 2009.小麦品种陕253低分子量谷蛋白亚基基因的克隆及原核表达.作物学报,35(4): 672~678
    吴东,喻树讯,范术丽,宋美珍,王力娜. 2009.棉花MADS-box蛋白基因(GhMADS-13)的克隆和表达分析.基因组学与应用生物学, 28(2): 223~228
    吴秋云,何觉民,罗红兵,黄科. 2001.生态雄性不育小麦ES250育性转换机制的研究.湖南农业大学学报(自然科学版), 27(2): 89~91
    吴郁文,张翠兰,刘春光,任树新,张炎. 1994. D2型小麦雄性不育系的育成及其特性的研究.科学通报, 39(17): 1618~1821
    徐立新,罗越华,彭世清. 2003.烟草伤诱导型过氧化物酶基因(tpoxN1)启动子的克隆及分析.热带作物学报, 24(2): 37~41
    徐涛,马闻师,沈银柱,张庆祝,齐志广,黄占景. 2004小麦糖原合酶激酶(TaGSK1)表达载体的构建及原核表达.中国农业科学, 37(11): 1593~1597
    杨颖,张林生,张晓娟,山仑. 2007.小麦类脱水素的表达、纯化及多克隆抗体的制备.生物化学与生物物理进展, 34(9): 960~964
    张弛宇,徐顺高,黄新祥. 2005.一种新颖简便的荧光实时RT-PCR相对定量方法的建立.生物化学与生物物理进展, 32(9): 883~888
    张改生,杨天章. 1989.偏型、粘型和易型小麦雄性不育系的初步研究.作物学报, 15(1): 1~10
    张改生,赵惠燕,吴兆苏,俞世荣. 1994.偏、粘和易型非1B/1R小麦雄性不育系研究初报.西北农业学报, 3(4): 7~12
    张海燕,李国田,王晓杰,段迎辉,徐亮胜,郭军,马金彪,黄丽丽,康振生. 2009.小麦过氧化物还原酶基因TaPrx的克隆与功能初步分析.中国农业科学, 42(4): 1222~1229
    张洪映,毛新国,景蕊莲,谢惠民,昌小平. 2008.小麦TaPK7基因的克隆及其在多种胁迫条件下的表达分析.麦类作物学报, 28(2): 177~182
    张建奎,何立人,冯丽,管健. 1999.日长和温度对雄性核不育小麦C49S育性转换的影响.西南农业大学学报, 21(6): 518~521
    张建奎,冯丽,何立人,余国东. 2003.温光型核雄不育小麦育性转换的温度敏感期和临界温度研究. 应用生态学报, 14(1): 57~60
    张增艳,姚乌兰,辛志勇. 2006.植物基因功能鉴定新工具—病毒诱导基因沉默技术的研究进展.植物遗传资源学报, 7(1): 100~105
    张中保,李会勇,石云素,宋燕春,黎裕,王天宇. 2007.应用实时荧光定量PCR技术分析玉米水分胁迫诱导基因的表达模式.植物遗传资源学报, 8(4): 421~425
    赵昌平,王新,张风廷,叶志杰,戴惠君. 1999.杂种小麦的利用现状与光温敏二系法.北京农业科学, 17 (2): 3~5
    赵凤梧,李慧敏,李爱国. 2001.冬小麦温敏型雄性不育系LT2123A选育及育性转换与遗传研究.核农学报, 15(2): 65~69
    周菊红,李轲,何蓓如,胡银岗. 2010. YM型小麦温敏雄性不育系不育基因的QTL定位.作物学报, 36(12): 2045~2054
    周宽基,周文麟,王淑英. 1996. 4E-ms小麦雄性核不育、保持体系的建立.中国农业科学, 29(3): 93~94
    周美兰,何觉民,唐启源. 1997.光周期对光温敏核不育小麦ES28育性转换特性的影响.麦类作物, 17(2): 9 ~l2
    周美兰,何觉民,邹应斌,刘雄伦,李海林. 1996.光敏核不育小麦育性转换条件的研究.湖南农业大学学报, 22(3): 231~235
    周阳,何中虎,张改生,夏兰琴,陈新民,高永超,井赵斌,于广军. 2004. 1BL/1RS易位系在我国小麦育种中的应用.作物学报, 30(6): 531~535
    周琳璘,宋国琦,李红燕,胡银岗,何蓓如. 2008.一个与小麦雄性不育育性转换相关的MADS-box转录因子基因.作物学报, 34(4): 598~604
    周琳璘,宋国琦,李红燕,胡银岗,何蓓如. 2010.小麦雄性不育育性转换相关基因TaG3BP的克隆与表达分析.作物学报, 36(10):1683~1690
    周锦,董彩华,刘学群,覃瑞,石磊,刘胜毅. 2008. GAPC和AT2G36580在油菜不同组织器官中的表达差异及其与雄性不育的关系.中国油料作物学报, 30(2): 157~161
    Adamczyk B, Fernandez D E. 2009. MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Physiol, 149:1713~1723
    Akagi H, Nakamura A, Yokozeki-Misono Y, Inagaki A, Takahashi H, Mori K, Fujimura T. 2004. Positional cloning of the rice Rf-1 gene, a restorer of BT-type cytoplasmic male sterility that encodes a mitochondria- targeting PPR protein. Theor Appl Genet, 108:1449~1457
    Alvarez-Buylla E R, Liljegren S J, Pelaz S, Gold S E, Burge V C, Ditta G S, Fergara-Silva V, Yanofsky M F. 2000. MADS-box gene evolution beyond Xowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J, 24: 457~466
    Alwee S S, Van der Linden CG, Van der Schoot J, de Folter S, Angenent G C, Cheah S C, Smulders M J M. 2006. Characterization of oil palm MADS box genes in relation to the mantled flower abnormality. Plant Cell Tissue Organ Cult, 85: 331~344
    Bae J H, Sohn J H. 2010. Template-blocking PCR: An advanced PCR technique for genome walking. Anal Biochem, 398:112~116
    Barnes C J, Li F, Mandal M, Yang Z B, Sahin A A, Kumar R. 2002. Heregulin induces expression, ATPase activity, and nucleaer localization of G3BP, a Ras signaling component, in human breast tumors. Cancer Res, 62: 1251~1255
    Baulcombe D.2000. A silence that speaks volumes. Nature, 404: 804~808
    Bernstein E, Caudy A A, Hammond S M, Hannon G J. 2001. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409: 363~366
    Briggs S D, Bryant S S, Jove R, Sanderson S D, Smithgall T E. The Ras GTPase-activating protein (GAP) is an SH3 domain-binding protein and substrate for the Src-related tyrosine kinase, Hck. J Biol Chem, 270 (24): 14718~14724
    Burton R A, Gibeaut D M, Bacic A. 2000. Virus-induced silencing of a plant cellulose synthase gene. Plant Cell, 12: 691~706
    Bustin S A. 2000. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol, 25:169~193
    Cakir C, T?r M. 2010. Factors influencing barley stripe mosaic virus-mediated gene silencing in wheat. Physiol and Mol Plant Pathol, 74: 246~253
    Chasan R. 1991. Modeling flowers. Plant Cell, 2: 845~847
    Chase C, Babay-Laughnan S. 2004. Cytoplasmic male sterility and fertility restoration by nuclear genes. In: Daniell H and Chase C. Molecular Biology and Biotechnology of Plant Organelles. Dordrecht: Kluwer Academic Publishers: 593–622
    Chase C D. 2007. Cytoplasmic male sterility:a window to the world of plant mitochondrial-nuclearinteractions. Trends Genet, 23: 81~90
    Cheung A Y, Chen C Y, Tao L Z, Andreyeva T, Twell D, Wu H M. 2003. Regulation of pollen tube growth by Rac-like GTPases. J Exp Bot, 54: 73~81
    Coen E S, Meyerowitz E M. 1991. The war of the whorls: genetic interaction controlling flower development. Nature, 53: 31~37
    Cui R F, Han J K, Zhao S Z, Su K, Wu F, Du X Q, Xu Q J, Chong K, Theiβen G, Meng Z. 2010. Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). Plant J, 61: 767~781
    Cui X, Wise R P, Schnable P S. 1996. The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science, 272: 1334~1336
    Danyluk J, Kane N A, Breton G, Limin A E, Fowler D B, Sarhan F. 2003. TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol, 132: 1849~1860
    Das S, Sen S, Chakraborty A, Chakraborti P, Maiti M K, Basu A, Basu D, Sen S K. 2010. An unedited 1.1 kb mitochondrial orfB gene transcript in the wild abortive cytoplasmic male sterility (WA-CMS) system of Oryza sativa L. subsp. Indica. BMC Plant Biol, doi: 10.1186/1471-2229-10-39
    de Graaf B H, Cheung A Y, Andreyeva T, Levasseur K, Kielizewski M, Wu H M. 2005. Rab11 GTPase-regulated membrane trafficking is crucial for tip-focused pollen tube growth in tobacco. Plant Cell, 17: 2564~2579
    Desloire S, Gherbi H, Laloui W, Marhadour S, Clouet V, Cattolico L, Falentin C, Giancola S, Renard M, Budar F, Small I, Caboche M, Delourme R, Bendahmane A. 2003. Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family. EMBO Rep, 4: 588~594
    Dewy R E ,Leavings C S III, Timothy D H. 1986. Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm. Cell, 44(3): 439~449
    Dewey R E , Timothy D H , Levings C S III. 1987. A mitochondrial protein associated with cytoplastic male sterility in T cytoplasm of maize. Pro Natl Acad Sci USA , 84: 5374 ~5378
    Dheda K, Huggett J F, Bustin S A, Johnson M A, Rook G, Zumla A. 2004. Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques, 37: 112~119
    Driscoll C J. 1972. XYZ system of producing hybrid wheat. Crop Science, 12: 516~517
    Driscoll C J. 1985. Modified XYZ system of producing hybrid wheat. Crop Science, 25: 1115~1116
    Drummond A J, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T, Wilson A. 2009. Geneious v4.8
    Ekengren S K, Liu Y, Schiff M. 2003. Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J, 36(6): 905~917
    Fan C F, Sun C Y, Guo X C, Zhang F Y, Sun Y, Niu T T, Jia J F. 2002. Sequence variation of the chloroplast gene ndh D region in cytoplasmic male sterile sorghum. Acta genetica Sinica, 29(10): 907~914
    Faure S, Higgins J, Turner A S, Laurie D A. 2007. The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics, 176: 599~609
    Fire A, Xu S, Montgomery M K, Kostas S A, Driver S E, Mello C C. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391: 806~811
    French J, Stirling R, Walsh M, Kennedy H D. 2002. The expression of Ras-GTPase activating protein SH3 domain-binding proteins, G3BPs, in human breast cancers. Histochem J, 34: 223~231
    Gallouzi I E, Parker F, Chebli K, Maurier F, Labourier E, Barlat I, Capony J P, Tocque B, Tazi J. 1998. A novel phosphorylation dependent RNase activity of GAP SH3 binding protein: a potential link between signal transduction and RNA stability. Mol Cell Biol, 18: 3956~3965
    Geddy R, Mahe L, Brown G G. 2005. Cell-specific regulation of a Brassica napus CMS-associated gene by a nuclear restorer with related effects on a floral homeotic gene promoter. Plant J, 41: 333~345
    Govind C K, Hasegawa A, Koyama K, Gupta S K. 2000. Delineation of a conserved B cell epitope on bonnet monkey (Macaca radiata) and human zona pellucida glycoprotein-B by monoclonal antibodies demonstrating inhibition of sperm-egg binding. Biol Reprod, 62: 67~75
    Greenup A G, Sasani S, Oliver S N, Talbot M J, Dennis E S, Hemming M N, Trevaskis B. 2010. ODDSOC2 is a MADS box floral repressor that is down-regulated by vernalization in temperate cereals. Plant Physiology, doi:10.1104/pp.109.152488
    Guitard E, Parker F, Millon R, Abecassis J, Tocque B. 2001. G3BP is overexpressed in human tumors and promotes S phase entry. Cancer Lett, 162: 213~221
    Guo R X, Sun D F, Tan Z B, Rong D F, Li C D. 2006a. Two recessive genes controlling thermophotoperiod-sensitive male sterility in wheat. Theor Appl Genet, 112: 1271~1276
    Guo X Q, Dong H T, Zheng K L, Luo H M, Tan X L, Fang Y Q, Wang Y Q, Deng Y, Dai C G, Lou Y C, Shao J, Shi W Q, Zhao D, Li D B. 2006b. Gene expression profiling under different photoperiod/temperature conditions in a photoperiod-/thermo-sensitive genic male sterile line of rice (Oryza sativa L.).Chinese Science Bulletin, 51: 175~181
    Hall T A. 1999. Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp.Ser, 41: 95~98
    Hama E, Takumi S, Ogihara Y, Murai K. 2004. Pistillody is caused by alterations to the class-B MADS- box gene expression pattern in alloplasmic wheats. Planta, 218: 712~720
    Hanson M R, Bentolila S. 2004. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell, 16: 154~169
    He B R. 1998. Breeding of non-1B/1R K type male sterile wheat lines by means of chromosome transfer. Hybrid Wheat-A New Crop Going to Farmer. China Agricultural University Press, 58~63
    He G H, Hou L, Xiao Y H, Luo X Y, Niu G Q, Yang G W, Pei Y. 2003. A common sequence difference between cytoplasmic male sterile lines and their maintainer lines existing in rice (Oryza sativa L.) chloroplast tRNA- Leu gene region. J Euphytica, 131(3): 269~274
    Hein I, Barciszewska-Pacak M, Hrubikova K. 2005. Virus-induced gene silencing based functional characterization of genes associated with powdery mildew resistance in barley. Plant Physiol, 138(4): 2155~2164
    Holzberg S, Brosio P, Gross C. 2002. Barley stripe mosaic virus induced gene silencing in a monocot plant. Plant J, 30(3): 315~327
    Horvath D P, Sung S, Kim D, Chao W, Anderson J. 2010. Characterization, expression and function of DORMANCY ASSOCIATED MADS-BOX genes from leafy spurge. Plant Mol Biol, 73:169-179
    Irvine K, Stirling R, Hume D, Kennedy D. 2004. Rasputin, more promiscuous than ever: a review of G3BP. Int. J. Dev. Biol, 48: 1065~1077
    Jin H L, Liu Y D, Kwang-Yeo. 2003. Function of a mitogen-activated protein kinase pathway in N gene mediated resistance in tobacco. Plant J, 33(4): 719~731
    Kane N A, Danyluk J, Tardif G, Ouellet F, Laliberte J F, Limin A E, Fowler D B, Sarhan F. 2005. TaVRT-2, a member of the StMADS-11 clade of flowering repressors, is regulated by vernalization and photoperiod in wheat. Plant Physiol, 138:2354-2363
    Kane N A, Agharbaoui Z, Diallo A O, Adam H, Tominaga Y, Ouellet F, Sarhan F. 2007. TaVRT2 represses transcription of the wheat vernalization gene TaVRN1. Plant J, 51:670-680
    Kennedy D, Wood S A, Ramsdale T, Tam P P, Steiner K A, Mattick J S. 1996. Identification of a mouse orthologue of the human ras-GAP-SH3-domain binding protein and structural confirmation that these proteins contain an RNA recognition motif. Biomed Pept Proteins Nucleic Acids, 2(3): 93~99
    Kennedy D, French J, Guitard E, Ru K L, Tocque B, Mattick J. 2001. Characterisation of G3BPs: Tissue specific expression, chromosomal localisation and rasGAP120 binding studies. J. Cell Biol, 84: 173~187
    Kihara H. 1951. Substitution of nucleus and its effects on genome manifestations. Cytologia, 16: 177~193
    Koken M H, Odijk H H, Duin M V, Fornerod M, Hoeijmakers J H. 1993. Augmentation of protein production by a combination of the T7 RNA polymerase system and ubiquitin fusion: overproduction of the human DNA repair protein, ERCC1, as an ubiquitin fusion protein in Escherichia coli, Biochem. Biophys. Res.Commun, 195: 643~653
    Komori T, Ohta S, Murai N, Takakura Y, Kuraya Y, Suzuki S, Hiei Y, Imaseki H, Nitta N. 2004. Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L.). Plant J, 37: 315~325
    Kumagai M H, Donson J, della-Cioppa G. 1995. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci USA, 92(5): 1679~1683
    Lacomme C, Hrubikova K, Hein I. 2003. Enhancement of virus-induced gene silencing through viral-based production of inverted-repeats. Plant J, 34: 543~553
    Liu F, Cui X Q, Horner H T, Weiner H, Schnable P S. 2001. Mitochondrial aldehyde dehydrogenase activity is required for male fertility in maize. Plant Cell, 13: 1063~1078
    Liu H T, Cui P, Zhan K H, Lin Q, Zhuo G Y, Guo X L, Ding F, Yang W L, Liu D C, Hu S N, Yu J, Zhang A M. 2011. Comparative analysis of mitochondrial genomes between a wheat K-type cytoplasmic male sterility (CMS) line and its maintainer line. BMC Genomics, doi: 10.1186/1471-2164-12-163
    Liu W H, Saint D A. 2002a. A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal Biochem, 302: 52~ 59
    Liu W H, Saint D A. 2002b. Validation of a quantitative method for real time PCR kinetics. Biochem Biophys Res Commun, 294: 347~353
    Liu Y, Schiff M, Marathe R. 2002a. Tobacco Rar1 EDS1 and NPR1/ NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J, 30(4): 415~429
    Liu Y, Schiff M, Dinesh-Kumar S P. 2002b. Virus-induced gene silencing in tomato. Plant J, 31(6): 777~786
    Liu Y, Schiff M, Dinesh-Kumar S P. 2004a. Involvement of MEK1 MAPKK, NTF6 MAPK,WRKY/ MYB transcription factors, Col1 and CRT1 in N-mediated resistance to tobacco mosaic virus. Plant J, 38: 800~809
    Liu Y, Burch-Smith T, Schiff M. 2004b. Molecular chaperone HSP90 associates with resistance protein Nand its signaling proteins SGT1 and RAR1 to modulate an innate immune response implants. J Biol Chem, 279: 2101~2108
    Liu Y, Nakayama N, Schiff M. 2004c. Virus induced gene silencing of a DEFICIENS ortholog in Nicotiana benthamiana. Plant Mol Biol, 54(5): 701~711
    Liu Z R, Liu Z C. 2008. The second intron of AGAMOUS drives carpeland stamen-specific expression sufficient to induce complete sterility in Arabidopsis. Plant Cell Rep, 27: 855~863
    Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)). Methods Methods, 25: 402~408
    Lu H C, Chen H H, Tsai W C, Chen W H, Su H J, Chang D C, Yeh H H. 2007. Strategies for Functional Validation of Genes Involved in Reproductive Stages of Orchids. Plant Physiology, 143: 558~569
    Lu R, Malcuit I, Moffett P. 2003. High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J, 22: 5690~5699
    Mackenzie S, McIntosh L. 1999. Higher plant mitochondria. Plant Cell, 11(4): 571-586
    Mandel M A, Gustafson-Brown C, Savidge B, Yanofsky M F. 1992. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature, 360: 273~277
    Meguro A, Takumi S, Ogihara Y, Murai K. 2003. WAG, a wheat AGAMOUS homolog, is associated with development of pistil-like stamens in alloplasmic wheats. Sex Plant Reprod, 15: 221~230
    Mi Z Y, Wang S S, Wu N H. 2002. Isolation of osRACD gene encoding a small GTP-binding protein from rice. Chinese Science Bulletin, 47:1673~1679
    Mukai Y, Endo T R. 1992. Physical mapping of a fertility restoring gene against Aegilops kotschyi cytoplasm in wheat. Jpn. J. Genet, 67: 199~207
    Murai K, Tsunewaki K. 1993. Photoperiod-sensitive cytoplasm male sterility in wheat with Aegilops ctassa cytoplasm. Euphytica 67: 41~48
    Murai K, Takumi S, Koga H, Ogihara Y. 2002. Pistillody, homeotic transformation of stamens into pistil-like structures, caused by nuclear-cytoplasm interaction in wheat. Plant J, 29:169~181
    Murai K, Miyamae M, Kato H, Takumi S, Ogihara Y. 2003. WAP1, a wheat APETALA1 homolog, plays a central role in the phase transition from vegetative to reproductive growth. Plant Cell Physiol, 44: 1255~1265
    Murai K, Tsutui I, Kawanishi Y, Ikeguchi S, Yanaka M, Ishikawa N. 2008. Development of photoperiod-sensitive cytoplasmic male sterile (PCMS) wheat lines showing high male sterility under long-day conditions and high seed fertility under short-day conditions. Euphytica, 159: 315~323
    Murray M G, Thompson W F. 1980. Rapid isolation of high molecular weight plant DNA. Nuc. Acids. Res, 8:4321~4325
    Nam J, Kim J, Lee S, An G, Ma H, Nei M. 2004. Type I MADSbox genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms. Proc Natl Acad Sci USA, 101: 1910~1915
    Pacak A, Geisler K, Jorgensen B, Barciszewska-Pacak M, Nilsson L, Nielsen T H, Johansen E, Gronlund M, Jakobsen I, Albrechtsen M. 2010. Investigation of barley stripe mosaic virus as a gene silencing vector in barley roots and in Brachypodium distachyon and oat. Plant methods, doi: 10.1186/1746-4811-6-26
    Paolacci A R, Tanzarella O A, Porceddu E, Varotto S, Ciaffi M. 2007. Molecular and phylogenetic analysis of MADS-box genes of MIKC type and chromosome location of SEP-like genes in wheat (Triticumaestivum L.) Mol Gen Genomics, 278: 689~708
    ParenicováL, de Folter S, Kieffer M, Horner D S, Favalli C, Busscher J, Cook H E, Ingram R M, Kater M M, Davies B, Angenent G C, Colombo L. 2003. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell, 15(7): 1538~1551
    Parker F, Maurier F, Delumeau I, Duchesne M, Faucher D, Debussche L, Dugue A, Schweighoffer F, Tocque B. 1996. A Ras GTPase activating protein SH3 domain binding protein. Mol Cell Biol, 16: 2561~2569
    Peng S M, Luo T, Zhou J Y, Niu B, Lei N F, Tang L, Chen F. 2008. Cloning and quantification of expression levels of two MADS-box genes from Momordica charantia. Biologia Plantarum, 52(2):222-230
    Peng X J, Wang K, Hu C F, Zhu Y L, Wang T, Yang J, Tong J P, Li S Q, Zhu Y G. 2010. The mitochondrial gene orfH79 plays a critical role in impairing both male gametophyte development and root growth in CMS-Honglian rice. BMC Plant Biol, doi:10.1186/1471-2229-10-125
    Pfaffl M W. 2001. A new mathematical model for relative quantification in real-time PCR. Nucleic Acids Res, 29: 2002~2007
    Pfaffl M W, Tichopad A, Prgomet C, Neuvians T P. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel- based tool using pair-wise correlations. Biotechnol Lett, 26: 509–515
    Ramakers C, Ruijter J M, Deprez R H L, Moorman A F M. 2003. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett, 339: 62~66
    Riechmann J L, Meyerowitz E M. 1997. MADS domain proteins in plant development. Biol Chem, 378: 1079~1101
    Rishi A S, Nelson N D, Goyal A. 2004. Genome walking of large fragments: an improved method. J Biotechnol, 111: 9~15
    Ronald H A, Plasterk R N A. 2002. Silencing: The Genome's Immune System. Science, 296: 1263~1265
    Rui L, Ana Montserrat Martin-Hernandez, Jack R P. 2003. Virus-induced gene silencing in plants. Science Direct Method, 30: 296~303
    Ruiz M T, Voinnet O, Baulcombe D C. 1998. Initiation and maintenance of virus-induced gene silencing. Plant Cell, 10(6): 937~946
    Ruiz O, Daniell H. 2005. Engineering cytoplasmic male sterility viz., chloroplast genome by expression of ketothiolase. Plant Physiol. 138: 1232~1246
    Rutledge R G. 2004. Sigmoidal curve-fitting redefines quantitative real-time PCR with the prospective of developing automated high-throughput applications. Nucleic Acids Res, 32:178~182
    Sabar M, Gagliardi D, Balk J, Leaver C J. 2003. ORFB is a subunit of F1F0-ATP synthase: insight into the basis of cytoplasmic male sterility in sunflower. EMBO Rep, 4: 381~386
    Saedler H, Becker A, Winter K, Kirchner C, Thei?en G. 2001. MADS-box genes are involved in floral development and evolution. Acta Biochim Pol, 48: 351~358
    Sambrook J, Russell D. 2001. Molecular cloning: A laboratory manual: Third edition. Vol 1. New York: CSHL Press. Sandhu A P, Abdelnoor R V, Mackenzie S A. 2007. Transgenic induction of mitochondrial rearrangements for cytoplasmic male sterility in crop plants. PANS, 104(6): 1766-1770
    Saraike T, Shitsukawa N, Yamamoto Y, Hagita H, Iwasaki Y, Takumi S, Murai K. 2007. Identification of a protein kinase gene associated with pistillody, homeotic transformation of stamens into pistil-like structures, in alloplasmic wheat. Planta, 227: 211~221
    Sasakuma T, Ohtuka I. 1979. Cytoplasmic effects of Aegilops species having D genome in wheat: I. cytoplasmic differentiation among five species regarding pistillody induction. Seiken Ziho, 27/28: 59-65
    Schnable P S, Wise R P. 1998. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci, 3: 175~180
    Scofield S R, Huang L, Brandt A S, Gill B S. 2005. Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiology, 138: 2165~2173
    Shore P, Sharrocks A D. 1995. The MADS-box family of transcription factors. Eur J Biochem, 229: 1~13
    Siebert P D, Chenchik A, Kellogg D E, Lukyanov K A, Lukyanov S A. 1995. An improved PCR method for walking in uncloned genomic DNA. Nucleic Acid Res, 23(6):1087-1088
    Small I D, Peeters N. 2000. The PPR motif a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci, 25: 46~47
    Tai Y S, Bragg J, Edwards M C. 2005. Virus vector for gene silencing in wheat. Bio Techniques, 39: 310~314
    Tamás C, Kisgy?rgy B N, Rakszegi M, Wilkinson M D, Yang M S, Láng L, Tamás L, Bed? Z. 2009.
    Transgenic approach to improve wheat (Triticum aestivum L.) nutritional quality. Plant Cell Rep, 28: 1085~1094
    Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 24:1596~1599
    Tao X R, Zhou X P. 2004. A modified viral satellite DNA that suppresses gene expression in plants. Plant J, 38(5):850~860
    Theiβen G. 2001. Development of Xoral organ identity: stories from the MADS house. Curr Opin Plant Biol, 4(1): 75~85
    Tichopad A, Dilger M, Schwarz G, Pfaffl M W. 2003. Standardized determination of real-time PCR efficiency from a single reaction set-up. Nucleic Acids Res, 31: 11~22
    Tocque B, Delumeau I, Parker F, Maurier F, Multon M C, Schweighoffer F. 1997. Ras-GTPase activating protein (GAP): a putative effector for Ras. Cell Signal, 9: 153~158
    Trevaskis B, Tadege M, Hemming M N, Peacock W J, Dennis E S, Sheldon C. 2007. Short vegetative phase-like MADS-Box genes inhibit floral meristem identity in barley. Plant Physiology, 143: 225~235
    Tricarico C, Pinzani P, Bianchi S, Paglierani M, Distante V, Pazzagli M, Bustin S A, Orlando C. 2002. Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. Anal Biochem, 309: 293~300
    Tsunewaki K. 1980. Genetic diversity of the cytoplasm in Triticum and Aegilops. Japan society for the promotion of science, 53~62
    Tsunewaki K. 1976. Genetic divetsity of the cytoplasm in Tricticum and Aegilops. V. Classification of 23 cytoplasm into eight plasma types. Jpn. J Genet, 51: 175~191
    Tsunewaki K. 1993. Genome-plasmon interactions in wheat. Jpn. J Genet, 68: 1~34
    Turnage M A, Muangsan N, Peele C G. 2002. Germinivirus-based vectors for gene silencing in Arabidopsis. Plant J, 30(1): 107~114
    Uyttewaal M, Amal N, Quadrado M, Martin-Canadell A, Vrielynck N, Hiard S, Gherbi H, Bendahmane A, Budar F, Mireau H. 2008. Characterization of Raphanus sativus pentatricopeptide repeat proteins encoded by the fertility restorer locus for ogura cytoplasmic male sterility. Plant Cell, 20: 3331~3345
    Verelst W, Sadler H, Münster T. 2007a. MIKC* MADS-Protein complexes bind motifs enriched in the proximal region of late pollen-specificArabidopsis promoters. Plant Physiology, 143: 447~460
    Verelst W, Twell D, de Folter S, Immink R, Saedler H, Münster T. 2007b. MADS-complexes regulate transcriptome dynamics during pollen maturation. Genome Biology, doi:10.1186/gb-2007 -8-11-r249
    Wang C Y, Ji W Q, Zhang G S, Wang Q Y, Xue X Z. 2006. Molecular cytogenetics identifications on Triticum aestivum-Elymus rectisetus alien addition lines. Acta Agron Sin, 32: 1898~1901
    Wang Z H, Zou Y J, Li X Y, Zhang Q Y, Chen L T, Wu H, Su D H, Chen Y L, Guo J X, Luo D, Long Y M, Zhong Y, Liu Y G. 2006. Cytoplasmic male sterility of rice with BoroⅡcytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell, 18: 676~687
    Wei W L, Wang H Z, Liu G H. 2007. Transcriptional regulation of 10 mitochondrial genes in different tissues of NCa CMS system in Brassica napus L. and their relationship with sterility. J Genet Genomics, 34: 72~80
    Wen L Y, Ruesch K L, Ortega V M, Kamps T L, Gabay-Laughnan S, Chase C D. 2003. A nuclear restorer-of-fertility mutation disrupts accumulation of mitochondrial ATP synthase subunitαin developing pollen of S male-sterile maize. Genetics, 165: 771~779
    West A G, Causier B E, Davies B, Sharrocks A D. 1998. DNA binding and dimerisation determinants of Antirrhinum majus MADS-box transcription factors. Nucleic Acids Res, 26: 5277~5287
    Wilson J A, Ross W M. 1962. Male sterility interaction of the Triticum aestivum nucleus and T.timopheevii cytoplasm. Wheat Inf. Serv, 14: 29~30
    Winfield M O, Lu C G, Wilson I D, Coghill J A, Edwards K J. 2009. Cold- and light-induced changes in the transcriptome of wheat leading to phase transition from vegetative to reproductive growth. BMC Plant Bio, doi: 10.1186/1471-2229-9-55
    Wise R P. 1987. Ufr13-T of cytoplasm maize mitochondrial encodes a 13KD polypeptide. Plant Mol Biol, 9: 121~126
    Wolstenholme D R, Fauron C R. 1995. Mitochondrial genome organization. In The Molecular Biology of Plant Mitochondria, Levings C SⅢ, Vasil L K eds: Dordrecht, The Netherlands: Kluwer Academic Publishers: 1-60
    Wong M L, Medrano J F. 2005. Real-time PCR for mRNA quantitation. Biotechniques, 39: 75~85
    Xing Q H, Ru Z G, Zhou C J, Xue X, Liang C Y, Yang D E, Jin D M, Wang B. 2003. Genetic analysis, molecular tagging and mapping of the thermo-sensitive genic male-sterile gene (wtms1) in wheat. Theor Appl Genet, 107: 1500~1504
    Xing Q H, Ru Z G, Li J, Zhou C J, Jin D M, Sun Y, Wang B. 2005. Cloning a second form of adenine phosphoribosy1 transferase gene (TaAPT2) from wheat and analysis of its association with thermo-sensitive genic male sterility (TGMS). Plant Sci, 169: 37~45
    Yamaguchi T, Lee D Y, Miyao A, Hirochika H, An G, Hirano H Y. 2006. Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa. Plant Cell, 18: 15~28
    Yang J H, Qi X H, Zhang M F, Yu J Q. 2008. MADS-box genes are associated with cytoplasmic homeosis in cytoplasmic male-sterile stem mustard as partially mimicked by specifically inhibiting mtETC. Plant Growth Regul, 56: 191~201
    Zhao Y, Li X Y, Chen W J, Peng X J, Cheng X, Zhu S W, Cheng B J. 2011. Whole-genome survey and characterization of MADS-box gene family in maize and sorghum. Plant Cell Tiss Organ Cult, 105: 159~173
    Zhao T, Ni Z F, Dai Y, Yao Y Y, Nie X L, Sun Q X. 2006a. Characterization and expression of 42 MADS-box genes in wheat (Triticum aestivum L.). Mol Genet Genomics, 276:334-350
    Zhao X Y, Cheng Z J, Zhang X S. 2006b. Overexpression of TaMADS1, a SEPALLATA-like gene in wheat, causes early flowering and the abnormal development of floral organs in Arabidopsis. Planta, 223: 698~707
    Zhang H Z, Liu J G, Wei Y P, Wu C, Cao Y K, Wang M. 2007. Expression of G3BP and RhoC in esophageal squamous carcinoma and their effect on prognosis. World J Gastroenterol, 13: 4126~4130
    Zou C S, Yu D Q. 2010. Analysis of the cold-responsive transcriptome in the mature pollen of Arabidopsis. J. Plant Biol, 53: 400~416

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700