用户名: 密码: 验证码:
几类动力系统动力学性态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现实的很多问题包含多种因素,这些因素的相互作用使其对应的动力系统具有丰富的动力学行为。对于多因素耦合的离散动力系统和显含空间的动力系统,相关的研究成果还很缺乏。针对当前的研究现状,本文主要做了以下工作:
     1、建立了智能雷空间运动轨迹动力学模型,并给出了智能雷扫描轨迹随射程的变化曲线以及攻角和时间的变化关系。
     2、研究了个体相互残杀和捕食的共同作用的离散动力系统,分析系统周期解的存在性和稳定性,并给出其生物学意义。分析了带两参数的时滞和竞争因素耦合离散动力系统,通过构造一条曲线,把参数空间分成两个区域Λ1和Λ2。在区域Λ1,系统至少有两个周期解;在曲线上,系统至少有一个周期解;在区域Λ2,系统没有周期解。
     3、研究了具有空间和随机因素的动力系统,分别分析了非密度依赖和密度依赖的随机噪声和扩散的相互作用对个体空间分布和持续生存的影响。利用数学分析和数值模拟发现:第一种形式的噪声会导致个体的空间分布发生相变,即从点状斑图向线状斑图转化。随着噪声强度的增加,点状斑图的点数是先增加到最大值,而后减少。而当时间相关性很大时,噪声会诱导个体出现条状的空间分布。对于第二种形式的噪声,发现噪声会导致个体从点状分布到迷宫状的分布。对于某些噪声参数,噪声会导致个体从持续变为灭绝,并给出了个体持续和灭绝的参数区域。
     4、研究了基于反应扩散方程的且具有Allee效应和非线性死亡项的动力系统,通过多尺度理论中的振幅方程分析了这两种因素的相互作用对个体空间分布的影响。研究结果表明:带有Allee效应和非线性作用项的空间动力系统具有丰富的斑图结果。随着空间参数δ的增大,斑图结构从H0向Hπ演变,经历了不同类型斑图的相变。当参数增大到某个数值,个体会呈现螺旋波式的分布。这意味着个体的分布从稳态斑图变为移动斑图,不利于个体的持续生存。
Many problems in real world contain a lot of factors and the interactions between these factors maycause rich dynamics. There is little work on discrete dynamics with multiple factors and spatial dynamics.Based on the current progress of these topics, we did the following work.
     Firstly, we construct a dynamical model on the motion trail of intelligent mine and give the motiontrail and attack angle with respect to fire rate and time, respectively.
     Secondly, we construct a discrete dynamical model with individuals cannibalism and predation andinvestigate the existence and stability of positive periodic solutions. Some biological meanings are shownfor the theoretical results. Furthermore, we present a discrete dynamical systems with delay and competitionand obtain the distribution of positive periodic solutions. By structuring a curve, we separate the parametersspace into two parts Λ1and Λ2. There are at least two positive periodic solutions in domain Λ1; at least onepositive periodic solution in the curve; no positive periodic solution in domain Λ2.
     Thirdly, we investigate spatial dynamics with difusion and stochastic factors. We reveal the influenceof density-independent and density-dependent noise on the pattern formation and persistence of populations.By both mathematical analysis and numerical simulations, we find that density-independent noise will in-duce pattern transition from spotted pattern to stripe pattern. The number of the spotted pattern will increaseas noise intensity is small. As noise intensity increase, the number will decrease. However, when temporalcorrelation is large, stripe pattern emerges. For the spatial dynamics with density-dependent noise, noisecan induce pattern transition from spotted pattern to labyrinth pattern. What is more, noise can cause thepopulations to extinct from persistence for some values of noise intensity and temporal correlation. We alsoshow the persistence and extinction regions of populations in parameters space.
     Finally, we study a spatial dynamics with Allee efect and nonlinear death rate based on reactiondifusion equation. By using amplitude equations in multiple scales, we investigate the efect of interactionsbetween these two factors on the distribution of populations. The obtained results show that spatial systemswith Allee efect and nonlinear interactions can give rise to rich dynamical behaviors. As parameter δincrease, pattern structures will change from H0to Hπ. When the parameter increases to a certain value, theindividual exhibits a spiral wave pattern formation. It means that the stationary pattern is transformed intounstable state, which is bad for the persistence of populations.
引文
[1] V. Guttal, C. Jayaprakash, Impact of noise on bistable ecological systems[J]. Ecol. Model.,2007,201:420-428.
    [2] R.R. Sarkar, H. Malchow, Nutrients and toxin producing phytoplankton control algal blooms-a spatio-temporalstudy in a noisy environment[J]. J. Biosci.,2005,30(5):749-760.
    [3] C. Marr, M.-T. Hutt, Similar impact of topological and dynamic noise on complex patterns[J]. Physics LettersA,2006,349:302-305.
    [4] H.I. McCallum, Efects of immigration on chaotic population dynamics[J]. J. Theor. Biol.,1992,154(3):277-284.
    [5] P. Sun, X.B. Yang, Dynamic behaviors of the ricker population model under a set of randomized perturbations[J].Math. Biosci.,2000,164:147-159.
    [6] S. Sinha, S. Parthasarathy, Unusual dynamics of extinction in a simple ecological model[J]. Proc. Natl. Acad.Sci.,1996,93:1504-1508.
    [7] A.J. Schreiber, Chaos and population disappearances in simple ecological models[J]. J. Math. Biol.,2001,42:239-260.
    [8] A. A. King, R. A. Desharnais, S. M. Henson, R. F. Costantino, J. M. Cushing, B. Dennis, Random Perturbationsand Lattice Efects in Chaotic Population Dynamics[J]. Science,2002,297:2163.
    [9] A.A. Yakubu, M. J. Fogarty, Spatially discrete metapopulation models with directional dispersal[J]. Mathemati-cal Biosciences,2006,204:68-101.
    [10] A.A. Yakubu, C. Castillo-Chavez, Interplay between local dynamics and dispersal in discrete-time metapopula-tion models[J]. J. Theor. Biol.,2002,228:273-288.
    [11] A.A. Yakubu, R. Saenz, J. Stein, L.E. Jones, Monarch butterfly spatially discrete advection model[J]. Math.Biosci.,2004,190:183-202.
    [12] J. M. Cushing, S. M. Henson, L.-I. Roeger, Coexistence of competing juvenile-adult structured populations[J].Journal of Biological Dynamics,2007,1:201-231.
    [13] J. M. Cushing, S. M. Henson, Stable bifurcations in semelparous Leslie models[J]. Journal of Biological Dy-namics,2012,6:80-102.
    [14] J. M. Cushing, A. S. Ackleh, A net reproduction number for periodic matrix models[J]. Journal of BiologicalDynamics,2012,6:166-188.
    [15] J. M. Cushing, S. M. Henson, Global dynamics of some periodically forced, monotone diference equations[J].Journal of Diference Equations and Applications,2001,7:859-872
    [16] J. M. Cushing, S. M. Henson, A periodically forced Beverton-Holt equation[J]. Journal of Diference Equationsand Applications,2002,8:1119-1120.
    [17] S. R.-J. Jang, J. M. Cushing, A discrete hierarchical model of intra-specific competition[J]. Journal of Mathe-matical Analysis and Applications,2003,280:102-122.
    [18] J. M. Cushing, The LPA model[J]. Fields Institute Communications,2004,43:29-55
    [19] J. M. Cushing, A bifurcation theorem for Darwinian matrix models[J]. Nonlinear Studies,2010,17:1-13.
    [20] D. Alonso, F. Bartumeus, J. Catalan, Mutual interference between predators can give rise to turing spatial pat-terns[J]. Ecology,2002,83(1):28-34.
    [21] S. Petrovskii, B.L. Li, H. Malchow, Transition to spatiotemporal chaos can resolve the paradox of enrichment[J].Ecol. Complex.,2004,1(1):37-47.
    [22] M. Banerjee, Self-replication of spatial patterns in a ratio-dependent predator-prey model[J]. Mathematical andComputer Modelling,2010,51:44-52.
    [23] S. Petrovskii, H. Malchow, B.L. Li, An exact solution of a difusive predator-prey system[J]. Proc. R. Soc. A,2005,461(2056):1029-1053.
    [24] S.V. Petrovskii, B.L. Li, Exactly Solvabel Models of Biological Invasions[M]. Chapman&Hall/CRC,2006.
    [25] M.R. Garvie, C. Trenchea, Optimal control of a nutrient-phytoplankton-zooplankton-fish system[J]. SIAM J.Cont. Opt.,2007,46(3):775-791.
    [26] A.B. Medvinsky, S.V. Petrovskii, I.A. Tikhonova, H. Malchow, B.L. Li, Spatiotemporal complexity of planktonand fish dynamics[J]. SIAM Review,2002,44(3):311-370.
    [27] E.R. Abraham, The generation of plankton patchiness by turbulent stirring[J]. Nature,1998,391(6667):577-580.
    [28] A.B. Medvinsky, I.A. Tikhonova, R.R. Aliev, B.L. Li, Z.S. Lin, H. Malchow, Patchy environment as a factor ofcomplex plankton dynamics[J]. Phys. Rev. E,2001,64(2):021915.
    [29] M., B. Han, L. Xu, G. Zhang, Spiral patterns near Turing instability in a discrete reaction difusion system[J].Chaos, Solitons, Fractals,2013,49:1-6.
    [30] M. Bar, L. Brusch, Breakup of spiral waves caused by radial dynamics: Eckhaus and finite wavenumber insta-bilities[J]. New J. Physics,2004,6:5.
    [31] R. Reigada, R.M. Hillary, M.A. Bees, J.M. Sancho, F. Sagues, Plankton blooms induced by turbulent flows[J].Proc. R Soc. Lond B,2003,270(1517):875-880.
    [32] R. Reigada, F. Sagues, J.M. Sancho, Kinetics and spatial organization in reactive systems with nonpassivelyadvected reactants[J]. J. Phys-Cond. Matt.,2007,19(6):065132.
    [33] D.J. Higham, An algorithmic introduction to numerical simulation of stochastic diferential equations[J]. SIAMRev.,2001,43:525-546.
    [34] H. Wang, K. Zhang, Q. Quyang, Resonant-pattern formation induced by additive noise in periodically forcedreaction-difusion systems[J]. Phys. Rev. E,2006,74:036210.
    [35] M. Liu, K. Wang, Extinction and permanence in a stochastic non-autonomous population system[J]. AppliedMathematics Letters,2010,23:1464-1467.
    [36] Y. Takeuchi, N.H. Du, N.T. Hieu, K. Sato, Evolution of predator-prey systems described by a Lotka-Volterraequation under random environment[J]. J. Math. Anal. Appl.,2006,323:938-957.
    [37] M. Liu, K. Wang, Dynamics of a Leslie-Gower Holling-type II predator-prey system with Levy jumps[J]. Non-linear Analysis,2013,85:204-213.
    [38] M. Vasilova, Asymptotic behavior of a stochastic Gilpin-Ayala predator-prey system with time-dependent de-lay[J]. Mathematical and Computer Modelling,2013,57:764-781.
    [39] S. Scarsoglio, F. Laio, P. D’Odorico, L. Ridolfi, Spatial pattern formation induced by Gaussian white noise[J].Mathematical Biosciences,2011,229:174-184.
    [40] M. Sieber, H. Malchow, L. Schimansky-Geier, Constructive efects of environmental noise in an excitable prey-predator plankton system with infected prey[J]. Ecological Complexity,2007,4:223-233.
    [41] B. Mukhopadhyay, R. Bhattacharyya, Efects of deterministic and random refuge in a prey-predator model withparasite infection[J]. Mathematical Biosciences,2012,239:124-130.
    [42] W. Wang, W. Li, Z Li, H. Zhang, The efect of colored noise on spatiotemporal dynamics of biological invasionin a difusive predator-prey system[J]. BioSystems,2011,104:48-56.
    [43]邱国华,韩峰,串行通信在智能雷动平衡系统仿真中的应用[J].计算机自动测量与控制,2001,9:44-46.
    [44]邵红全,姚李刚,基于HLA的智能雷作战仿真系统研究[J].计算机仿真,2010,27:1-4.
    [45]蒋毅成,程翔,张河,智能雷弹低功耗预警系统设计[J].弹箭与制导学报,2005,25:164-166.
    [46]程翔,张河,基于纯测角的直升机飞行轨迹与拦截角估计[J].弹箭与制导学报,2007,27:174-176.
    [47]尹建平,王志军,智能雷爆炸成型弹丸战斗部研究[J].弹箭与制导学报,2005,25:49-50.
    [48]付自军,赵捍东,曹红松,严会霞,网络化智能雷群的目标优化分配问题研究[J].弹箭与制导学报,2009,29:235-238.
    [49]孙峥,王伟策,马光彦,蒋新胜,在系统可编程模拟器件在智能雷预处理电路中的应用[J].解放军理工大学学报,2003,4:70-72.
    [50]王晓鸣,李文彬,赵国志,智能雷多自锻破片战斗部试验研究[J].弹道学报,2002,14:81-84.
    [51]李文彬,赵国志,王晓鸣,欧阳春,何勇,拦截导弹智能雷破片作用场分析[J].弹道学报,2002,14:18-22.
    [52]王勇,王晓鸣,李文彬,基于双智能雷的目标跟踪方法研究[J].探测与控制学报,2006,28:33-35.
    [53]王勇,王晓鸣,李文彬,一种用于反直升机智能雷的目标跟踪方法[J].南京理工大学学报,2005,29:281-284.
    [54]王勇,王晓鸣,李文彬,孟新宇,仅有角测量的智能雷角跟踪算法[J].弹道学报,2005,17:58-61.
    [55]蒋新胜,马光彦,王伟策,王永风,智能雷弹的目标被动探测系统研究[J].解放军理工大学学报,2001,2:70-73.
    [56]常变红,尹建平,王志军,雷体质量对智能雷扫描轨迹的影响[J].弹箭与制导学报,2006,26:150-153.
    [57]李金凤,冯长根,雷体质量参数对智能雷毁伤概率的影响[J].弹箭与制导学报,2006,26:129-134.
    [58]尹建平,王志军,常变红,智能雷发射初始条件的正交优化设计[J].沈阳理工大学学报,2009,28:82-86.
    [59]尹建平,王志军,发射条件对MEFP智能雷平行毁伤模型毁伤概率的影响,弹箭与制导学报,2004,24:34-36.
    [60]尹建平,阎思江,王志军,发射条件对智能雷毁伤概率的影响[J].华北工学院学报,2003,24:464-467.
    [61]尹建平,王志军,起爆方式对智能雷战斗部毁伤概率的影响[J].解放军理工大学学报,2010,11:512-516.
    [62]王晓鸣,李文彬,杨宏伟,反直升机智能雷威力分析模型[J].南京理工大学学报,2003,27:621-624.
    [63]尹建平,王志军,陈超,扫描捕获准则对MEFP智能雷毁伤概率的影响[J].华北工学院学报,2003,24:185-188.
    [64]尹建平,王志军,智能雷战斗部扫描运动模型和捕获准则分析[J].探测与控制学报,2006,28:22-25.
    [65]张永生,马晓青,林永生,反坦克智能雷武器系统最佳射击点分析[J].弹箭与制导学报,2004,24:33-35.
    [66]顾晓辉,王晓鸣,赵有守,神经网络的智能雷战斗部总体效能评价研究[J].系统工程与电子技术,2001,23:50-52.
    [67]顾晓辉,王晓鸣,张庆,赵有守,反直升机智能雷战斗部总体效能综合评价[J].弹道学报,2000,12:91-96.
    [68]顾晓辉,王晓鸣,赵有守,灰色层次评估法在智能雷战斗部总体效能评估中的应用[J].军事运筹与系统工程,2002,2:51-55.
    [69] L.E. Jones, S.P. Ellner, Evolutionary tradeof and equilibrium in an aquatic predator-prey system[J]. Bull. Math.Biol.,2004,66:1547-1573.
    [70] V. Volterra, Variazione e fluttuazini del numero d’individui in specie animali conviventi Mem[J]. AccadNazionale Lincei,1926,2:31-113.
    [71] M. Fan, Y. Kuang, Dynamics of a nonautonomous predator-prey system with the Beddington-DeAngelis func-tional response[J]. J. Math. Anal. Appl.,2004,295:15-39.
    [72] R. Arditi, L.R. Ginzburg, Coupling in predator-prey dynamics: ratio-dependence[J]. J. Theoret. Biol.,1989,139:31-326.
    [73] A.A. Berryman, The origins and evolution of predator-prey theory[J]. Ecology,1992,75:1530-1535.
    [74] P. Lundberg, J.M. Fryxell, Expected population density versus productivity in ratiodependent and prey-dependent models[J]. American Naturalist,1995,146:153-161.
    [75] Mainul Haque, Ratio-Dependent Predator-Prey Models of Interacting Populations[J]. Bulletin of MathematicalBiology,2009,71:pp430-452.
    [76] S. Ruan, Y. Tang, W. Zhang, Versal unfoldings of predator-prey systems with ratio-dependent functional re-sponse[J]. Journal of Diferential Equations,2010,249:1410-1435.
    [77] T. Saha, C. Chakrabarti, Dynamical analysis of a delayed ratio-dependent Holling-Tanner predator-preymodel[J]. Journal of Mathematical Analysis and Applications,2009,358:389-402.
    [78] S. Chakraborty, S. Pal, N. Bairagi, Dynamics of a ratio-dependent eco-epidemiological system with prey har-vesting[J]. Nonlinear Analysis: Real World Applications,2010,11:1862-1877.
    [79] C. Kohlmeier, W. Ebenho h, The stabilizing role of cannibalism in a predator-prey system[J]. Bull. Math. Biol.,1995,57:401-411.
    [80] F.V.D. Bosch, W. Gabriel, Cannibalism in an age-structured predator-prey system[J]. Bull. Math. Biol.,1997,59:551-567.
    [81] G.-Q. Sun, G. Zhang, Z. Jin, Dynamic behavior of a discrete modified Ricker Beverton-Holt model[J]. Comput-ers and Mathematics with Applications,2009,57:1400-1412.
    [82] Z. He, X. Lai, Bifurcation and chaotic behavior of a discrete-time predator-prey system[J]. Nonlinear Analysis:Real World Applications,2011,12:403-417.
    [83] N. Fang, X.X. Chen, Permanence of a discrete multispecies Lotka-Volterra competition predator-prey systemwith delays[J]. Nonlinear Analysis: Real World Applications,2008,9:2185-2195.
    [84] Y. Xia, J. Cao, M. Lin, Discrete-time analogues of predator-prey models with monotonic or nonmonotonicfunctional responses[J]. Nonlinear Analysis: Real World Applications,2007,8:1079-1095.
    [85] R. K. Ghaziani, W. Govaerts, C. Sonck, Resonance and bifurcation in a discrete-time predator-prey system withHolling functional response[J]. Nonlinear Analysis: Real World Applications,2012,13:1451-1465.
    [86] R.E. Gaines, R.M. Mawhin, Coincidence Degree and Nonlinear Diferential Equations[M]. Springer-Verlag,Berlin,1977.
    [87] M. Fan, K. Wang, Periodic solutions of a discrete time nonautonomous ratio-dependent predator-prey system[J].Math. Comput. Model.,2002,35:951-961.
    [88] R.P. Agarwal, Diference Equations and Inequalities: Theory, Method and Applications Monographs and Text-books in Pure and Applied Mathematics[M]. Marcel Dekker, New York2000.
    [89] W.D. Wang, Z.Y. Lu, Global stability of discrete models of Lotka-Volterra type[J]. Nonlinear Analysis TMA,1999,35:1019-1030.
    [90] R.P. Agarwal, P.Y.H. Pang, On a generalized diference system[M]. Nonlinear Anal.,1997,30:365-376.
    [91] S.S. Cheng, G. Zhang, Positive periodic solutions of a discrete population model[J]. Funct. Difer. Equ.,2000,7:223-230.
    [92] I. Katsunori, Asymptotic analysis for linear diference equations[J]. Trans. Amer. Math. Soc.,1997,349:4107-4142.
    [93] R. Musielak, J. Popenda, On periodic solutions of a first order diference equation[J]. An. Sti. Univ.“Al. I. Cuza”Iasi Sect. I a Mat.,1988,34:125-133.
    [94] R.Y. Zhang, Z.C. Wang, Y. Chen, J. Wu, Periodic solutions of a single species discrete population model withperiodic harvest/stock[J]. Comput. Math. Appl.,2000,39:77-90.
    [95] Z. Zhang, An algebraic principle for the stability of diference operators[J]. J. Diferential Equations,1997,136:236-247.
    [96] G. Zhang, S. Kang, S.S. Cheng, Periodic solutions for a coupled pair of delay diference equations[J]. Advancesin Diference Equations,2005,3:215-226.
    [97] Y.N. Rafoul, Positive periodic solutions nonlinear functional diference equations[J]. Electronic Journal of Dif-ferential Equations,2002,55:1-8.
    [98] Y. Li, L. Zhu, P. Liu, Positive periodic solutions of nonlinear functional diference equations depending on aparameter[J]. Computers and Mathematics with Applications,2004,48:1453-1459.
    [99] R. Casagrandi, L. Bolzoni, S.A. Levin, V. Andreasen, The SIRC model and influenza A[J]. Mathematical Bio-sciences,2006,200:152-169.
    [100] E. Popova, M. Fasham, A.Osipov, V. Ryabchenko, Chaotic behaviour of an ocean ecosystem model underseasonal external forcing[J]. Journal of Plankton Research,1997,19:1495-1515.
    [101] E. Stefen, H. Malchow, A.-B. Medvinsky, Efects of seasonal perturbations on a model plankton community[J].Environmental Modeling and Assessment,1997,2:43-48.
    [102] S. Gao, L. Chen, The efect of seasonal harvesting on a single-species discrete population model with stagestructure and birth pulses[J]. Chaos, Solitons and Fractals,2005,24:1013-1023.
    [103] T.L. Cromer, Harvesting in a seasonal environment[J]. Mathematical and Computer Modelling,1988,10:445-450.
    [104] R. Xu, L.S. Chen, Persistence and stability for a two-species ratio-dependent preador-prey system with timedelay in a two-patch enviroment[J]. Comp. Math. Appl.,2000,40:577-588.
    [105] Z. Hou, Permanence and extinction in competitive Lotka-Volterra systems with delays[J]. Nonlinear Analysis:Real World Applications,2011,12:2130-2141.
    [106] C. Shi, Z. Li, F. Chen, Extinction in a nonautonomous Lotka-Volterra competitive system with infinite delayand feedback controls[J]. Nonlinear Analysis: Real World Applications,2012,13:2214-2226.
    [107] S. Ahmad, G.T. Stamov, Almost periodic solutions of N-dimensional impulsive competitive systems[J]. Non-linear Analysis: Real World Applications,2009,10:1846-1853.
    [108] J. Hou, Z. Teng, S. Gao, Permanence and global stability for nonautonomous N-species Lotka-Valterra com-petitive system with impulses[J]. Nonlinear Analysis: Real World Applications,2010,11:1882-1896.
    [109] D.J. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones[M]. Academic Press,1988.
    [110] J. Wu, Y. Liu, Two periodic solutions of neutral diference systems depending on two parameters[J]. Journal ofcomputational an Applied Mathematics,2007,206:713-725.
    [111] M. Baurmann, T. Gross, U. Feudel, Instabilities in spatially extended predator-prey systems: spatio-temporalpatterns in the neighborhood of Turing-Hopf bifurcations[J]. J. Theor. Biol.2007,245:220-229.
    [112] A. Morozov, S. Ruan, B.-L. Li, Patterns of patchy spread in multi-species reaction-difusion models[J]. Eco-logical Complexity,2008,5:313-328.
    [113] G.-Q. Sun, Z. Jin, Q.-X. Liu, L. Li, Pattern formation induced by cross-difusion in a predator-prey system[J].Chinese Physics B,2008,17:3936-3941.
    [114] G.-Q. Sun, Z. Jin, Q.-X. Liu, L. Li, Dynamical complexity of a spatial predator-prey model with migration[J].Ecol. Model.,2008,219:248-255.
    [115] J.D. Murray, Mathematical Biology[M]. Springer, Berlin,1989.
    [116] M.R. Garvie, Finite-diference schemes for reaction–difusion equations modeling predator-prey interactionsin matlab[J]. Bull. Math. Biol.,2007,69:931-956.
    [117] M.R. Garvie, C. Trenchea, Finite element approximations of spatially extended predator-prey interactions withthe Holling type II functional response[J]. Numerische Mathematik,2007,107:641-667.
    [118] C.S. Holling, Resilience and stability of ecological systems[J]. Annu. Rev. Ecol. Syst.,1973,4:1-23.
    [119] C. Folke, S.R. Carpenter, B. Walker, M. Schefer, T. Elmqvist, L.H. Gunderson, C. Holling, Regime shifts,resilience, and biodiversity in ecosystem management[J]. Annu. Rev. Ecol. Evol. Syst.,2004,35:557-581.
    [120] O. Richter, Spatio-temporal patterns of gene flow and dispersal under temperature increase[J]. Math. Bios.,2009,218:15-23.
    [121] M. Schefer, S. Rinaldi, Y.A. Kuznetsov, E.H. van Nes, Seasonal dynamics of daphnia and algae explained as aperiodically forced predator-prey system[J]. Oikos,1997,80:519-532.
    [122] M. Schefer, S. Rinaldi, Minimal models of top-down control of phytoplankton[J]. Freshwater Biol.,2000,45:265-283.
    [123] V. Guttal, C. Jayaprakash, Impact of noise on bistable ecological systems[J]. Ecol. Model.,2007,201:420-428.
    [124] J. Garc′a-Ojalvo, J.M. Sancho, Noise in Spatially Extended Systems[M]. Springer-Verlag, New York,1999.
    [125] W. Horsthemke, R. Lefever, Noise-Induced Transitions[M]. Springer, Berlin,1984.
    [126] F. Lesmes, D. Hochberg, F. Mora′n, J. Pe′rez-Mercader, Noise-Controlled Self-Replicating Patterns[J]. Phys.Rev. Lett.,2003,91:238301.
    [127] L. Gammaitoni, P. Hanggi, P. Jung, F. Marchesoni, Stochastic resonance[J]. Rev. Mod. Phys.,1998,70:223-287.
    [128] P.A. Braza, The bifurcation structure of the Holling-Tanner model for predator-prey interactions using two-timing[J]. SIAM J. Appl. Math.,2003,63:889-904.
    [129] J.B. Collings, Bifurcation and stability analysis of a temperature-dependent mite predator-prey interactionmodel incorporating a prey refuge[J]. Bull. Math. Biol.,1995,57:63-76.
    [130] S.B. Hsu, T.W. Huang, Global stability for a class of predator-prey systems[J]. SIAM J. Appl. Math.,1995,55:763-783.
    [131] D.J. Wollkind, J.B. Collings, J.A. Logan, Metastability in a temperature-dependent model system for predator-prey mite outbreak interactions on fruit flies[J]. Bull. Math. Biol.,1988,50:379-409.
    [132] R.M. May, Stability and Complexity in Model Ecosystems[M]. Princeton University Press, Princeton, NJ,1973.
    [133] T. Reichenbach, M. Mobilia, E. Frey, Noise and correlations in a spatial population model with cyclic compe-tition[J]. Phys. Rev. Lett.,2007,99:238105.
    [134] T. Reichenbach, M. Mobilia, E. Frey, Mobility promotes and jeopardizes biodiversity in rock-paper-scissorsgames[J]. Nature,2007,448:1046-1049.
    [135] Q.-X. Liu, B.-L. Li, Z. Jin, Resonance and frequency-locking phenomena in a spatially extended phytoplankton-zooplankton system with additive noise and periodic forces[J]. J. Stat. Mech.,2008,5:P05011.
    [136] B. Blasius, A. Huppert, L. Stone, Complex dynamics and phase synchronization in spatially extended ecologicalsystems[J]. Nature,1999,399:354-359.
    [137] R. Mankin, A. Ainsaar, A. Haljas, E. Reiter, Trichotomous-noise-induced catastrophic shifts in symbioticecosystems[J]. Phys. Rev. E,2002,65:051108.
    [138] R. Mankin, A. Sauga, A. Ainsaar, A. Haljas, K. Paunel, Colored-noise-induced discontinuous transitions insymbiotic ecosystems[J]. Phys. Rev. E,2004,69:061106.
    [139] S. Scarsoglio, F. Laio, P. D’Odorico, L. Ridolfi, Spatial pattern formation induced by Gaussian white noise[J].Mathematical Biosciences,2011,229:174-184.
    [140] D.J. Higham, An algorithmic introduction to numerical simulation of stochastic diferential equations[J]. SIAMRev.,2001,43:525-546.
    [141] S. Petrovskii, B.L. Li, H. Malchow, Transition to spatiotemporal chaos can resolve the paradox of enrichment[J].Ecological Complexity,2004,1:37-47.
    [142] H. Malchow, S.V. Petrovskii, E. Venturino, Spatiotemporal Patterns in Ecology and Epidemiology: Theory,Models, and Simulations[M]. Chapman and Hall/CRC, London,2008.
    [143] G.-Q. Sun, Z. Jin, L. Li, Q.-X. Liu, The role of noise in a predator-prey model with Allee efect[J]. J. Biol.Phys.,2009,35:185-196.
    [144] G.-Q. Sun, G. Zhang, Z. Jin, L. Li, Predator cannibalism can give rise to regular spatial pattern in a predator-preysystem[J]. Nonlinear Dyn.,2009,58:75-84.
    [145] J.T. Tanner, The stability and the intrinsic growth rates of prey and predator populations[J]. Ecology,1975,56:855-867.
    [146] G.-Q. Sun, Q.-X. Liu, Z. Jin, A. Chakraborty and B.-L. Li, Influence of infection rate and migration on extinc-tion of disease in spatial epidemics[J]. J. Theor. Biol.,2010,264:95-103.
    [147] E.M. Bayne, L. Habib, S. Boutin, Impacts of Chronic Anthropogenic Noise fromEnergy-Sector Activity onAbundance of Songbirds in the Boreal Forest[J]. Conservation Biology,2008,22:1186-1193.
    [148] A.Y. Chan, D.T. Blumstein, Anthropogenic noise’s first reverberation into community ecology[J]. Proc. R. Soc.B,2012,279:2725-2726.
    [149] A.A.Y.H. Chan, P. Giraldo-Perez, S. Smith, D.T. Blumstein, Anthropogenic noise afects risk assessment andattention: the distracted prey hypothesis[J]. Biol. Lett.,2010,6:458-461.
    [150] D. del Castillo Negrete, B.A. Carreras, V.E. Lynch, Front dynamics in reaction-difusion systems with Le′vyflights: a fractional difusion approach[J]. Phys. Rev. Lett.,2003,91:018302.
    [151] B. Dennis, R.A. Desharnais, J.M. Cushing, S.M. Henson, R.F. Costantino, Can noise induce chaos?[J] OIKOS,2003,102:329-339.
    [152] P. D’Odorico, F. Laio, L. Ridolfi, M.T. Lerdau, Biodiversity enhancement induced by environmental noise[J].Journal of Theoretical Biology,2008,255:332-337.
    [153] A.M. Edwards, R.A. Phillips, N.W. Watkins, M.P. Freeman, E.J. Murphy, V. Afana-syev, S.V. Buldyrev, M.G.E.Da-Luz, E.P. Raposo, H.E. Stanley, G.M. Viswanathan, Revisiting Le′vy flight search patterns of wanderingalbatrosses, bumblebees and deer[J]. Nature,2007,449:1044-1048.
    [154] C.D. Francis, C.P. Ortega, A. Cruz, Noise pollution changes avian communities and species interactions[J].Curr. Biol.,2009,19:1415-1419.
    [155] N.H. Gazi, Dynamics of a marine plankton system: difusive instability and pattern formation[J]. Appl. Math.Comput.,2012,218:8895-8905.
    [156] B.T. Grenfell, K. Wilson, B.F. Finkenstadt, T.N. Coulson, S. Murray, S.D. Albon, J.M. Pemberton, T.H. Clutton-Brock, M.J. Crawley, Noise and determinism in synchronized sheep dynamics[J]. Nature,1998,394:674-677.
    [157] O. Hallatschek, Noise Driven Evolutionary Waves[J]. PLoS Computational Biology,2011,7:e1002005.
    [158] W. Halfwerk, L.J.M. Holleman, C.M. Lessells, H. Slabbekoorn, Negative impact of trafc noise on avian re-productive success[J]. Journal of Applied Ecology,2011,48:210-219.
    [159] D.J. Higham, An algorithmic introduction to numerical simulation of stochastic diferential equations[J]. SIAMRev.,2011,43:525-546.
    [160] D. Lyles, T.S. Rosenstock, A. Hastings, P.H. Brown, The role of large environmental noise in masting: Generalmodel and example from pistachio trees[J]. Journal of Theoretical Biology,2009,259:701-713.
    [161] R. Mankin, A. Ainsaar, A. Haljas, E. Reiter, Trichotomous-noise-induced catastrophic shifts in symbioticecosystems[J]. Phys. Rev. E,2002,65:051108.
    [162] R. Mankin, A. Sauga, A. Ainsaar, A. Haljas, K. Paunel, Colored-noise-induced discontinuous transitions insymbiotic ecosystems[J]. Phys. Rev. E,2004,69:061106.
    [163] M. R. Mehdi, M. Kim, J. C. Seong, M. H. Arsalan, Spatio-temporal patterns of road trafc noise pollution inKarachi, Pakistan[J]. Environment International,2011,37:97-104.
    [164] J. Ripa, P. Lundberg, Noise Colour and the Risk of Population Extinctions[J]. Proc. R. Soc. Lond. B,1996,263:1751-1753.
    [165] J.A. Sherratt, Numerical continuation methods for studying periodic travelling wave (wavetrain) solutions ofpartial diferential equations[J]. Appl. Math. Comp.,2012,218:4684-4694.
    [166] J.A. Sherratt, Periodic travelling wave selection by Dirichlet boundary conditions in oscillatory reaction-difusion systems[J]. SIAM J. Appl. Math.,2003,63:1520-1538.
    [167] J.A. Sherratt, X. Lambin, T.N. Sherratt, The efects of the size and shape of landscape features on the formationof travelling waves in cyclic populations[J]. Am. Nat.,2003,162:503-513.
    [168] J.A. Sherratt, X. Lambin, C.J. Thomas, T.N. Sherratt, Generation of periodic waves by landscape features incyclic predator-prey systems[J]. Proc. R. Soc. Lond. B,2002,269:327-334.
    [169] J.A. Sherratt, M.J. Smith, Periodic travelling waves in cyclic populations: field studies and reaction-difusionmodels[J]. J. R. Soc. Interface,2008,5:483-505.
    [170] J.A. Sherratt, M.J. Smith, J.D.M. Rademacher, Locating the transition from periodic oscillations to spatiotem-poral chaos in the wake of invasion[J]. Proc. Natl. Acad. Sci. USA,2009,106:10890-10895.
    [171] B.M. Siemers, A, Schaub, Hunting at the highway: trafc noise reduces foraging efciency in acoustic preda-tors[J]. Proc. R. Soc. B,2011,278:1646-1652.
    [172] B. Spagnolo, D. Valenti, A. Fiasconaro, Noise in ecosystems: a short review[J]. Math. Biosci. Eng.,2004,1:185-211.
    [173] K. Steinmann, S. Eggenberg, T. Wohlgemuth, H.P. Linder, N.E. Zimmermann, Niches and noise-Disentanglinghabitat diversity and area efect on species diversity[J]. Ecological Complexity,2011,8:313-319.
    [174] G.-Q. Sun, Z. Jin, L. Li, B.-L. Li, Self-organized wave pattern in a predator-prey model[J]. Nonlinear Dynam.,2010,60:265-275.
    [175] G.-Q. Sun, Z. Jin, Q.-X. Liu, B.-L. Li, Rich dynamics in a predator-prey model with both noise and periodicforce[J]. BioSystems,2010,100:14-22.
    [176] R. Peng, M. Wang, G. Yang, Stationary patterns of the Holling-Tanner prey-predator model with difusion andcross-difusion[J]. Applied Mathematics and Computation,2008,196:570-577.
    [177] G.-Q. Sun, J. Zhang, L.-P. Song, Z. Jin, B.-L. Li, Pattern formation of a spatial predator-prey system[J]. Appl.Math. Comput.,2012,218:11151-11162.
    [178] M. Banerjee, S. Banerjee, Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tannermodel[J]. Mathematical Biosciences,2012,236:64-76.
    [179] J.T. Tanner, The stability and the intrinsic growth rates of prey and predator populations[J]. Ecology,1975,56:855-867.
    [180] M.C. Wichmann, K. Johst, M. Schwager, B. Blasius, F. Jeltsch, Extinction risk, coloured noise and the scalingof variance[J]. Theoretical Population Biology,2005,68:29-40.
    [181] D.J. Wollkind, J.B. Collings, J.A. Logan, Metastability in a temperature-dependent model system for predator-prey mite outbreak interactions on fruit flies[J]. Bull. Math. Biol.,1988,50:379-409.
    [182] J.-F. Zhang, W.-T. Li, X.-P. Yan, Hopf bifurcation and Turing instability in spatial homogeneous and inhomo-geneous predator-prey models[J]. Appl. Math. Comput.,2011,218:1883-1893.
    [183] L.-M. Zhu, A.-L. Wang, Y.-J. Liu, B. Wang, Stationary patterns of a predator-prey model with spatial efect[J].Appl. Math. Comput.,2010,216:3620-3626.
    [184]欧阳颀,反应扩散系统中的斑图动力学[M].上海:科技教育出版社,2000.
    [185] A. Morozov, S. Petrovskii, B.-L. Li, Bifurcations and chaos in a predator-prey system with the Allee efect[J].Proc. R. Soc. Lond. B,2004,271:1407-1414.
    [186] B. Pen a, C. Pe′rez-Garc′a, Stability of Turing patterns in the Brusselator model[J]. Phys. Rev. E,2001,64:056213.
    [187] V. Dufiet, J. Boissonade, Dynamics of Turing pattern monolayers close to onset[J]. Phys. Rev. E,1996,53:4883-4892.
    [188] G. Gunaratne, Q. Ouyang, H. Swinney, Pattern Formation in the Presence of Symmetries[J]. Phys. Rev. E,1994,50:2802.
    [189] X.-C. Zhang, G.-Q. Sun, Z. Jin, Spatial dynamics in a predator-prey model with Beddington-DeAngelis func-tional response[J]. Phys. Rev. E,2012,85:021924.
    [190] O. JenSen, V.O. Pannbacker, G. Dewel, P. Borckmans, Subcritical transitions to Turing structures[J]. Phys. Lett.A.,1993,179:91-96.
    [191] P. Manneville, Dissipative Structures and Weak Turbulence[M]. Academic Press, San Diego,2000.
    [192] M. Ipsen, F. Hynne, P.G. S rensen, Amplitude equations for reaction-difusion systems with a Hopf bifurcationand slow real modes[J]. Physica D,2000,136:66-92.
    [193] T.K. Callahan, E. Knobloch, Pattern formation in three-dimensional reaction-difusion systems[J]. Physica D,1999,132:339-362.
    [194] V.K. Vanag, I.R. Epstein, Cross-difusion and pattern formation in reaction-difusion systems[J]. Phys. Chem.Chem. Phys.,2009,11:897-912.
    [195] M. Iida, M. Mimura, H. Ninomiya, Difusion, cross-difusion and competitive interaction[J]. J. Math. Biol.,2006,53:617-641.
    [196] N. Shigesada, K. Kawasaki, E. Teramoto, Spatial segregation of interacting species[J]. J. Theor. Biol.,1979,79:83-99.
    [197] A.A. Berryman, The origins and evolution of predator-prey theory[J]. Ecology,1972,73:1530-1535.
    [198] E. Beretta, Y. Kuang, Global analyses in some delayed ratio-dependent predator-prey systems[J]. Nonl. Anal.,1998,32:381-408.
    [199] S. Levin, L. Segel, Hypothesis for origin of planktonic patchiness[J]. Nature,1976,259:659.
    [200] L. Segel, J. Jackson, Dissipative structure: An explanation and an ecological example[J]. J. Theor. Biol.,1972,37:545-559.
    [201] S. Kondo, R. Asai, A reaction-difusion wave on the skin of the marine angelfish Pomacanthus[J]. Nature,1995,376:765-768.
    [202] C. Varea, J.L. Aragon, Confined Turing patterns in growing systems[J]. Phys. Rev. E,1997,56:1250-1253.
    [203] K.J. Painter, P.K. Maini, H.G. Othmer, Chemotactic response to multiple signalling cues[J]. J. Math. Biol.,2000,41:285-314.
    [204] J. van de Koppel, C.M. Crain, Scale-dependent inhibition drives regular tussock spacing in a freshwatermarsh[J]. Am. Nat.,2006,168:E136-E147.
    [205] D.L. DeAngelis, R.A. Goldstein, R.V. O’Neill, A model for trophic interaction[J]. Ecology,1975,56:881-892.
    [206] J.R. Beddington, Mutual interference between parasites or predators and its efect on searching efciency[J]. J.Animal Ecol.,1975,44:331-340.
    [207] C.S. Holling, The functional response of predator to prey density and its role in mimicry and population regu-lation[J]. Mem. Ent. Soc. Can.,1965,45:1-60.
    [208] T. Leppanen, Computational studies of pattern formation in Turing systems[M]. Finland: Thesis Helsinki Uni-versity of Technology,2004.
    [209] R.C. Almeida, A. Simone, I.M. Delphim, d.S. Costa. A numericalmodel to solve single-species invasion prob-lems with Allee efects[J]. Ecological Modelling,2006,192:601-617.
    [210] M.P. Hassell, H.N. Comins, R.M. May, Species coexistence and selforganizing spatial dynamics[J]. Nature,1994,370:290-292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700