用户名: 密码: 验证码:
膝关节三维运动测量方法与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膝关节置换前后的运动学对比,是研究膝关节损伤机理和评估术后重建效果的重要依据。目前,在膝关节动态三维运动的精确测量上,还存在技术难点,全膝置换(TKA)假体对膝关节运动功能的影响,有待于深入研究。
     本文围绕膝关节三维运动测量与分析开展研究工作,利用动态X线影像技术和高精度光学三维跟踪技术分别进行了在体和离体的实验研究,测量了膝关节置换前后的三维运动学参数,分析了后稳定型假体对髌股关节运动及髌韧带的影响。
     首先,利用二维动态X线透视影像与膝关节三维模型进行注册,重建和跟踪膝关节在体三维运动过程。为提高图像与模型的注册效率,本文在二维影像与三维模型的自动化注册等关键技术上进行了算法设计与实现,缩短了注册时间,提高了注册精度,算法稳定可靠。利用该技术测量了正常膝关节爬楼梯和高屈膝时的三维运动,研究了TKA术前术后膝关节活动度、髌股关节及髌韧带的运动学变化。
     膝关节个性化建模是研究在体膝关节三维运动学的基础,目前还主要依赖计算机X射线断层扫描(CT)或核磁共振成像(MRI)等影像技术,前者电离辐射较高,后者成本高且建模耗时。为了突破以上瓶颈,本文利用可变形统计模型技术,实现了膝关节骨骼和软骨模型的快速三维重建。经过论证,该技术与CT、MRI影像技术的建模精度相当,是个性化膝关节建模的一种新方法,为研究在体膝关节运动学提供了新途径。
     针对膝关节研究中在体运动难以精确测量的技术难题,本文采用光学三维跟踪测量技术,通过离体实验,高精度地测量了尸体膝关节的三维运动,并着重研究了全膝置换假体对髌骨轨迹和髌韧带的影响。同时,针对膝关节运动范围受X线透视成像空间尺寸限制的情况,利用体表标记点跟踪下肢大范围内的运动,测量了下蹲过程中正常膝关节的三维运动和Q角参数。
     综上,本文对膝关节三维运动测量的关键技术进行了研究,对膝关节置换前后三维运动学差异进行了对比和分析。同时,应用统计模型进行膝关节个性化三维建模,降低了辐射和成本。本文的方法和研究结果对临床有参考价值,测量方法和建模技术还可应用于人体其他关节的三维运动学研究。
The kinematic comparison between the native knee and artificial knee is animportant way to understand the joint disease mechanism and assess the clinicaloutcomes. Currently, the accurate measurement of the dynamic knee joint motion inthree dimensions (3D) is still a challenging issue in technique. The kinematic differenceof the knees underwent total knee arthroplasty (TKA) needs to be investigated in clinic.
     In this study, the X-ray images and optical tracking technique were applied tomeasure the3D kinematics of the in-vivo and in-vitro knees. The joint kinematicsbefore and after the posterior stabilized TKA were measured. The effect of the TKAdesigns to the patellofemoral joint and patellar tendon was investigated.
     A2D-3D image-model registration technique was applied to reconstruct the3Dmotion of the in-vivo knee joint. An algorithm of2D-3D automatic registration wasdeveloped to enhance the method, which simplified the time-consuming process. Theaccuracy and repeatability were improved. The technique was applied to study thenormal knees during stair ascending and deep flexion and the knees after TKAs.
     The patient-specific knee model is the basis to study the in-vivo3D knee jointkinematics. Currently, the CT or MRI images can be used to reconstruct3D kneemodels, but with high radiation and cost. In order to overcome the above disadvantages,a statistical deformable model was developed to generate the knee models with boneand cartilage, which was accurate enough to study knee joint kinematics.
     In vivo studies, the accurate tracking of the knee joint is difficult, and the motion islimited by the X-ray imaging zone. The marker-based optical tracking technique wasused to track the motion of the cadaveric patella in this study. Different types of TKAprosthesis were compared. Due to the capability of tracking large range of motion inspace, the technique was used to measure the knee kinematics and Q angle during squat.
     In summary, key techniques were presented in this study to measure the kinematicsof the knee joints before and after TKAs. Meanwhile a new method to reconstructpatient-specific knee model was developed. The result has an essential significance inclinic. The techniques can be used to measure the3D kinematics of other human joints.
引文
[1]胡广.骨与关节运动损伤.北京:人民军医出版社,2007:258-315.
    [2]张秀丽.成人正常膝关节的运动学[博士学位论文].河北:河北医科大学,2005.
    [3]周飞虎,王岩,周勇刚.人工膝关节设计中的相关问题.中国临床康复,2003,7(14):2081-2.
    [4]戴魁戎,陈启明,郭耿南.现代关节外科学.北京:科学出版社,2007:560-80
    [5] Wu G, Cavanagh PR. ISB recommendations for standardization in the reporting ofkinematic data. J Biomech,1995,28(10):1257-62.
    [6]孙康,王光达.膝关节生物力学与运动学专业术语.中国现代医学杂志,2002,12(6):37-44.
    [7] Huiskes R, Van Dijk R, de Lange A, et al. Kinematics of the human knee joint.Biomech Normal Pathol Hum Articular Joints,1985:165-87.
    [8]吕厚山.现代人工关节外科学.人民卫生出版社,2006:216-24
    [9]王亦璁,孟继懋,郭子恒.骨与关节损伤.人民卫生出版社,2001: Vol.10.
    [10]刘志宏,杨庆铭.正常膝关节的运动学特性.国外医学:骨科学分册,2002,23(3):148-50.
    [11]赵钟岳.伸膝装置的生物力学.中华骨科杂志,1996,16(1):65-8.
    [12]单大卯,魏文仪.股四头肌长度和力臂的实验性研究.天津体育学院学报,2005,20(002):17-20.
    [13]王世斌,于秀梅.髌股关节的结构与控制.山东体育科技,1995,1.
    [14]张峻,候筱魁.髌骨的生物力学研究进展.医用生物力学,2004,19(002):120-5.
    [15]杨述华,邱贵兴.关节置换外科学:清华大学出版社,2005:544-54
    [16] Murphy M, Journeaux S, Russell T. High-flexion total knee arthroplasty: asystematic review. International orthopaedics,2009,33(4):887-93.
    [17]周一新,蒋毅,张洪,等.胫骨轴向旋转运动与膝关节屈伸运动耦合的研究.中华骨科杂志,2004,24(012):747-50.
    [18]王晓峰.全膝关节置换术后膝关节的运动学分析[博士学位论文].河北:河北医科大学,2005.
    [19]李海蒙,董英海.全膝关节置换术中髌股轨迹的研究现状.临床骨科杂志,2006,9(1):86-8.
    [20]周一新.人工膝关节假体设计对全膝关节置换术后髌股关节功能的影响(上).中华骨科杂志,2006,26(008):574-6.
    [21] Carpenter RD, Brilhault J, Majumdar S, et al. Magnetic resonance imaging of invivo patellofemoral kinematics after total knee arthroplasty. The Knee,2009,16(5):332-6.
    [22]周一新,蒋毅,张洪,等.全膝关节置换术对髌骨内外倾运动的影响.中华骨科杂志,2007,26(11):754-7.
    [23] Hefzy MS, Kelly BP, Cooke TDV. Kinematics of the knee joint in deep flexion: aradiographic assessment. Med Eng Phys,1998,20(4):302-7.
    [24] Leszko F, Sharma A, Komistek RD, et al. Comparison of in vivo patellofemoralkinematics for subjects having high-flexion total knee arthroplasty implant withpatients having normal knees. The Journal of arthroplasty,2010,25(3):398-404.
    [25] Boisgard S, Geiger B, Michel H. A study of3d kinematics of the knee joint,1994.
    [26] Hemmerich A, Van Der Merwe W, Vaughan CL. Measuring three-dimensional kneekinematics under torsional loading. J Biomech,2009,42(2):183-6.
    [27] Gold GE, Besier TF, Draper CE, et al. Weight‐bearing MRI of patellofemoral jointcartilage contact area. Journal of Magnetic Resonance Imaging,2004,20(3):526-30.
    [28] von Eisenhart-Rothe R, Siebert M, Bringmann C, et al. A new in vivo technique fordetermination of3D kinematics and contact areas of the patello-femoral andtibio-femoral joint. J Biomech,2004,37(6):927-34.
    [29] Barrance PJ, Williams GN, Novotny JE, et al. A method for measurement of jointkinematics in vivo by registration of3-D geometric models with cine phase contrastmagnetic resonance imaging data. J Biomech Eng,2005,127:829.
    [30] Rhoad RC, Klimkiewicz JJ, Williams GR, et al. A new in vivo technique forthree-dimensional shoulder kinematics analysis. Skeletal radiology,1998,27(2):92-7.
    [31] McPherson A, K rrholm J, Pinskerova V, et al. Imaging knee position using MRI,RSA/CT and3D digitisation. J Biomech,2005,38(2):263-8.
    [32] Freeman MAR, Pinskerova V. The movement of the normal tibio-femoral joint. JBiomech,2005,38(2):197-208.
    [33] Rahman HA. Accurate measurement of three-dimensional natural knee kinematicsusing single-plane fluoroscopy. University of Florida2004.
    [34] Sharma A, Komistek RD, Ranawat CS, et al. In vivo contact pressures in total kneearthroplasty. The Journal of arthroplasty,2007,22(3):404-16.
    [35] Zuffi S, Leardini A, Catani F, et al. A model-based method for the reconstruction oftotal knee replacement kinematics. Medical Imaging, IEEE Transactions on,1999,18(10):981-91.
    [36] Watanabe T, Yamazaki T, Sugamoto K, et al. In vivo kinematics of mobile‐bearingknee arthroplasty in deep knee bending motion. Journal of orthopaedic research,2004,22(5):1044-9.
    [37] Kitagawa A, Tsumura N, Chin T, et al. In vivo comparison of knee kinematicsbefore and after high-flexion posterior cruciate-retaining total knee arthroplasty.The Journal of arthroplasty,2010,25(6):964-9.
    [38] Yamazaki T, Watanabe T, Tomita T, et al.3D kinematics of normal knee usingX-ray fluoroscopy and CT images. Springer2007:2793-6.
    [39] Moro‐oka T, Hamai S, Miura H, et al. Can magnetic resonance imaging–derivedbone models be used for accurate motion measurement with single‐plane three‐dimensional shape registration? Journal of orthopaedic research,2007,25(7):867-72.
    [40] Moro‐oka T, Hamai S, Miura H, et al. Dynamic activity dependence of in vivonormal knee kinematics. Journal of orthopaedic research,2008,26(4):428-34.
    [41] Lu TW, Tsai TY, Kuo MY, et al. In vivo three-dimensional kinematics of the normalknee during active extension under unloaded and loaded conditions usingsingle-plane fluoroscopy. Med Eng Phys,2008,30(8):1004-12.
    [42] DeFrate LE, Sun H, Gill TJ, et al. In vivo tibiofemoral contact analysis using3DMRI-based knee models. J Biomech,2004,37(10):1499-504.
    [43] Tashman S, Anderst W. In-vivo measurement of dynamic joint motion using highspeed biplane radiography and CT: application to canine ACL deficiency. J BiomechEng,2003,125:238.
    [44]李萍美.膝关节骨关节炎三维步态分析研究及其在运动医学中的应用.中国运动医学杂志,2009(002):226-8.
    [45]李伟.膝关节骨性关节炎的步态特征研究[硕士学位论文].辽宁:辽宁师范大学2007.
    [46] Hagemeister N, Parent G, Van de Putte M, et al. A reproducible method for studyingthree-dimensional knee kinematics. J Biomech,2005,38(9):1926-31.
    [47]王洪生,白雪岭,张希安,等.一种基于刚体的虚拟Marker人体步态测量.中国组织工程研究与临床康复,2008,12(30):5833-6.
    [48]郝智秀,周吉彬,金德闻,等.不同足地界面对人体三维步态的影响.清华大学学报:自然科学版,2006,46(8):138802.
    [49]梁娟,白跃宏,周俊.全膝关节置换后三维步态分析:病例-对照的随访观察.中国组织工程研究与临床康复,2009,12(44):8627-30.
    [50]郭林,崔大平.全膝关节置换前后的三维步态分析.中国组织工程研究与临床康复,2008,12(013):2417-20.
    [51] Lu TW, Lu CH. Forces transmitted in the knee joint during stair ascent and descent.Journal of Mechanics,2006,22(04):289-97.
    [52] Koh JSB, Nagai T, Motojima S, et al. Concepts and measurement of in vivotibiofemoral kinematics. Operative Techniques in Orthopaedics,2005,15(1):43-8.
    [53] Labbe DR, Hagemeister N, Tremblay M, et al. Reliability of a method for analyzingthree-dimensional knee kinematics during gait. Gait&posture,2008,28(1):170-4.
    [54] Cereatti A, Della Croce U, Cappozzo A. Reconstruction of skeletal movement usingskin markers: comparative assessment of bone pose estimators. J Neuroeng Rehabil,2006,3:7.
    [55] Gao B, Zheng NN. Investigation of soft tissue movement during level walking:translations and rotations of skin markers. J Biomech,2008,41(15):3189-95.
    [56] Leardini A, Chiari L, Croce UD, et al. Human movement analysis usingstereophotogrammetry: Part3. Soft tissue artifact assessment and compensation.Gait&posture,2005,21(2):212-25.
    [57]黄文华,姜楠,张美超,等.膝关节计算机三维模型的建立.中国医学物理学杂志,2007,24(4):267-8.
    [58]陈世益, Wang HC.人类髌股关节三维运动规律的研究.中国运动医学杂志,1997,16(002):107-13.
    [59] Zavatsky AB. A kinematic-freedom analysis of a flexed-knee-stance testing rig. JBiomech,1997,30(3):277-80.
    [60] Ezzet KA, Hershey AL, D'Lima DD, et al. Patellar tracking in total kneearthroplasty: inset versus onset design. The Journal of arthroplasty,2001,16(7):838-43.
    [61] Browne C, Hermida JC, Bergula A, et al. Patellofemoral forces after total kneearthroplasty: effect of extensor moment arm. The Knee,2005,12(2):81-8.
    [62] Anglin C, Brimacombe JM, Wilson DR, et al. Intraoperative vs. weightbearingpatellar kinematics in total knee arthroplasty: A cadaveric study. ClinicalBiomechanics,2008,23(1):60-70.
    [63] Bull AMJ, Kessler O, Alam M, et al. Changes in knee kinematics reflect thearticular geometry after arthroplasty. Clinical Orthopaedics and Related Research,2008,466(10):2491-9.
    [64] Varadarajan KM, Harry RE, Johnson T, et al. Can in vitro systems capture thecharacteristic differences between the flexion-extension kinematics of the healthyand TKA knee? Med Eng Phys,2009,31(8):899-906.
    [65] Baldwin MA, Clary CW, Fitzpatrick CK, et al. Dynamic finite element kneesimulation for evaluation of knee replacement mechanics. J Biomech,2012,45(3):474-83.
    [66]张宇,郝智秀,金德闻,等.基于磁共振图像的人体膝关节三维模型的建立.中国康复医学杂志,2007,22(4):339-42.
    [67] Sharma A, Leszko F, Komistek RD, et al. In vivo patellofemoral forces in highflexion total knee arthroplasty. J Biomech,2008,41(3):642-8.
    [68] Salvia P, Sobczak S, Sholukha V, et al. Knee kinematics Validation of are-orientation technique of knee axis. Ninth International Symposium on the3Danalysis of Human Movement, June28-30th.2006.
    [69] Banks SA, Hodge WA. Accurate measurement of three-dimensional kneereplacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng,1996,43(6):638-49.
    [70] Mahfouz MR, Hoff WA, Komistek RD, et al. A robust method for registration ofthree-dimensional knee implant models to two-dimensional fluoroscopy images.IEEE Trans Med Imaging,2003,22(12):1561-74.
    [71] Li G, Wuerz TH, DeFrate LE. Feasibility of using orthogonal fluoroscopic images tomeasure in vivo joint kinematics. J Biomech Eng,2004,126(2):314-8.
    [72] Li G, Van de Velde SK, Bingham JT. Validation of a non-invasive fluoroscopicimaging technique for the measurement of dynamic knee joint motion. J Biomech,2008,41(7):1616-22.
    [73] Wang S, Passias P, Li G, et al. Measurement of vertebral kinematics usingnoninvasive image matching method-validation and application. Spine (Phila Pa1976),2008,33(11): E355-61.
    [74] Wan L, de Asla RJ, Rubash HE, et al. In vivo cartilage contact deformation ofhuman ankle joints under full body weight. J Orthop Res,2008,26(8):1081-9.
    [75] Massimini DF, Warner JJ, Li G. Non-invasive determination of coupled motion ofthe scapula and humerus--an in-vitro validation. J Biomech,2010,44(3):408-12.
    [76] Hoff WA, Komistek RD, Dennis DA, et al. Three-dimensional determination offemoral-tibial contact positions under in vivo conditions using fluoroscopy. ClinBiomech (Bristol, Avon),1998,13(7):455-72.
    [77] Hanson GR, Suggs JF, Freiberg AA, et al. Investigation of in vivo6DOF total kneearthoplasty kinematics using a dual orthogonal fluoroscopic system. J Orthop Res,2006,24(5):974-81.
    [78] Fregly BJ, Rahman HA, Banks SA. Theoretical accuracy of model-based shapematching for measuring natural knee kinematics with single-plane fluoroscopy. JBiomech Eng,2005,127(4):692-9.
    [79] Walker SA, Hoff W, Komistek R, et al."In vivo" pose estimation of artificial kneeimplants using computer vision. Biomed Sci Instrum,1996,32:143-50.
    [80] You BM, Siy P, Anderst W, et al. In vivo measurement of3-D skeletal kinematicsfrom sequences of biplane radiographs: application to knee kinematics. IEEE TransMed Imaging,2001,20(6):514-25.
    [81] Acker S, Li R, Murray H, et al. Accuracy of single-plane fluoroscopy in determiningrelative position and orientation of total knee replacement components. J Biomech,2010,44(4):784-7.
    [82] Kanisawa I, Banks AZ, Banks SA, et al. Weight-bearing knee kinematics in subjectswith two types of anterior cruciate ligament reconstructions. Knee Surg SportsTraumatol Arthrosc,2003,11(1):16-22.
    [83] Kaptein BL, Valstar ER, Stoel BC, et al. A new model-based RSA method validatedusing CAD models and models from reversed engineering. J Biomech,2003,36(6):873-82.
    [84] Bingham J, Li G. An optimized image matching method for determining in-vivoTKA kinematics with a dual-orthogonal fluoroscopic imaging system. J BiomechEng,2006,128(4):588-95.
    [85] Kanekasu K, Banks SA, Honjo S, et al. Fluoroscopic analysis of knee arthroplastykinematics during deep flexion kneeling. The Journal of arthroplasty,2004,19(8):998-1003.
    [86] Defrate LE, Nha KW, Papannagari R, et al. The biomechanical function of thepatellar tendon during in-vivo weight-bearing flexion. J Biomech,2007,40(8):1716-22.
    [87] Stiehl JB, Komistek RD, Dennis DA, et al. Kinematics of the patellofemoral joint intotal knee arthroplasty. The Journal of arthroplasty,2001,16(6):706-14.
    [88] Heimann T, Meinzer HP. Statistical shape models for3D medical imagesegmentation: a review. Med Image Anal,2009,13(4):543-63.
    [89] Zheng G, Ballester MA, Styner M, et al. Reconstruction of patient-specific3D bonesurface from2D calibrated fluoroscopic images and point distribution model. MedImage Comput Comput Assist Interv,2006,9(Pt1):25-32.
    [90] Sadowsky O, Chintalapani G, Taylor RH. Deformable2D-3D registration of thepelvis with a limited field of view, using shape statistics. Med Image ComputComput Assist Interv,2007,10(Pt2):519-26.
    [91] Cresson T, Chav R, Branchaud D, et al. Coupling2D/3D registration method andstatistical model to perform3D reconstruction from partial x-rays images data. ConfProc IEEE Eng Med Biol Soc,2009,2009:1008-11.
    [92] Zheng G, Nolte LP, Ferguson SJ. Scaled, patient-specific3D vertebral modelreconstruction based on2D lateral fluoroscopy. Int J Comput Assist Radiol Surg,2010,6(3):351-66.
    [93] Dworzak J, Lamecker H, von Berg J, et al.3D reconstruction of the human rib cagefrom2D projection images using a statistical shape model. Int J Comput AssistRadiol Surg,2010,5(2):111-24.
    [94] Khallaghi S, Mousavi P, Gong RH, et al. Registration of a statistical shape model ofthe lumbar spine to3D ultrasound images. Med Image Comput Comput Assist Interv,2010,13(Pt2):68-75.
    [95] Zhu Z, Li G. Construction of3D human distal femoral surface models using a3Dstatistical deformable model. J Biomech,2011,44(13):2362-8.
    [96] Stegmann MB, Gomez DD. A brief introduction to statistical shape analysis.Technical University of Denmark, Lyngby,2002.
    [97]冯筠,叶豪盛,郭竞.基于多分辨统计模型和曲面恢复的腹部图像分割算法.中国图象图形学报,2010(003):481-9.
    [98] Zhu Z, Li G. An automatic2D-3D image matching method for reproducing spatialknee joint positions using single or dual fluoroscopic images. Comput MethodsBiomech Biomed Engin,2011.
    [99] Piazza SJ, Erdemir A, Okita N, et al. Assessment of the functional method of hipjoint center location subject to reduced range of hip motion. Journal ofBiomechanics,2004,37(3):349-56.
    [100] Li G, DeFrate LE, Park SE, et al. In vivo articular cartilage contact kinematics ofthe knee: an investigation using dual-orthogonal fluoroscopy and magneticresonance image-based computer models. Am J Sports Med,2005,33(1):102-7.
    [101] Patel VV, Hall K, Ries M, et al. A three-dimensional MRI analysis of kneekinematics. J Orthop Res,2004,22(2):283-92.
    [102]周晓波,吴海山,徐长明,等.全膝置换术后的髌腱短缩及其临床影响.中国骨与关节损伤杂志,2006,21(003):182-4.
    [103] Defrate LE, Nha KW, Papannagari R, et al. The biomechanical function of thepatellar tendon during in-vivo weight-bearing flexion. J Biomech,2007,40(8):1716-22.
    [104]黄雪梅,王成焘.计算机辅助全膝置换中股骨力线定位精度的实验研究.生物医学工程学杂志,2006,23(1):82-4.
    [105] Herrington L, Nester C. Q-angle undervalued? The relationship between Q-angleand medio-lateral position of the patella. Clin Biomech (Bristol, Avon),2004,19(10):1070-3.
    [106] Tella BA, Ulogo U, Odebiyi DO, et al. Gender variation of bilateral Q-angle inyoung adult Nigerians. Nig Q J Hosp Med,2011,20(3):114-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700