用户名: 密码: 验证码:
基于基因表达式编程技术的非线性系统辨识研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,现代工业过程变得越来越复杂,了解复杂对象的详细行为特征也越来越困难。基于观测数据通过系统辨识方法获取的对象数学模型,是人们对系统分析及控制的基础。近几十年来系统辨识方法已成为复杂非线性系统研究的重要手段,在各工程领域都得到广泛应用,然而,由于实际对象的复杂性,现有的辨识方法还存在着难以克服的困难,还有进一步研究的必要。
     基因表达式编程(GEP)技术是近几年来发展起来的全局优化搜索技术,其超强的搜索能力和极高的进化效率,使它迅速在许多领域里得到了应用。本文利用GEP技术,以模型的可解释性、简单实用性和辨识智能化为研究目标,研究了非线性模型辨识的进化方法,其主要内容可概括如下:
     1.给出了利用GEP进行系统辨识的基本思想和实现框架,结合遗传算法、模拟退火算法和粒子群优化算法,提出了一种从GEP表达式中进行常量提取和常量优化的方法,进行了静态非线性系统和时间序列预测模型辨识的研究,通过实验验证了算法的稳定性和优越性。
     2.分析了进化算法对动态系统进行建模的不足,提出了一种独特的动态项生成方案,引入可变终止符集概念,可以自由地生成动态系统所需的动态项。通过仿真实验验证了可变终止符集具有较高的性能。
     3.根据NARMAX模型和GEP多基因染色体的特点,提出了利用GEP进行各类NARMAX模型的系统辨识方法,给出了更加有效的模型描述方式,简化了染色体到模型的映射机制。
     4.提出了GEP算法进行Hammerstein模型辨识的方案,通过加入一些超越函数,扩展了Hammerstein模型非线性部分的函数形式,有效地降低了模型非线性部分的项数。
     5.分析了现有系统建模中多目标方案的不足,提出了更加有效的综合精度和复杂度指标的多目标优化方案,并以多项式NARMAX模型的辨识算法为例,给出了具体的实现过程。定义了精度阈值和复杂度指标上限值,通过自调整方式,将进化种群中的有效解控制在预定义的范围内。克服了原有多目标优化算法有效解过多、容易使进化早熟的缺点,最终得到一组复杂度和精确度取得很好平衡的模型。
With the development of science and technology, modern industrial processes become more complex, and detailed understanding of complex object characteristics also becomes increasingly difficult. The object model obtained through system identification is the basis of its analysis and control. In recent decades, system identification methods have become important tools of studying complicated nonlinear systems, and are widely used in various areas of engineering. However, because of the complexity of actual objects, some difficulties still exist in the existing identification methods, and therefore further research is necessary.
     Gene Expression Programming (GEP) is a global optimization search technology developed in the past few years, and has been applied in many areas because of its powerful search capabilities and high evolution efficiency. In this paper, evolutionary nonlinear identification methods based on GEP are studied, and models’interpretability, simple practicality and intelligent identification progress are targets for research. The main content can be summarized as follows.
     1. The basic idea and the realizing framework of system identification using GEP is given, and the mixed GEP algorithm is also presented. Combining genetic algorithm, simulated annealing and PSO algorithm, a method of constant extraction and constant optimization from GEP expression is proposed. The mixed GEP identification algorithm for static nonlinear systems and time series prediction model is also studied. The experiment results illustrated the stability and superiority of the proposed algorithm.
     2. The drawbacks of the representation of dynamic system modeling using evolutionary algorithm are analyzed, and an especial method of dynamic items generation is proposed. Through introduction of variable terminals set, the algorithm can generate freely the necessary dynamic items of dynamic system. The simulation experiments illustrated that the variable terminals set has a higher performance.
     3. Based on the characteristics of NARMAX model and the multi-gene chromosome of GEP, a NARMAX model identification algorithm is proposed. The algorithm can give a more reasonable description of the model, and simplify the mapping mechanism between models and chromosomes.
     4. The coding schemes about Hammerstein model using GEP is given. Adding some transcendental functions in the terminals set, the algorithm expands the function expression of the Hammerstein model’s nonlinear part, and can effectively reduce the number of the nonlinear items.
     5. The deficiency of the existing multiobjective system modeling algorithm is analyzed, and a more reasonable multiobjective evolutionary algorithm is proposed, and an implementation process about polynomial NARMAX model identification is given in detail. By defining the threshold of accuracy and the upper-limit value of complexity index, this algorithm can automatically maintain the number of effective solutions of the evolution population in an effective range through an automatic adjustment, and overcome the deficiency of early convergence of the original multi-objective optimization algorithm because of the superabundant effective solutions. The factors of models’accuracy and complexity are taken into account, and the algorithm can make the final solutions achieve a trade-off between the accuracy and the complexity.
引文
[1]方崇智,萧德云.过程辨识[M].北京:清华大学出版社,1988:1~562
    [2]胡德文.非线性与多变量系统相关辨识[M].长沙:国防科技大学出版社,2001:1~264
    [3]王晓.非线性动态系统的辨识及其应用研究:[博士学位论文] [D].西安:西安交通大学,1997:1~121
    [4]朱全民.非线性系统辨识.控制理论与应用[J],1994,11(6):641~652
    [5] Leontaritis I J, Billings S A. Input-output Parametric Models for Non-linear Systems[J]. International Journal of Control, 1985, 41(2): 311~344
    [6] Chen S, Billings S A. Representation of Non-linear Systems: the NARMAX Model[J]. International Journal of Control, 1989, 49(3): 1013~1032
    [7] S.A. Billings, M. Korenberg, and S. Chen. Identification of Nonlinear Output-affine Systems Using an Orthogonal Least-squares Algorithm[J]. International Journal of Systems Science, 1988, 19(8): 1559~1568.
    [8]王晓,谢剑英,贾青.非线性NARMAX模型结构与参数一体化辨识的改进算法[J].信息与控制, 2000, 29(2): 102-110
    [9] S. A. Billings, S. Chen, and M. J. Korenberg. Identification of MIMO Nonlinear Systems using a Forward-regression Orthogonal Estimator[J]. International Journal of Systems Science, 1989,49(6):2157~2189
    [10] Eduardo M. A. M. Mendes and S.A. Billings. An Alternative Solution to the Model Structure Selection Problem[J]. IEEE Transactions On Systems, Man, And Cybernetics-Part A: Systems And Humans, 2001,31(6):597~608
    [11]周世良.混沌系统的智能辨识及其控制研究:[博士学位论文] [D].保定:华北电力大学,2006:1~159
    [12] Rodriguez-Vazquez K, Fleming P J. Multi-Objective Genetic Programming for Nonlinear System Identification[J]. Electronics Letters, 1998, 34(9): 930~931.
    [13] Rodriguez-Vazquez K, Fonseca C M, Fleming P J. Identifying the Structure of Nonlinear Dynamic Systems Using Multiobjective Genetic Programming[J]. IEEE Transactions on Systems, Man and Cybernetics, Part A, 2004, 34(4): 531~545.
    [14] Billings, S.A and S.Chen. Extended Model Set, Global Data and Threshold Model Identification of Severely Non-Linear Systems[J]. International Journal of Control, 1989, 50(5): 1897~1923
    [15] S.A. Billings and Q.M. Zhu. Rational Model Identification using Extended Least Squares Algorithm[J]. International Journal of Control,1991,54(3):529~546
    [16]李秀英,韩志刚.非线性系统辨识方法的新进展[J].自动化技术与应用, 2004, 23(10): 5~7
    [17]邓辉,孙增圻,孙富春.模糊聚类辨识算法[J].控制理论与应用,2001, 18(2) :171~175
    [18]邵青,冯汝鹏.非线性系统模糊辨识的新方法[J].控制与决策,2001 ,16(1):83 ~ 85
    [19]刘福才,关新平,裴润.基于一种新模糊模型的非线性系统模糊辨识[J].控制理论与应用,2003 ,20(1) :113~116
    [20]张平安,熊学健,李人厚.基于拟非线性模糊模型的复杂系统模糊辨识[J].控制理论与应用,1998 ,15(2) :286~290
    [21] Takagi T,Sugeno M. Fuzzy Identification of Systems and Its Application to Modeling and Control[J]. IEEE Trans. on Systems, Man and Cybernetics,1985, 15(1) :116~132.
    [22] Johansen T A, Murray-Smith R. On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models[J]. IEEE Trans. on Fuzzy Systems,2000, 8(3): 297~313
    [23]刘福才.非线性系统的模糊模型辨识及其应用[M].北京:国防工业出版社, 2006:1~167
    [24]张国云.支持向量机算法及其应用研究:[博士学位论文] [D].长沙:湖南大学,2006:1~111
    [25]周明,孙树栋.遗传算法原理及应用[C].北京:国防工业出版社,1999:1~206
    [26]李茶玲,孙德保.遗传算法在系统辨识中的应用[J].华中理工大学学报, 1998, 26(7):57~58
    [27]徐丽娜,李琳琳.遗传算法在非线性系统辨识中的应用研究[J].哈尔滨工业大学学报,1999,31(2):39~42
    [28]边润强,陈增强,袁著祉.一种改进的遗传算法及其在系统辨识中的应用[J].控制与决策,2000,15(5):623~625,640
    [29]沈春华,卢晶,徐柏龄.浮点数编码的遗传算法在系统辨识中的应用[J].应用科学学报,2001,19(4):299~302
    [30]刘长良,于希宁,姚万业等.基于遗传算法的火电厂热工过程模型辨识[J].中国电机工程学报,2003,23(3):170~174
    [31]蒙祖强,蔡自兴.一种基于并行遗传算法的非线性系统辨识方法[J].控制与决策, 2003,18(3):367~370,374
    [32]李湧,韩崇昭,吴艳萍.一类非线性系统辨识的参数空间优化遗传算法[J].控制与决策,2001,16(6):965~967
    [33] Toshiharu Hatanaka, Yoshio Kawaguchi and Katsuji Uosaki. Nonlinear System Identification Based on Evolutionary Fuzzy Modeling[C]. USA:Proceedings of 2004 Congress of Evolutionary Computation. 2004,1: 646~651
    [34]杜京义,侯媛彬.基于遗传算法的支持向量回归机参数选取[J].系统工程与电子技术,2006,28(9):1430~1433
    [35] Koza J R. Genetic Programming: On the Programming of Computers by Means of Natural Selection[M]. Cambridge, MA: MIT Press, 1992:1~820
    [36] Koza J R. Genetic Programming II: Automatic Discovery of Reusable Programs [M]. Cambridge, MA: MIT Press, 1994:1~745
    [37] Koza J R., Forest H Bennett III, David Andre, et al. Genetic Programming III: Darwinian Invention and Problem Solving[M]. San Francisco, California: Morgan Kaufmann Publishers, Inc. 1999:1~1154
    [38] Candida Ferreira. Gene Expression Programming: A New Adaptive Algorithm for Solving Problems[J]. Complex Systems, 2001,13(2): 87~129
    [39] Candida Ferreira. Gene Expression Programming In Problem Solving[C]. Berlin:Invited Tutorial of the 6th Online World Conference on Soft Computing in Industrial Applications. 2001:10~24.
    [40]左劼.基因表达式编程核心技术研究:[博士学位论文] [D].成都:四川大学,2004:1~114
    [41] Gray,G.J. Li,Y. Murray-Smith,D.J. Sharman,K.C. Structural System Identification Using Genetic Programming and a Block Diagram Oriented Simulation Tool[J]. Electronics Letters, 1996,32(15):1422~1424
    [42] Bica, B. Chipperfield, A.J. Fleming, P.J. Fuzzy Model Identification by Means of Multiobjective Genetic Programming[C]. Salford UK:Computer Aided Control Systems Design 2000 (CACSD 2000), 2001:93~98
    [43] Hatanaka,T. Uosaki, K. Hammerstein Model Identification Method based on Genetic Programming[C]. Source: Proceedings of the 2001 Congress on Evolutionary Computation, 2001:1430~1435
    [44] János Madár, János Abonyi, and Ferenc Szeifert.Genetic Programming for the Identification of Nonlinear Input-Output Models[J].Industrial and Engineering Chemistry Research, 2005, 44(9):3178~3186
    [45] Mark P Hinchliffe, Mark J Willis. Dynamic Systems Modeling Using Genetic Programming[J]. Computers & Chemical Engineering, 2003,27(12):1841~1854
    [46] Buchsbaum, T. Vossner, S. Information-Dependent Switching of Identification Criteria in a Genetic Programming System for System Identification[C].Source: Genetic Programming 9th European Conference, EuroGP 2006,2006: 300~309
    [47] Andrea Tettamanzi. Genetic Programming for Financial Time Series Predicton[C]. Portugal: Springer, Proceedings of EuroGP' 2001,Coimbra, 2001:361~370
    [48] Katya Rodriguez Vazquez. Genetic Programming in Time Series Modeling: an Application to Meteorological Data[C]. Korea: IEEE Press, Proceedings of the 2001 Congress on Evolutionary Computation, 2001:261~266
    [49] Beligiannis,Grigorios N. Skarlas,Lambros V. Likothanassis,Spiridon D. and Perdikouri,Katerina G. Nonlinear Model Structure Identification of ComplexBiomedical Data Using a Genetic-Programming-Based Technique[J], IEEE Transactions on Instrumentation and Measurement, 2005,54(6): 2184~2190
    [50] Katya Rodriguez-Vazquez, Peter J.Fleming. Use of Genetic Programming in the Identification of Rational Model Structures[C]. Scotland UK:European Conference on Genetic Programming EuroGP 2000 Edinburgh, 2000:181~192.
    [51] Vinay Varadan, Henry Leung. Chaotic System Reconstruction from Noisy Time Series Measurements Using Improved Least Squares Genetic Programming[J]. Proceedings IEEE International Symposium on Circuits and Systems, 2002, 3(3): 65~68.
    [52] Yoshikazu Ikeda. Estimation of Chaotic Ordinary Differential Equations by Coevolutional Genetic Programming[J]. Electronics and Communications in Japan, 2003, 86(2): 1~12.
    [53]云庆夏,黄光球,王战权.遗传算法和遗传规划[M].北京:冶金工业出版社,1997: 1~159.
    [54]戴晓辉.遗传算法理论及其应用研究:[博士学位论文] [D].天津:天津大学,1999:1~122
    [55] Hongqing Cao, Lishan Kang, Yuping Chen, et al. Evolutionary Modeling of Systems of Ordinary Differential Equations with Genetic Programming[J]. Genetic Programming and Evolvable Machines, 2000, 1(4): 309~337.
    [56] Liu Min, Hu Bao-qing.Modeling Dynamic Systems by Using the Nonlinear Difference Equations Based on Genetic Programming[J]. Wuhan University Journal Of Natural Sciences, 2003,8(1): 243~248
    [57]鞠平,陆晓涛.电力负荷预测的遗传规划方法[J].电力系统自动化,2000,24(11): 35~38
    [58]徐光虎.运用遗传规划法进行电力系统中长期负荷预测.继电器[J],2004,32(12): 21~24
    [59]杨成祥.材料非线性模型的进化识别方法研究:[博士学位论文] [D].哈尔滨:东北大学,2001:1~138
    [60]崔逊学.基于多目标优化的进化算法研究:[博士学位论文] [D].合肥:中国科学技术大学,2001:1~128
    [61]赵黎丽.两种人工智能方法应用于地热热泵系统辨识[J].系统仿真学报,2004,16(7): 1376~1379
    [62] Zhang Wei, Wu Zhi-ming, Yang Gen-ke. Genetic Programming-Based Chaotic Time Series Modeling [J]. Journal of Zhejiang University(Science),2004, 5(11):1432~1439
    [63] Pu Han,Shiliang Zhou,Dongfeng Wang. A Multi-Objective Genetic Programming/ NARMAX Approach to Chaotic Systems Identification[C]. Source:Sixth World Congress on Intelligent Control and Automation ,2006, 5:1735~1739
    [64] Juan J. Flores and Mario Graff. System Identification Using Genetic Programming and Gene Expression Programming[C]. Source:Lecture Notes in Computer Science, v3733 LNCS, Computer and Information Sciences -ISCIS 2005- 20th International Symposium Proceedings, 2005:503~511
    [65] Heitor S. Lopes, Wagner R Weinert. Egipsys: an Enhanced Gene Expression Programming Approach for Symbolic Regression Problems[J],Int. J. Appl. Math. Comput. Sci., 2004, 14(3):375~384.
    [66] Jie Zuo, Chang-jie Tang, Chuan Li, Chang-an Yuan and An-long Chen. Time Series Prediction Based on Gene Expression Programming[C]. Source:In Advances in Web-Age Information Management, Vol 3129 of Lecture Notes in Computer Science, 2004:55~64
    [67] Lopes, H.S. and W.R. Weinert. A Gene Expression Programming System for Time Series Modeling[C]. Source:In Proceedings of XXV Iberian Latin American Congress on Computational Methods in Engineering ,CILAMCE 2004, Recife, Brazil, 10-12 November, 2004:
    [68] Li Qu, Cai Zhihua, Jiang Siwei, Zhu Li. Gene Expression Programming in Prediction[C]. Source:In Proceedings of the Fifth World Congress on Intelligent Control and Automation (WCICA), 2004,3: 2171~2175
    [69] Li Qu, Cai Zhihua, Zhu Li, Zhao Yunsheng. Application of Gene Expression Programming in Predicting the Amount of Gas Emitted from Coal Face[J]. Journal of Basic Science and Engineering, 2004,12(1):49~54
    [70] Keskin, M.E. and Terzi, Modeling Water Temperature Using Gene Expression Programming[J]. Source:In Proceedings of the 14th Turkish Symposium on Artificial Intelligence and Neural Networks, TAINN 2005:280~285
    [71] Kangshun Li, Yuanxiang Li, Haifang Mo, and Zhangxin Chen. A New Algorithm of Evolving Artificial Neural Networks via Gene Expression Programming[J]. Journal of the Korea Society for Industrial and Applied Mathematics, 2005, 9(2):83~90.
    [72] Ferreira, C. Designing Neural Networks Using Gene Expression Programming[C]. Applied Soft Computing Technologies: The Challenge of Complexity , Springer-Verlag, 2006:517~536
    [73] Ferreira, C. Designing Neural Networks Using Gene Expression Programming[C]. Source:The 9th Online World Conference on Soft Computing in Industrial Applications, 2004:
    [74] Ferreira, C. Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence[M]. Berlin: Springer-Verlag, 2006:1~478
    [75]朱耀春,白焰,蒋毅恒.基于GEP和GA技术的符号回归研究.计算机应用研究[J],2007,24EX:1240~1242
    [76]刘路放,冯博琴,谢友柏.符号回归的枚举原型算法及其匹配算法研究[J].西安交通大学学报,2000,34(3): 1~4,12
    [77] Candida Ferreira. Function Finding and the Creation of Numerical Constants in Gene Expression Programming[C]. Source:Advances in Soft Computing-Engineering Design and Manufacturing, Springer-Verlag, 2003: 257~266
    [78]蒋思伟,蔡之华等.基于模拟退火的并行基因表达式编程算法研究[J].电子学报,2005,33(11):2018~2021
    [79]朱耀春,白焰,蒋毅恒.基于基因表达式编程的非线性系统辨识研究[J].系统仿真学报,2008,20(7):1842~1845
    [80] L. Piroddi and W. Spinelli. A Pruning Method for the Identification of Polynomial NARMAX Models[C]. Source:In Proc of the 13th IFAC SYSID, 2003:371~376
    [81] Yan Bai, Yaochun Zhu and Yiheng Jiang. A New Nonlinear System Identification Method Using Gene Expression Programming[C]. Source:Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation,ICMA2007,2007: 2951~2956
    [82]白焰,朱耀春,蒋毅恒.基于多基因GEP的非线性系统辨识方法[J].微计算机信息,2008,24(5-1):267~269
    [83]朱耀春,白焰,蒋毅恒.基于GEP和GA技术的非线性系统辨识研究[J],信息与控制,2007,36(5): 592~596
    [84] H. AlDtiwaish, M.N.Karim and V. Cliandrasekar. Hammerstein Model Identification by Multiplayer Feedforward Neural Networks[J]. International Jounal of Control, 1997,28(1):49~54.
    [85]沈同全,孙逢春,程夕明.基于Hsia算法的Hammerstein模型辨识[J].系统仿真学报,2007,19(23):5373~5375
    [86]孙文亮,钱锋.应用退火演化算法辨识哈默斯坦模型[J].自动化技术与应用,2005,24(11):3~5
    [87]郭毓,刘颖,马勤弟.一类非线性动态系统的Hammerstein模型辨识[J].传感技术学报,2000,(3):199~203
    [88]张艳,李少远,王笑波等.基于粒子群优化的Wiener模型辨识与实例研究[J].控制理论与应用,2006,23(6):991~995
    [89] C. M. Fonseca, P. J. Fleming. Genetic Algorithms for Multi-objective Optimization: Formulation, Discussion and Generalization[C]. San Mateo USA: Morgan Kaufmann Publishers Inc, Proceedings of the Fifth International Conference on Genetic Algorithms, 1993:416~423.
    [90]王鲁.基于遗传算法的多目标优化算法研究:[硕士学位论文] [D].武汉:武汉理工大学,2006:1~63
    [91]清华大学运筹学教材编写组.运筹学[M].北京:清华大学出版社,2001:1~466
    [92]徐哲,白焰.基于遗传编程的非单调非线性系统辨识[J].自动化仪表,2003,24(12): 7~12
    [93]张烈超,蔡之华,陈安. SGA,GP,GEP的研究概述[J].微计算机信息,2006,22(1-2): 185~187
    [94]冯玉蓉.模拟退火算法的研究及其应用:[硕士学位论文] [J].昆明:昆明理工大学,2005:1~75
    [95]林卫星,张惠娣,刘士荣等.应用粒子群优化算法辨识Hammerstein模型[J].仪器仪表学报,2006,27(1):75~79
    [96] Eberhart R C, Kennedy J. A New Optimizer Using Particle Swarm Theory[C]. Source:Proceedings of the Sixth International Symposium on Micro Machine and Human Science,Nagoya,Japan, 1995: 39~43
    [97] George, G.S. Forecasting Chaotic Time Series with Genetic Algotithms[J]. Physical Review E, 1997, 55(3): 2557~2567
    [98]唐亮,许晓鸣.一种基于前馈神经网络的NARMAX模型辨识新方法[J].电机与控制学报,1998,2(3):141~144
    [99]田彦涛,徐明,陆佑方等.基于Wiener模型的混沌系统辨识研究[J].控制与决策,2000,15(1):104~106
    [100]张艳,李少远,王笑波等.基于粒子群优化的Wiener模型辨识与实例研究[J].控制理论与应用,2006,23(6):991~995
    [101] Box,J.E.andJenkins,G.M. Time Series Analysis:Forecasting and Control[M].San Franeiseo:Holden Day Press,1970:
    [102]王寅.化工过程混合建模问题研究:[博士学位论文] [D].杭州:浙江大学,2001:1~137
    [103]白焰.神经解耦控制在钢球磨煤机中间储仓式制粉系统中的应用研究:[博士学位论文] [D].沈阳:东北大学,1998:

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700