用户名: 密码: 验证码:
深部巷道围岩变形损伤机理及破裂演化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着煤炭开采深度的增加,巷道围岩的稳定性维护问题越来越突出,严重制约着矿井的安全、经济和高效发展。合理解决该问题的关键和首要任务是准确把握开挖等工程扰动引起巷道围岩变形破裂的机理及其演化规律,为下一步提出安全可靠、经济合理的支护技术方案提供理论依据。
     本文结合国家自然科学基金项目(50674083)和教育部科学技术重点项目(106085),以平煤集团十二矿千米埋深的软岩巷道为工程背景,采用三维物理模拟、细观数值模拟和人工智能技术,对深部巷道掘进过程中围岩的变形破裂机理及演化规律进行研究。主要研究结果和结论如下:
     (1)研制了深部巷道围岩透明相似材料和配套的模型台架,以及模型加载和数据采集装置,满足了透明相似材料三维可视化模型试验的要求,同时将激光与夜光粉相结合改善了数字图形的采集质量;提出了采用正交数值试验与人工智能预测技术相结合的PFC模型参数确定方法,为快速确定合适的模型参数提供了一种科学高效的途径。
     (2)分别采用透明相似材料物理模拟和PFC3D细观数值模拟的方法对深部巷道开挖过程中的围岩变形破裂过程进行研究,获得了巷道围岩的变形破裂演化规律:围岩的变形演化过程具有地震波的构成及传播特性,围岩的破裂形态具有明显的区域性特点。
     (3)根据对巷道围岩变形破裂演化规律的分析,将振动波理论引入围岩变形破裂机理的研究,建立了巷道围岩的三维“弹簧—振子”结构模型,揭示了围岩变形破裂的损伤机理,阐述了各种变形破裂现象的内在原因,指出围岩的变形破裂形态取决于围岩阻尼、变形波的波长、以及应力状态和能量补给情况。
     (4)针对围岩变形演化规律定量表达和预测难的问题,根据波的叠加原理将围岩变形波分解为静态初值与动态演化两个部分,利用人工智能技术研究开发了围岩变形演化规律的智能模拟和预测模型,分别对围岩变形的静态和动态演化规律进行定量表达和预测,为变形演化规律的定量表达与预测提供了一种简便而高效的方法。
     本文研究成果为下一步采用理论解析法对围岩变形演化规律的深入研究指明了方向,对于准确掌握深部巷道围岩变形破裂的发展趋势以便于提前采取合理的应对措施从而避免相关地质灾害的发生具有较大的理论与现实意义。
Along with the increase of coal mining depth, the problem of rock stabilization around deep tunnels is getting more and more prominent, which influences seriously the security, economical and highly effective development. To solve this question reasonably, the key and the most important task is to master correctly the mechanism and evolution law of rock deformation and cracking induced by engineering disturbances around the tunnels, so as to provide theoretical basis for designing the rock support scheme with reliable in safety and reasonable in economy. Under the fund of National Natural Science Foundation of China (project number 50674083) and the Key Project of Science and Technology in the Ministry of
     Education(project number 106085), this dissertation investigates the evolution features and mechanism of rock deformation and cracking during the excavation of a deep tunnel, and studies the intelligent simulation and prediction of the evolution law of rock deformation by means of physical and numerical simulations as well as theoretical analysis. The detail research contents and conclusions are as follows:
     (1) The transparent simulation material and test equipment for the modeling of deep tunnels are developed, and the photo taking technique is improved by using the laser source and fluorescent powder simultaneously. A new effective method of determining the PFC model parameters is put forward, which uses the technologies of numerical orthogonal tests and artificial intelligent prediction.
     (2) The physical and numerical simulations of the rock deformation and cracking process during tunnel excavation are conducted, and the results show that the rock deformation process presents the characteristics of oscillation wave and that the distribution of cracking areas presents zonal feature.
     (3) Based on the analysis of evolution law of rock deformation and cracking, the wave theory is introduced into the research of rock cracking mechanism, and the conceptual model of“spring and oscillator”for surrounding rock is founded. It is revealed that the oscillation induced damage is the essential cause of rock deformation and cracking, and the intrinsic reasons of different cracking forms are rock damp, wave length, stress state and energy supply.
     (4) To solve the difficulty in quantitatively represent and predict the evolution law of rock deformation, based on the superposition principle of wave, the wave of rock deformation is divided into two parts, the static component and the dynamic one; the intelligent simulation and prediction model of rock deformation law is established by using technologies of artificial intelligence. The prediction results show that the intelligent simulation is a simple and efficient representation method of rock deformation law.
     The research findings obtained in this dissertation give direction for further study on the evolution law of rock deformation around tunnels by means of theoretical analysis. The achievements are of great significance in both theory and reality because mastering the exact evolution trend of rock deformation and cracking around deep tunnels would be very helpful to the prevention of potential geologic hazards.
引文
[1]傅冰骏.国际岩石力学发展动向[J].岩石力学与工程学报. 1997, 16(2): 195-196.
    [2]水利科技名词审定委员会.水利科技名词[M].北京:科学出版社, 1998.
    [3]孙广忠.岩体结构力学[M].北京:科学出版社, 1988.
    [4]李建林.卸荷岩体力学[M].北京:中国水利水电出版社, 2003.
    [5] E. I. Shemyakin G. L. Fisenko M. Zonal disintegration of rocks around underground workings, PartⅠ: Data of in situ observations[J]. Journal of Mining Science. 1986, 22(3): 157-168.
    [6]陈宗基.地下巷道长期稳定性的力学问题[J].岩石力学与工程学报. 1982, 1(1): 1-20.
    [7]白以龙,夏蒙棼,柯孚久.固体损伤的演化诱致灾变和预测[J].失效分析与预防. 2007, 2(01): 1-5.
    [8]夏蒙棼,柯孚久,白洁,等.破坏现象耦合斑图演化诱致突变的系综统计[J].科学通报. 1999, 44(06): 562-572.
    [9]秦四清.初论岩体失稳过程中耗散结构的形成机制[J].岩石力学与工程学报. 2000, 19(3): 265-269.
    [10] Hoek E., Brown E. T. Underground excavations in rock[M]. London: Institution of Mining and Metallurgy, 1980.
    [11] Hoek E., Brown E. T. Practical estimates of rock mass strength[J]. International Journal of Rock Mechanics & Mining Sciences. 1997, 34: 1165-1186.
    [12] Sharan S. K. Exact and approximate solutions for displacements around circular openings in elastic–brittle-plastic Hoek–Brown rock[J]. International Journal of Rock Mechanics & Mining Sciences. 2005, 42: 542-549.
    [13] Sharan S. K. Analytical solutions for stresses and displacements around a circular opening in a generalized Hoek–Brown rock[J]. International Journal of Rock Mechanics and Mining Sciences. 2008, 45(1): 78-85.
    [14]俞茂宏,彭一江.强度理论百年总结[J].力学进展. 2004, 34(4): 529-560.
    [15] You Mingqing. True-triaxial strength criteria for rock[J]. International Journal of Rock Mechanics & Mining Sciences. 2009, 46(1): 115-127.
    [16]周小平,张永兴.卸荷岩体本构理论及其应用[M].北京:科学出版社, 2007.
    [17]刘豆豆.高地应力下岩石卸载破坏机理及其应用研究[D].济南:山东大学, 2008.
    [18]邓广哲,朱维申.岩体非线性卸荷与熵变的基本特点[J].西安矿业学院学报. 1997, 17(4): 332-335.
    [19]谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报. 2005, 24(17): 3003-3010.
    [20] E. I. Shemyakin G. L. Fisenko M. Zonal disintegration of rocks around underground mines, part III: Theoretical concepts[J]. Journal of Mining Science. 1987, 23(1): 1-6.
    [21] Guzev M. A., Paroshin A. A. Non–Euclidean Model of the Zonal Disintegration of Rocks around an Underground Working[J]. Journal of Applied Mechanics and Technical Physics. 2001, 42(1): 131-139.
    [22] Reva V. N. Stability Criteria of Underground Workings under Zonal Disintegration of Rocks[J]. Journal of Mining Science. 2002, 38(1): 31-34.
    [23] Qian Q. H., Zhou X. P., Yang H. Q., et al. Zonal disintegration of surrounding rock mass around the diversion tunnels in Jinping II Hydropower Station, Southwestern China[J]. Theoretical and Applied Fracture Mechanics. 2009, 51(2): 129-138.
    [24] Zhou X. P., Wang F. H., Qian Q. H., et al. Zonal fracturing mechanism in deep crack-weakened rock masses[J]. Theoretical and Applied Fracture Mechanics. 2008, 50(1): 57-65.
    [25] Wu Hao, Fang Qin, Guo Zhi-Kun. Zonal disintegration phenomenon in rock mass surrounding deep tunnels[J]. Journal of China University of Mining and Technology. 2008, 18(2): 187-193.
    [26]王明洋,宋华,郑大亮,等.深部巷道围岩的分区破裂机制及“深部”界定探讨[J].岩石力学与工程学报. 2006(09).
    [27]钱七虎,李树忱.深部岩体工程围岩分区破裂化现象研究综述[J].岩石力学与工程学报. 2008, 27(6): 1278-1284.
    [28]周小平,钱七虎.深埋巷道分区破裂化机制[J].岩石力学与工程学报. 2007(05).
    [29]李英杰,潘一山,李忠华.岩体产生分区碎裂化现象机理分析[J].岩土工程学报. 2006(09): 1124-1128.
    [30]李英杰,潘一山,章梦涛.高地应力围岩分区碎裂化的时间效应分析和相关参数研究[J].地质力学学报. 2006(02).
    [31]宋华,汪新红,王明洋.对深部地下坑道围岩分区变形机理的探讨[J].解放军理工大学学报:自然科学版. 2007, 8(3): 274-278.
    [32]王元汉等.岩体断裂的破坏机理与计算模拟[J].岩石力学与工程学报. 2000, 19(4): 449-452.
    [33]黎立云,许凤光等.岩桥贯通机理的断裂力学分析[J].岩石力学与工程学报. 2005, 24(23): 4328-4334.
    [34]张振南,葛修润.地震载荷作用下的节理岩体破裂模型[J].岩石力学与工程学报. 2005(10).
    [35] Kwa?niewski M. Laws of Brittle Failure And of B-D Transition In Sandstones[A]. In: Rock at Great Depth[C]. Edited by Maury V., Fourmaintraux D. Rotterdam: A.A. Balkema, 1989: 45-58.
    [36] Singh J., Ramamurthy T., Rao G. V. Strength Of Rocks At Depth[A]. In: Rock at Great Depth[C]. Edited by Maury V., Fourmaintraux D. Rotterdam: A.A. Balkema, 1989: 37-44.
    [37]哈秋舲,李建林,张永兴等.节理岩体卸荷非线性岩体力学[M].北京:中国建筑工业出版社, 1998.
    [38]周小平,哈秋舲,张永兴.考虑裂隙间相互作用情况下围压卸荷过程应力应变关系[J].力学季刊. 2002, 23(2): 227-235.
    [39]吴刚,孙钧.卸荷应力状态下裂隙岩体的变形和强度特性[J].岩石力学与工程学报. 1998, 17(06): 615-621.
    [40]尤明庆,华安增.岩石试样的三轴卸围压试验[J].岩石力学与工程学报. 1998, 17(1): 24-29.
    [41]任建喜,葛修润,蒲毅彬,等.岩石卸荷损伤演化机理CT实时分析初探[J].岩石力学与工程学报. 2000, 19(6): 697-701.
    [42]徐松林,吴文,王广印等.大理岩等围压三轴压缩全过程研究Ⅰ:三轴压缩全过程和峰前、峰后卸围压全过程实验[J].岩石力学与工程学报. 2001, 20(6): 763-767.
    [43]张梅英,尚嘉兰.单轴压缩过程中岩石变形破坏机理[J].岩石力学与工程学报. 1998, 17(1): 1-8.
    [44]韩立军,贺永年,蒋斌松,等.环向有效约束条件下破裂岩体承载变形特性分析[J].中国矿业大学学报. 2009(1): 14-19.
    [45]赵兴东,李元辉,刘建坡,等.基于声发射及其定位技术的岩石破裂过程研究[J].岩石力学与工程学报. 2008(05).
    [46]刘远明,夏才初.基于岩桥力学性质弱化机制的非贯通节理岩体直剪试验研究[J].岩石力学与工程学报. 2010, 29(7): 1467-1472.
    [47]任建喜,惠兴田.裂隙岩石单轴压缩损伤扩展细观机理CT分析初探[J].岩土力学. 2005, 26(S1): 48-52.
    [48]吴立新,孟顺利.煤岩损伤扩展规律的即时压缩SEM研究[J].岩石力学与工程学报. 1998, 17(1): 9-15.
    [49]尤明庆,苏承东.砂岩孔道试样压拉应力下强度和破坏的研究[J].岩石力学与工程学报. 2010, 29(6): 1096-1105.
    [50]范鹏贤,王明洋,钱七虎.深部非均匀岩体卸载拉裂的时间效应和主要影响因素[J].岩石力学与工程学报. 2010, 29(7): 1389-1396.
    [51]朱维申,陈卫忠等.雁形裂纹扩展的模型试验及断裂力学机制研究[J].固体力学学报. 1998, 19(4): 335-360.
    [52] Michelis Paul. True triaxial cyclic behavior of concrete and rock in compression[J]. International Journal of Plasticity. 1987, 3(3): 249-270.
    [53]周家文,杨兴国,符文熹,等.脆性岩石单轴循环加卸载试验及断裂损伤力学特性研究[J].岩石力学与工程学报. 2010, 29(6): 1172-1183.
    [54]满轲,周宏伟.不同赋存深度岩石的动态断裂韧性与拉伸强度研究[J].岩石力学与工程学报. 2010, 29(8): 1657-1663.
    [55] Raynaud Suzanne, Ngan-Tillard Dominique, Desrues Jacques, et al. Brittle-to-ductile transition in Beaucaire marl from triaxial tests under the CT-scanner[J]. International Journal of Rock Mechanics and Mining Sciences. 2008, 45(5): 653-671.
    [56]许东俊,耿乃光.岩体变形和破坏的各种应力途径[J].岩土力学. 1986(02).
    [57]尹光志,李贺,鲜学福,等.工程应力变化对岩石强度特性影响的试验研究[J].岩土工程学报. 1987(02).
    [58] Hudson J. A.岩石力学原理[J].岩石力学与工程学报. 1989, 8(3): 252-268.
    [59]李天斌,王兰生.卸荷应力状态下玄武岩变形破坏特征的试验研究[J].岩石力学与工程学报. 1993(04).
    [60]吴刚.完整岩体卸荷破坏的模型试验研究[J].实验力学. 1997(04).
    [61]代革联,李新虎.岩石加卸荷破坏细观机理CT实时分析[J].工程地质学报. 2004(01).
    [62]刘红岗.岩石卸荷破坏特性的三轴试验研究[D].徐州:中国矿业大学, 2007.
    [63]张东明.岩石变形局部化及失稳破坏的理论与试验研究[D].重庆:重庆大学, 2004.
    [64]马元.深部巷道围岩变形破坏及支护平衡演化机理研究与应用[D].徐州:中国矿业大学, 2007.
    [65]朱德仁,王金华,康红普,等.巷道煤帮稳定性相似材料模拟试验研究[J].煤炭学报. 1998(01): 44-49.
    [66]白世伟,任伟中等.平面应力条件下闭合断续节理岩体破坏机理及强度特性[J].岩石力学与工程学报. 1999, 18(6): 635-640.
    [67]张大林.流形方法在岩体断裂特性与裂纹发展过程数值分析中的应用研究[D].大连:大连理工大学, 2003.
    [68]梁正召,唐春安,李厚祥,等.单轴压缩下横观各向同性岩石破裂过程的数值模拟[J].岩土力学. 2005(01).
    [69]刘刚,龙景奎,王照华.断续节理相互作用的数值模拟[J].采矿与安全工程学报. 2007(02).
    [70]黄明利,冯夏庭,王水林.多裂纹在不同岩石介质中的扩展贯通机制分析[J].岩土力学. 2002(02).
    [71]黄明利.非均匀岩石裂纹扩展机制的数值分析[J].青岛理工大学学报. 2006(04).
    [72]黄明利,唐春安.非均匀因素对I型裂纹扩展、相互作用影响的数值分析[J].岩石力学与工程学报. 2002, 21(08): 1111-1114.
    [73]黄明利,唐春安,朱万成.非均质岩桥对裂纹扩展贯通机制影响的数值分析[J].辽宁工程技术大学学报(自然科学版). 1999, 19(06): 20-24.
    [74]李红心.岩体卸荷损伤数值模拟及其工程应用[D].三峡大学, 2007.
    [75] Kemeny J. Time-dependent drift degradation due to the progressive failure of rock bridges along discontinuities[J]. International Journal of Rock Mechanics and Mining Sciences. 2005, 42(1): 35-46.
    [76] Golshani A., Oda M., Okui Y., et al. Numerical simulation of the excavation damaged zone around an opening in brittle rock[J]. International Journal of Rock Mechanics and Mining Sciences. 2007, 44(6): 835-845.
    [77]傅宇方,黄明利,任凤玉,等.不同围压条件下孔壁周边裂纹演化的数值模拟分析[J].岩石力学与工程学报. 2000(05).
    [78]王利.岩石弹塑性损伤模型及其应用研究[D].北京:北京科技大学, 2006.
    [79]江权.高地应力下硬岩弹脆塑性劣化本构模型与大型地下洞室群围岩稳定性分析[D].武汉:中国科学院研究生院(武汉岩土力学研究所), 2007.
    [80]张强勇,朱维申.裂隙岩体弹塑性损伤本构模型及其加锚计算(英文)[J].岩土工程学报. 1998, 20(06): 93-98.
    [81]沈珠江.岩土本构模型研究的进展(1985—1988年)[J].岩土力学. 1989(2): 3-13.
    [82]周小平,张永兴,朱可善.中低围压下细观非均匀性岩石本构关系研究[J].岩土工程学报. 2003, 25(5): 606-610.
    [83]李树忱,李术才,朱维申,等.能量耗散弹性损伤本构方程及其在围岩稳定分析中的应用[J].岩石力学与工程学报. 2005, 24(15): 2646-2653.
    [84]张全胜,杨更社,任建喜.岩石损伤变量及本构方程的新探讨[J].岩石力学与工程学报. 2003, 22(1): 30-34.
    [85]徐卫亚,韦立德.岩石损伤统计本构模型的研究[J].岩石力学与工程学报. 2002, 21(6): 787-791.
    [86]陈忠辉,林忠明,谢和平,等.三维应力状态下岩石损伤破坏的卸荷效应[J].煤炭学报. 2004(01).
    [87]刘杰,李建林,黄宜胜,等.卸荷岩体本构关系研究[J].地球与环境. 2005(03).
    [88]冯夏庭.岩石力学智能化的研究思路[J].岩石力学与工程学报. 1994(3).
    [89]冯夏庭,王泳嘉.智能岩石力学及其内容[J].工程地质学报. 1997(1).
    [90]易达,刘洁荣,葛修润.岩石三轴压缩任意围压下应力–应变曲线的预测方法研究[J].岩土工程学报. 2008, 30(7): 1062-1065.
    [91]熊俊华,李建林. BP神经网络在卸荷岩体稳定分析中的应用[J].三峡大学学报(自然科学版). 2002(01): 63-66.
    [92] Ghaboussi J., Garrett Jr. J. H., Wu X. Knowledge-Based Modeling of Material Behavior with Neural Networks[J]. Journal of Engineering Mechanics. 1991, 117(1): 132-153.
    [93]高玮,冯夏庭.岩土本构模型智能识别的若干研究[J].岩石力学与工程学报. 2002(S2): 2532-2538.
    [94]高玮,郑颖人.基于遗传算法的岩土本构模型辨识[J].岩石力学与工程学报. 2002(01): 9-12.
    [95]李天斌,徐进,任光明.西安地区断裂构造活动性的地质力学模拟研究[J].工程地质学报. 1994(03): 34-42.
    [96]韩伯鲤,陈霞龄,宋一乐,等.岩体相似材料的研究[J].武汉水利电力大学学报. 1997(02): 7-10.
    [97]彭海明,彭振斌,韩金田,等.岩性相似材料研究[J].广东土木与建筑. 2002(12): 13-14.
    [98]赵国旭,谢和平,马伟民.大条带综放开采的相似材料模型试验研究[J].西部探矿工程. 2003(12): 61-63.
    [99]左保成,陈从新,刘才华,等.相似材料试验研究[J].岩土力学. 2004(11): 1805-1808.
    [100]马芳平,李仲奎,罗光福. NIOS模型材料及其在地质力学相似模型试验中的应用[J].水力发电学报. 2004(01): 48-51.
    [101]黄国军,周澄,赵海涛.牛头山双曲拱坝整体稳定三维地质力学模型试验研究[J].西北水电. 2004(02): 49-52.
    [102]张强勇,李术才,郭小红,等.铁晶砂胶结新型岩土相似材料的研制及其应用[J].岩土力学. 2008, 29(08): 2126-2130.
    [103] Burstein P., Bjorkholm P. J., Chase R. C., et al. The largest and smallest X-ray computed tomography systems[J]. Nuclear Instruments and Methods in Physics Research. 1984, 221(1): 207-212.
    [104] Nakai M., Shinohara S., Katayama M., et al. Development of x-ray emission computed tomography for ICF research[J]. Review of Scientific Instruments. 1990, 61(10): 2783.
    [105] Martz H. E., Roberson G. P., Skeate M. F., et al. Computerized tomography studies of concrete samples[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions withMaterials and Atoms. 1991, 58(2): 216-226.
    [106] Mueth Daniel M., Debregeas Georges F., Karczmar Greg S., et al. Signatures of granular microstructure in dense shear flows[J]. Nature. 2000, 406(6794): 385-388.
    [107] Chang C. S., Matsushima T., Lee X. Heterogeneous Strain and Bonded Granular Structure Change in Triaxial Specimen Studied by Computer Tomography[J]. Journal of Engineering Mechanics. 2003, 129(11): 1295-1307.
    [108] Wang L. B., Frost J. D., Lai J. S. Three-Dimensional Digital Representation of Granular Material Microstructure from X-Ray Tomography Imaging[J]. Journal of Computing in Civil Engineering. 2004, 18(1): 28-35.
    [109] Daigle M., Fratta D., Wang L. B. Ultrasonic and X-ray Tomographic Imaging of Highly Contrasting Inclusions in Concrete Specimens[A]. In: Proc. of the GeoFrontier 2005 Congress Site Characterization and Modeling (CD-ROM)[C]. Edited by Mayne Paul W., Rathje Ellen, Dejong Jason, et al. Austin, 2005.
    [110] Halverson Clinton, White David J., Gray Joseph. Application of X-Ray CT Scanning to Characterize Geomaterials Used in Transportation Construction[A]. In: Proc. of the 2005 Mid-Continent Transportation Research Symposium[C]. Ames, 2005: 1-12.
    [111] Al-Abduwani F. A. H., Farajzadeh R., van den Broek W. M. G. T., et al. Filtration of micron-sized particles in granular media revealed by x-ray computed tomography[J]. Review of Scientific Instruments. 2005, 76(10): 1037041-1037046.
    [112] Alshibli K. A., Batiste S. N., Sture S., et al. Micro-characterization of shearing in granular materials using computerized tomography[A]. In: Proc. of the 2nd International Workshop on X-Ray CT for Geomaterials Advances in X-Ray Tomography for Geomaterials[C]. Edited by J Desrues, G Viggiani, P Besuélle. Grenoble & Aussois: ISTE Ltd., 2006: 17-34.
    [113] Bésuelle P., Viggiani G., Lenoir N., et al. X-ray Micro CT for Studying Strain Localization in Clay Rocks under Triaxial Compression[A]. In: Proc. of the 2nd International Workshop on X-Ray CT for Geomaterials Advances in X-Ray Tomography for Geomaterials[C]. Edited by J Desrues, G Viggiani, P Besuélle. Grenoble & Aussois: ISTE Ltd., 2006: 35-52.
    [114] Ketcham R. A. Accurate Three-dimensional Measurements of Features in Geological Materials from X-ray Computed Tomography Data[A]. In: Proc. of the 2nd International Workshop on X-Ray CT for Geomaterials Advances in X-Ray Tomography for Geomaterials[C]. Edited by J Desrues, G Viggiani, P Besuélle. Grenoble & Aussois: ISTE Ltd., 2006: 143-148.
    [115] Otani J. X-ray Computed Tomography for Geotechnical Engineering[A]. In: Proc. of the 2nd International Workshop on X-Ray CT for Geomaterials Advances in X-Ray Tomography for Geomaterials[C]. Edited by J Desrues, G Viggiani, P Besuélle. Grenoble & Aussois: ISTE Ltd., 2006: 95-116.
    [116] Alshibli Khalid A., Alramahi Bashar A., Attia Attia Mahmoud. Assessment of Spatial Distribution of Porosity in Synthetic Quartz Cores Using Microfocus Computed Tomography (μCT)[J]. Particulate Science & Technology. 2006, 24(4): 369-380.
    [117] Birgul Recep. Monitoring macro voids in mortar by X-ray computed tomography[J]. Nuclear Instruments and Methods in Physics Research Section A. 2008, 596(3): 459-466.
    [118] Manabu Takahashi, Takato Takemura, Weiren Lin, et al. Microscopic Visualization of Rocks by Micro X-Ray CT under Confining and Pore Water Pressures[J].岩石力学与工程学报. 2008, 27(12): 2455-2462.
    [119] Bloom Michael, Russell Michael, Kustau Aliaksei, et al. An X-Ray Computed Tomography Technique for the Measurement of Packing Density in Granular Particles[A]. In: Proc. of the InternationalInstrumentation and Measurement Technology Conference[C]. Singapore, 2009: 74-79.
    [120] Suzuki M., Shinmura T., Iimura K., et al. Study of the Wall Effect on Particle Packing Structure Using X-ray Micro Computed Tomography[J]. Advanced Powder Technology. 2008, 19(2): 183-195.
    [121] Fu Yanrong, Wang Linbing, Tumay Mehmet T., et al. Quantification and Simulation of Particle Kinematics and Local Strains in Granular Materials Using X-Ray Tomography Imaging and Discrete-Element Method[J]. Journal of Engineering Mechanics. 2008, 134(2): 143-154.
    [122] Mannheimer R. J., Oswald C. J. Development of transparent porous media with permeabilities and porosities comparable to soils, aquifers, and petroleum reservoirs[J]. Ground Water. 1993, 31(5): 781-788.
    [123] Iskander M. G., Lai J., Oswald C. J., et al. Development of a Transparent Material to Model the Geotechnical Properties of Soils[J]. Geotechnical Testing Journal. 1994, 17(4): 425-433.
    [124] Iskander Magued G., Liu Jinyuan, Sadek Samer. Transparent Amorphous Silica to Model Clay[J]. Journal of Geotechnical and Geoenvironmental Engineering. 2002, 128(3): 262-273.
    [125] Sadek Samer, Iskander Magued G., Liu Jinyuan. Geotechnical properties of transparent silica[J]. Canadian Geotechnical Journal. 2002, 39(1): 111-124.
    [126] Iskander Magued G. Transparent Soils to Image 3D Flow and Deformations[A]. In: Proc. of the Second International Conference on Computing in Civil Engineering Imaging Technologies: Techniques and Applications in Civil Engineering[C]. Edited by Frost J. David, Mcneil Sue. Davos, 1997: 255-264.
    [127] Iskander Magued G., Sadek Samer, Liu Jinyuan. Displacement field measurement in transparent soils[A]. In: Proc. of the 15th ASCE Engineering Mechanics Conference[C]. New York, 2002: 1-8.
    [128] Iskander Magued G., Sadek Samer, Liu Jinyuan. Soil structure interaction in transparent synthetic soils using digital image correlation[A]. In: Proc. of the TRB 2003 Session on Recent Advances in Modeling Techniques in Geomechanics TRB 2003 Annual Meeting CD-ROM[C]. Washington, 2003: 1-24.
    [129] Zhao Honghua, Ge Louis. Dynamic properties of transparent soil[A]. In: Proc. of the Sessions of Geo-Denver 2007 Dynamic Response and Soil Properties (GSP 160)[C]. Edited by Dewoolkar Mandar M., Koester Joseph P. Denver: Curran Associates, Inc., 2007: 1-9.
    [130] Deutsch E. R. Optical scanning of liquid concentration in flow studies with porous media[J]. Nature. 1960, 185(4714): 675-676.
    [131] Allersma H. G. B. Determination of the stress distribution in assemblies of photoelastic particles[J]. Experimental Mechanics. 1982, 22(9): 336-341.
    [132] Chen J. D., Wada N. Visualization of immiscible displacement in a three-dimensional transparent porous medium[J]. Experiments in Fluids. 1986, 4(6): 336-338.
    [133] Soucemarianadin A., Touboul E., Bourlion M., et al. Sweep efficiency in multilayered porous media: Contrast between stable and unstable flow[A]. In: Proc. of the SPE Annual Technical Conference and Exhibition[C]. Dallas, 1987: 16955.
    [134] Allersma Henderikus G. B. Optical analysis of stress and strain in photoelastic particle assemblies[D]. Delft: Delft University of Technology, 1987.
    [135] J. Skinner B., E. Appleman D. Melanophlogite, a cubic polymorph of silica[J]. The american mineralogist. 1963, 48: 854-867.
    [136] Marler B. On the Relationship between Refractive Index and Density for SiO2-polymorphs[J]. Physics and chemistry of minerals. 1988, 16(3): 286-290.
    [137] Lide David R., Haynes W. M. Mickey. CRC Handbook of Chemistry and Physics (CD-ROM Version 2010)[G]. 90th ed. Boca Raton: CRC Press/Taylor and Francis, 2010.
    [138] Sadek Samer Gamal. Soil structure interaction in transparent synthetic soils using digital imagecorrelation[D]. New York: Polytechnic University, 2002.
    [139]白泽生,刘竹琴,徐红.几种液体的折射率与其浓度关系的经验公式[J].延安大学学报(自然科学版). 2004, 23(01): 33-34.
    [140]张志伟,尹卫峰,温廷敦,等.溶液浓度与其折射率关系的理论和实验研究[J].中北大学学报(自然科学版). 2009, 30(03): 281-285.
    [141]李晓红,卢义玉,康勇,等.岩石力学实验模拟技术[M].北京:科学出版社, 2007.
    [142] Yamaguchi Ichirou. Speckle Displacement and Decorrelation in the Diffraction and Image Fields for Small Object Deformation[J]. Optica Acta: International Journal of Optics. 1981, 28(10): 1359-1376.
    [143] Peters W. H., Ranson W. F. Digital image techniques on experimental stress analysis[J]. Optical Engineering. 1982, 21(3): 427-431.
    [144] Germaneau A., Doumalin P., Dupr J. C. 3D Strain Field Measurement by Correlation of Volume Images Using Scattered Light: Recording of Images and Choice of Marks[J]. Strain. 2007, 43(3): 207-218.
    [145]高建新,周辛庚.数字散斑相关方法的原理与应用[J].力学学报. 1995, 27(6): 724-731.
    [146] Stanier Samuel A. Geotechnical Modelling Using a Transparent Synthetic Soil[R]. Sheffield: University of Sheffield, 2006.
    [147]高建新,周辛庚.变形测量中的数字散斑相关搜索方法[J].实验力学. 1991, 6(04): 333-339.
    [148]李元海,朱合华,上野胜利,等.基于图像分析的实验模型变形场量测标点法[J].同济大学学报. 2003, 31(10): 1141-1145.
    [149]李元海,朱合华,上野胜利,等.基于图像相关分析的砂土模型试验变形场量测[J].岩土工程学报. 2004, 26(1): 36-41.
    [150]李元海,靖洪文,朱合华.数字照相量测在砂土地基离心试验中的应用[J].岩土工程学报. 2006, 28(3): 306-311.
    [151]李元海,靖洪文,曾庆有.岩土工程数字照相量测软件系统研发与应用[J].岩石力学与工程学报. 2006, 25(增2): 3859-3866.
    [152]李元海,朱合华,靖洪文.基于数字照相的砂土剪切变形模式的试验研究[J].同济大学学报. 2007, 35(5): 685-689.
    [153]李元海,靖洪文,朱合华.基于图像相关分析的土体剪切带识别方法[J].岩土力学. 2007, 28(3): 522-526.
    [154]李元海,靖洪文,刘刚,等.数字照相量测在岩石隧道模型试验中的应用研究[J].岩石力学与工程学报. 2007(08): 1684-1690.
    [155]李元海,靖洪文.基于数字散斑相关法的变形量测软件研制及应用[J].中国矿业大学学报. 2008, 37(05): 635-640.
    [156]詹亚歌,向世清,方祖捷,等.光纤光栅传感器的应用[J].物理. 2004(01): 58-61.
    [157]姜德生,何伟.光纤光栅传感器的应用概况[J].光电子.激光. 2002(04): 420-430.
    [158]姜峰,陈熙源.光纤光栅传感器在分布式测量系统中的应用[J].舰船电子工程. 2005(01): 1-3.
    [159]赵勇,李鹏生,浦昭邦.光纤位移传感器进展及其应用[J].传感器技术. 1999(02): 8-10.
    [160]姜德生,梁磊,周雪芳,等. FBG传感技术在工程结构监测中的应用[J].传感器技术. 2003(06): 33-35.
    [161]柴敬.岩体变形与破坏光纤传感测试基础研究[D].西安:西安科技大学, 2003.
    [162] Musa Shah M. Real-time signal processing and hardware development for a wavelength-modulated optical fiber sensor system[D]. Blacksburg: Virginia Polytechnic Institute and State University, 1997.
    [163]魏世明.相似模拟实验中的光纤光栅传感测试研究[D].西安:西安科技大学, 2004.
    [164] Li Xiaochun. Embedded sensors in layered manufacturing[D]. Palo Alto: Stanford University, 2001.
    [165] Wang Tong. Modeling of multi-axial Bragg grating fiber optic sensors[D]. Newark: University ofDelaware, 2004.
    [166] Baldwin Christopher S. Distributed sensing for flexible structures using a fiber optic sensor system[D]. College Park: University of Maryland, 2003.
    [167] Fan Yu. Characterization of fiber Bragg grating sensor array embedded in composite structures[D]. Montreal: Concordia University, 2004.
    [168] Prabhugoud Mohanraj. Damage assessment in composites using fiber Bragg grating sensors[D]. Raleigh: North Carolina State University, 2005.
    [169] Mastro Stephen A. Optomechanical behavior of embedded fiber Bragg grating strain sensors[D]. Philadelphia: Drexel University, 2005.
    [170] Ling Hang Yin. Vibration and damage monitoring in advanced composites using multiplexed fibre Bragg grating (FBG) sensors[D]. Hong Kong: Hong Kong Polytechnic University, 2006.
    [171] Vahesan Srirajasingam. Design and fabrication of an optical fiber interrogation instrumentation system[D]. Ottawa: University of Ottawa, 2006.
    [172]邓明.相似模拟实验中光纤光栅测试的温度补偿方法[D].西安:西安科技大学, 2006.
    [173]冯仁俊.基于光纤光栅测试的全长锚固锚杆实验研究[D].西安:西安科技大学, 2006.
    [174] Cheng Wen-Chieh, Ni James-C. Feasibility study of applying SOFO optical fiber sensor to segment of shield tunnel[J]. Tunnelling and Underground Space Technology. 2009, 24(3): 331-349.
    [175]朱焕春. PFC及其在矿山崩落开采研究中的应用[J].岩石力学与工程学报. 2006, 25(9): 1927-1931.
    [176] Cundall P. A., Strack Odl. A discrete numerical model for granular assemblies[J]. Geotechnique. 1979, 29(1): 47-65.
    [177] Potyondy D. O., Cundall P. A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences. 2004, 41(8): 1329-1364.
    [178] ITASCA Online Manual of PFC2D/3D Fourth Edition[EB/OL]. Minneapolis: Itasca Consulting Group Inc., 2008.
    [179] Brady B. H. G., Brown E. T. Rock mechanics for underground mining[M]. Third edition. Springer Netherlands, 2006.
    [180]许国安.煤矿巷道围岩松动圈智能预测研究与应用[D].徐州:中国矿业大学, 2003.
    [181]祖家奎,戴冠中,张骏.基于聚类算法的神经模糊推理系统结构和参数的优化[J].系统仿真学报. 2002, 14(4).
    [182]张浩炯,余岳峰,王强.应用自适应神经模糊推理系统(ANFIS)进行建模与仿真[J].计算机仿真. 2002, 19(4).
    [183]管霖,程时杰.适用于控制型神经网络的快速学习算法[J].华中理工大学学报. 1995, 23(4): 29-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700