用户名: 密码: 验证码:
螺旋锥齿轮数控机床加工理论的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
螺旋锥齿轮是实现相交轴运动传递的基础元件,由于其传动具有重合度大、承载能力高、传动效率高、传动平稳、噪声小等优点而被广泛应用于汽车、飞机、机床和各种机械产品中。由于其原理上的复杂性,导致机床结构和加工调整在所有金属切削机床中最为复杂且加工周期长。因此,研究高速、高精、高效和柔性自动化的螺旋锥齿轮加工机床显得尤为重要。
     由于锥齿轮技术难度大,目前世界上只有美国Gleason(格里森),瑞士Oerlikon(奥立康)和德国Klingelnberg(克林贝尔)三家公司拥有这方面的技术,他们分别代表了锥齿轮的三种体制,且各成体系,互不公开。数控技术的应用,大大简化了机床机构,现在这些国家已经研制出了螺旋锥齿轮数控加工机床,它的推出令人耳目一新。
     我国对螺旋锥齿轮加工的研究仍集中在“格里森”机床方面。这种机床参数多、不易操作、调试复杂、机床控制参数的计算结果在很大程度上取决于计算者的经验和技术水平,这样就限制着螺旋锥齿轮的应用和发展。
     国内虽然基本搞清了其技术原理,但在数控应用方面,还有很大差距,数控系统仍以引进Fanuc公司和Siemens公司为主,这些通用的数控系统未考虑螺旋锥齿轮的特点,不能充分发挥其性能,CAD与CAM未能实现一体化,价格也较贵。如果依靠进口,机床价格更贵,并且他们对此也实现技术封锁,这对于我国齿轮机床的应用极为不利。因此,根据锥齿轮加工特点需要有自己的一套数控系统,利用我所多年来在数控方面的成功开发经验,我们便提出了开发螺旋锥齿轮数控系统的构想。作者承担了此任务,本课题来源于河南省自然科学基金项目“仿形数字化加工技术研究”,编号:004053100。
     为了研究和开发数控系统,本文对螺旋锥齿轮的数控加工理论进行了研究和探讨,围绕该课题本文主要进行了以下几个方面的研究工作:
     1.对螺旋锥齿轮的啮合原理进行了介绍,主要包括空间曲面的切平面、法矢、曲面曲率以及共轭曲面的诱导法曲率等。
     2.根据格里森数控加工机床,分析了该机床结构,在此基础上建立了直角坐标系下的机床数学模型和齿面数学模型,通过对螺旋锥齿轮齿面的离散
    
     摘 要
    化,求解出齿面坐标,并对齿面进行了仿真。
     3.从锥齿轮的成形方法出发,根据产形轮的节面参数和产形轮与工件之
    间的相对位置关系,来调整机床参数。并编制相应的程序。
     4.通过齿面模型的分析,根据刀盘与加工齿轮之间的位置关系,推导出
    了螺旋锥齿轮数控加工中刀位点的信息——刀心坐标和刀轴矢量。
     5.利用五座标数控机床后置处理原理,进行了理论分析,推导出了螺旋
    锥齿轮数控机床的后置处理公式,得到了机床角度分配和刀心在机床坐标系
    中的位置。
     6.齿面仿真和机床参数的调整部分运用 VC++6刀和 Matlab混合编程,
    发挥Matlab在数值运算方面方便、快捷、准确等优点,缩短了开发时间,提
    高了效率。
     本文所探讨的螺旋锥齿轮加工理论从机床结构上摆脱了原来格里森机
    床的摇台、偏心鼓轮、刀倾体和刀转体机构,而采用格里森公司最先推出的
    螺旋锥齿轮数控机床为模型,建立了直角坐标系,求解出齿面方程得到了齿
    面离散点的坐标;并根据大、小轮各自的加工方法,完成了机床参数的调整;
    推导出了螺旋锥齿轮数控加工中刀位点的信息——刀心坐标和刀轴矢量;并
    且推导出了螺旋锥齿轮数控机床的后置处理公式。为研制螺旋锥齿轮CNC
    系统提供了理论基础,并为今后应用和推广数控齿轮机床,提高我国在国际
    上的竞争力,促进我国经济的发展,奠定了良好的基础。
     本课题的研究思想新颖,机电结合,涉及面广,并且需要扎实的数学理
    论知识,特别是从螺旋锥齿轮的基本原理开始几乎涉及了整个制造技术。但
    要研制出样机,还需要在以下几个方面作更深入的研究:
     1.对螺旋锥齿轮的齿面进行拟合,为齿面分析作进一步的研究。
     2.要生成数控指令,还需对后置处理部分进行编程。
     3.多坐标运动控制中,数控插补离散逼近对齿面成形误差的影响。
     4.多轴展成运动数控实时插补算法的研究和控制软件。
Spiral bevel gears are one of basic mechanical units to transmit motion between concurrent axes. Because the transmission has quite a few merits, such as the big overlap ratio, the high loading capacity, the high transmitting efficiency, the stability, the small noises, and so on, they are widely used in automotive vehicle, planes, machine tools and all kinds of machines. But the theoretical complexity causes that the machine tool structure and the machining adjustment are the most complex among all the stock-removing machines, and that the machining periodicity is very long. Therefore, it is of much importance to study machine tools of spiral bevel gears with high speed, high precision, high efficiency, much flexibility and high automation.
    Because of the complex technology of spiral bevel gears, there are only three companies who have the technology: American Gleason, Swiss Oerlikon and German Klingelnberg. They respectively stand for three kinds of spiral bevel gears, and have their own systems which are not open to one another. These countries have developed out CNC machine tools for spiral bevel gears for applying CNC technology.
    Researchers still put their emphasis on studying Gleason machine tools in our country. This kind of machine have mach parameters to be adjusted and is not easy to operated, and the parameters of this machine lie on the skilled workers' experience and technical levels, which baffles the application and development of spiral bevel gears machines.
    Although the basic theories about the bevel gear are known, there is a long distance in NC engineering applications in our country. The system of CNC is mainly imported from Fanuc Company and Siemens Company. But, this universal CNC system is unable to make full of its functions, and CAD and CAM are independent, what's more, the price is also very high. If we only rely on importation, the higher price of tools and the blocked technology are very
    
    
    
    disadvantageous to the application of gear machines in our countries. So we should have our own NC systems of spiral bevel gears. In view of our successfully-developing experience for many years, we put forward the thought of developing the CNC system for spiral bevel gears. My dissertation has drawn from the project - the Study of Copying & Digitizing Machining Technology which is sponsored by Natural Science Foundation of Henan province(Item number: 004053100).
    Centered around this subject, this paper mainly studies the numerical control machining theories, and the main work is as follows:
    1. The engagement theory of spiral bevel gears is presented, including the tangent plane, normal vector, curvature of spatial curved surfaces and relative curvature of conjugate surfaces, et al., where relative curvature is emphasized.
    2. The structure of Gleason numerical control machining tools is analyzed,, and the mathematical models of the tools and the tooth flank are established. By meshing tooth flanks, this paper solves out the coordinates of tooth flanks, and simulates the tooth flanks.
    3. From the machining methods of spiral bevel gears, according to the parameters of nodal surface of generating gears and the relative position between the generating gear and the work piece, adjusts the parameters of machine tools, and develops the corresponding programs.
    4. Based on the analysis of the mathematical model of the tooth flank , according to the positional relations between tool pans and manufactured gears, deduces out the information about cutter location in the numerical control manufacture-the cutter center coordinates and the cutter shaft vector.
    5. According to the established mathematical model of machine tools, deduces out post processing formulas of CNC machine tools for spiral bevel gears.
    6. By combining the programming languages of VC++6.0 with Matlab, develops the software to simulate tooth faces and to adjust the parameters of machine tools, which makes full use of the merits of Matlab language such as the convenience, rapidness and accuracy in numerical calculation,
引文
[1]北京齿轮厂编.螺旋锥齿轮[M].北京:科学出版社,1974.
    [2]庄磊,王珉,左敦稳.齿轮加工机床的发展特点及相关技术[J].江苏机械制造与自动化,2000(5):9-11.
    [3]F. L. Litvin, Wei-jiung Tsung and J. J. Coy. Method for Generation of Spiral Bevel Gears With Conjugate Gear Tooth Surfaces. Journal of Mechanims Transmisions and Automation in Design, 1987,109(6):p163-170.
    [4]曾韬.螺旋锥齿轮设计与加工[M].哈尔滨:哈尔滨工业大学出版社,1989.
    [5]吴序堂.齿轮啮合原理[M].北京:机械工业出版社,1982.
    [6]西安交通大学机制教研室齿轮研究组编.弧齿锥齿轮和准双曲线齿轮加工调整原理[M].上海:上海科学出版社,1979.
    [7]乐兑谦.准双曲面齿轮加工调整原理[J].齿轮学报,1979.
    [8]Wiener, Dieter. CNC Technology and the System Independent Manufacture of Spiral Bevel Gear. Gear Techol, 1992.9(5):22-27.
    [9]D. W. Dudley. The Evolution of the Gear Art. Washington D. C.:AGMA, 1989.
    [10]Theodore, Krenzer. CNC Bevel Gear Generators and Flared Cup Gear Grinding. Gear Technology, 1993,10(4):18-24.
    [11]Yu. I. Evstegneev, I. A. Vetrov. NC Machine for Cutting Spiral Bevel Gears. Soviet Engineering Research, 1984,4(4):52-53.
    [12]Robert F. Handschuh, Robert C. Bill. Recent Manufacturing Advances for Spiral Bevel Gears. SEA Transactions, 1991,100 Sect 1 pt2:2793-2804.
    [13]唐定国.齿轮传动现代设计技术的进展[J].机械传动,1994,18(1):1-4.
    [14]专题报道:欧美国家锥齿轮加工动向.世界制造技术与设备市场,1995(2).
    [15]王凤翥.齿轮机床的调整和维修[M].北京:机械工业出版社,1989.
    [16]遇立基.CIMT'99展出的数控齿轮加工机床[J].制造技术与机床,1999(12):6-7.
    [17]唐定国.迈向21世纪的我国齿轮工业和齿轮传动技术[J].机械传动,1996(1):84-87.
    [18]万小利,梁桂明,魏任之等.准双曲面齿轮设计新方法[J].机械工程学报,1993.29(6):8-11.
    
    
    [19]郑昌启.弧齿锥齿轮和准双曲面齿轮的齿面接触分析计算原理[J].机械工程学报,1981,17(2):1-12.
    [20]吴序堂,王小春,李锋.曲线齿锥齿轮三阶接触分析法的原理及传动质量评价[J].机械工程学报,1994,30(3):47-54.
    [21]王小春.点啮合曲面的三阶接触分析[J].西安交通大学学报,1983,17(3):1-12.
    [22]王小春.线啮合曲面的三阶接触分析[J].西安交通大学学报,1983,17(5):1-13.
    [23]王小春,吴序堂.点啮合齿面三阶分析的进一步探讨[J].西安交通大学学报,1983,21(2):1-14.
    [24]郑昌启,黄昌华.螺旋锥齿轮轮齿加载接触分析计算原理[J].机械工程学报,1993,29(4):50-54.
    [25]吴序堂.准双曲面齿轮的变性全展成加工法原理(上)[J].齿轮,1984,8(2):1-8.
    [26]吴序堂.准双曲面齿轮的变性全展成加工法原理(下)[J].齿轮,1984,8(3):1-8.
    [27]刘鹄然,何兆太,陈良玉等.刀倾半展成法在螺旋锥齿轮数控铣齿机上的实现[J].制造业自动化,2001,11:38-40.
    [28]吴大任,骆家舜等.齿轮啮合原理[M].北京:科学出版社,1985.
    [29]天津齿轮机床研究所.西安交通大学编译.格里森锥齿轮技术资料译文集:第一分册—锥齿轮啮合及加工原理[M].北京:机械工业出版社,1986.
    [30]陈惟荣.齿轮啮合原理[M].北京:煤炭工业出版社,1986.
    [31]北京齿轮厂.格里森锥齿轮技术资料译文集:第二分册—格里森齿轮设计及计算[M].北京:机械工业出版社,1983.
    [32]任秉银,唐余勇编著.数控加工中的几何建模理论及其应用[M].哈尔滨:哈尔滨工业大学出版社,2000.
    [33]毛世民,吴序堂.新型万能曲线齿锥齿轮加工机床运动学[J].制造技术与机床,1997,6:22-24.
    [34]黎坚,周艳红,龚海等.多坐标数控机床通用运动学模型的建立[J].中国机械工程,1999,10(1):4-6.
    [35]李左章,王沈培,周云飞等.螺旋锥齿轮数控切齿机通用运动学变换[J].华中理工大学学报.2000,28(10):10-12.
    [36]王延忠,周云飞,李左章等.基于通用五座标数控机床螺旋锥齿轮NC加工研究[J].中国机械工程2001,12(8):903-906.
    
    
    [37]黄昌华,郑昌启,李润方.螺旋锥齿轮轮齿接触离散化模型自动生成算法[J].清华大学学报,1992,32(2):101-107.
    [38]孙殿柱,懂学朱.描述真实齿面数学模型的研究[J].农业机械学报,2000,31(1):79-81.
    [39]刘光磊,沈允文,王三民.弧齿锥齿轮齿面网格加密的双三次样条法[J].机械科学与技术,2000,19(9):128-129.
    [40]毛世民,吴序堂,张秀兰.曲线齿锥齿轮齿面插值[J].机械设计,1998,7:18-20.
    [41]Z. H. Fong, Tsay. A. Chung-Biau. Mathematical Model for the Tooth Geometry of Circular-Cut Spiral Bevel Gears. Journal of Mechanical Design, 1991,113(6):174-181.
    [42]B. Rao, M. S. Shunmugam Subba, V. Jayaprakash. Mathematical Model for Generation of Spiral Bevel Gears. Journal of Materials Processing Technology, 1994,44(3-4):327-334.
    [43]王沫然.Matlab6.0与科学计算[M].北京:电子工业出版社,2001.
    [44]张志涌.精通Matlab5.3版[M].北京:北京航空航天大学出版社,2000.
    [45]M. L. Baxter, Jr. Second-Order Surface Generation, Industrial Mathematics, 1973,23(2):85-106.
    [46]四川省机械局.齿轮刀具设计理论基础[M].北京:机械工业出版社,1983.
    [47]郑昌启,局部共轭的“密切抛物面”原理及其在弧齿锥齿轮切齿计算中的应用[J].机械工程学报,1979,15(2).
    [48]毛世民,吴序堂.任意指定接触基准点的切齿理论—对格里森半展成加工弧齿锥齿轮和准双曲面齿轮方法的改进[J].西安交通大学学报,1985,19(5).
    [49]齐舒创作室编著.VC++6.0开发技巧及实例剖析[M].北京:清华大学出版社,1999.
    [50]周艳红.自由曲面CNC直接加工理论与技术的研究[D].华中理工大学博士论文,1997.
    [51]周云飞.多坐标曲面加工直接插补算法和新型系统研究[D].华中理工大学博士论文,1993.
    [52]刘雄伟等编著.数控加工理论与编程技术[M].北京:机械工业出版社,2000.
    [53]沈小星,周云飞,李左章.螺旋锥齿轮点接触齿面生成法[J].中国机械工程,1999,10(7):796-798.
    [54]沈小星.螺旋锥齿轮数控NC加工的研究[D].华中理工大学硕士论文,1999.
    [55]王刚,赵万生,史旭明.数控机床通用后置处理程序的开发[J].机械,2000,27(3):4-6.
    
    
    [56]韩向利,袁哲俊,焦建斌等.五座标机床后置处理方法的研究[J].组合机床与自动化加工技术,1995,3:34-37.
    [57]卢晓勇,侯伯杰,蒋文兵等.螺旋锥齿轮数控加工中的后置处理[J].郑州大学学报工学版,已录用.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700