用户名: 密码: 验证码:
晴空大气湍流对自由空间光通信影响及校正研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息技术的发展,基于微波的传统通信系统已经无法满足数据传输性能和安全性能的要求。自由空间光通信具有通信容量大、保密性好、抗电磁干扰、功耗低、设备体积小、重量轻和无需频率使用许可等优点,因此已经成为无线通信技术领域的研究热点之一。当作为信息载体的激光束在大气中传输时,会受到大气衰减和湍流效应等一系列影响,导致通信系统性能降低。目前大气影响已经成为制约自由空间光通信进一步发展的瓶颈。
     本文针对自由空间光通信应用,主要研究了大气对激光传输的影响机理及校正技术。全文可以分为以下几个部分:
     (1)从理论上研究了大气对自由空间光通信中激光传输的影响机理和形式。介绍了大气的各种物理性质和云、雾等大气现象,分析了大气吸收和散射引起的衰减效应。阐述了大气湍流的物理模型和统计特性,根据大气激光传输的基本理论,系统研究了光强闪烁、光束扩展、光束漂移、到达角起伏和焦平面光斑弥散等影响通信性能的湍流效应。
     (2)针对大气信道中的强度调制/直接检测自由空间光通信系统,改进了误码率计算模型。根据自由空间光通信系统的基本组成和工作原理,将误码率计算模型分为大气传输、光电探测和阈值判决三个模块。大气传输模块考虑了大气衰减、光束扩展和光强闪烁的影响,适用于弱起伏条件下;光电探测模块是根据强度调制/直接检测系统中雪崩二极管探测器的输出特性而建立;结合大气传输和光电探测模块,并将乘性噪声的影响添加到阈值判决模块,提出了误码率计算的改进模型。
     (3)设计并实现了一套自由空间光通信模拟实验系统,并给出了在距离为1Km链路上不同大气条件下得到的闪烁指数、误码率和光强概率分布等实验结果。通过对实验数据的处理,分析了散粒噪声对于闪烁指数测量的影响,提出了在低信噪比条件下仍有效的改进测量方法;将实验参数代入误码率经典模型和改进模型,比较了两种模型计算结果的准确度;分析了背景噪声和光强起伏对系统误码率的影响;将基于极大似然拟合分布和对数正态分布两种模型得到的误码率计算值与实测值进行了比较。
     (4)基于误码率改进模型,提出了一种根据信号光强和湍流强度等缓变统计量的最优阈值,实现了大气湍流影响校正。通过仿真计算和实验测量研究了最优阈值的各种特性,并使用非线性回归得到最优阈值的近似解析表达式。研究结果显示,使用这种阈值优化方法可以降低系统误码率,虽然相比理论最小值还有一定差距,但是对于弱起伏条件下的常规自由空间光通信系统是可以接受的。如果可以使信号光强保持稳定,那么最优阈值的波动可以忽略。
     (5)分析了gamma-gamma分布在仿真计算中的溢出问题,并且提出了两种可以有效解决溢出的改进计算模型;提出一种FSK自由空间光通信系统的设计方案,并使用Optisystem软件对系统性能进行了仿真研究,验证了该方案的可行性。
     本文的研究成果不仅可用于自由空间光通信系统误码率的仿真研究,也可以为工程系统设计评价、站点选址和相关理论研究提供一定参考。
With the rapid development of the information technology, traditional microwave communication system cannot meet the increasing demand for the performance of transmission rate and security. Free-space optical (FSO) communication has many potential advantages, such as large communication capacity, excellent security performance, resistant to electromagnetic interference, less power consumption, less volume, less mass, and being license-free. Recently it has turned to be a hot topic in the field of wireless communication research. When laser beam propagates through the atmosphere as the information carrier, it will be influenced by power attenuation and turbulence effects, and the performance of FSO systems will be degraded. The atmospheric effects have become an obstacle that limits the wide application of FSO technology.
     Focusing on the FSO application, this dissertation investigated the mechanism of atmospheric effects on the laser propagation and its correction technology. The dissertation consists of five parts as follows:
     Firstly, the mechanism of atmospheric effects on the laser propagation in FSO was theoretically studied. Some physical properties of atmosphere and atmospheric phenomena such as clouds and fogs were introduced. The problem of power attenuation caused by atmospheric absorption and scattering was analyzed. The physical model and the statistical characteristics of atmospheric turbulence were illustrated. Based on basic theories of the laser propagation through atmosphere, the turbulence-induced effects on the laser signal of FSO systems, such as intensity fluctuation, beam wander, beam spreading, angle of-arrival fluctuation and spot dispersion, were systematically discussed.
     Secondly, the mathematical model of bit error rate(BER) for IM/DD FSO system operating in the atmospheric channel was modified. According to the basic composition and fundamental principle of FSO system, the BER model was divided into three modules including atmospheric propagation, photoelectric detection and threshold decision. Considering the influence of atmospheric attenuation, beam spreading and intensity fluctuation, the atmospheric propagation module was applicable to weak turbulence conditions. The photoelectric detection module was based on the output characteristic of APD in the IM/DD FSO system. The influence of multiplicative noise was added to the threshold decision module. On the basis of the former three modules, the modified mathematical model of BER was proposed.
     Thirdly, a set of simulation experiment FSO system was designed and implemented, and experimental results such as scintillation index, BER and intensity probability distribution were obtained under various atmospheric conditions at a distance of1kilometer. By means of data processing, the influence of shot noise on the measurement of scintillation index was analyzed, and an improved method which is effective in low signal-to-noise ratio was proposed. By substitution of the experimental parameters into classical and modified BER mathematical models, the accuracy of the two models were compared. Furthermore, BER values calculated with maximum likelihood fitting distribution and lognormal distribution were both compared with measured values.
     Fourthly, based on the modified BER model, a kind of optimum threshold obtained by slow-varying statistics such as signal intensity and scintillation index was proposed, and the influence induced by turbulence was corrected. Characteristics of the optimum threshold were researched by numerical simulation and experimental measurements. For convenience, an approximate analytic expression of the optimum threshold was also obtained by means of nonlinear fitting. The results showed that the system performance can be improved by this kind of optimum threshold. The optimum threshold can lead to performance loss relative to ideal level; however it is acceptable for typical FSO communication systems operating under weak fluctuation conditions. If the signal intensity is kept constant, the fluctuation of the optimum threshold level can be neglected.
     Finally, the overflow problem of gamma-gamma distribution model in numerical simulation was analyzed, and two modified model by which overflow can be effectively avoided were deduced. A scheme of frequency-shift-keying (FSK) FSO system was designed, and the system performance was simulated by the Optisystem software. The simulation results show that the scheme is feasible.
     The results of this dissertation are not only applicable to the simulation research of BER performance for FSO systems, but also can provide reference for engineering design, site selection and correlative theoretical researches.
引文
[1]Lawrence R S, Strohbehn J W. A survey of clear air propagation effects relevant to optical communications[J]. Proc. IEEE,1970,58(10):1523-1545.
    [2]Toyoshima M, Leeb W R, Kunimori H, et al. Comparison of microwave and light wave communication systems in space application[J]. Proc. SPIE,2005,5296:1-12.
    [3]Chan V W S. Free-space optical communications[J]. J. Lightwave Technol.,2006,24(12): 4750-4862.
    [4]Ricklin J C, Bucaille S, Davidson F M. Performance loss factors for optical communication through clear air turbulence[J]. Proc. SPIE,2004,5160:1-11.
    [5]Jong A N. Refraction effects of atmospheric inhomogeneities along the path. Proc. SPIE, 2004,5237:105-116.
    [6]朱震,陈凌.自由空间光通信技术[J].光通信技术,2003,20(1):22-26.
    [7]Biswas A, Williams G, Wilson K E, et al. Results of the STRV-2 lasercom terminal evaluation tests. Proc. SPIE,2000,3932:21-34.
    [8]Biswas A, Wright M W. Mountain-top-to-mountain-top optical link demonstration:part II[J]. IPN Progress Report,2002,42(151):1-16.
    [9]Boroson D M, Biswas A, Edwards B L. MLCD:overview of NASA's mars laser communications demonstration system[J]. Proc. SPIE,2004,5338:16-28.
    [10]Aruga T, Araki T, Hayashi R, et al. Earth-to-geosynchronous satellite laser beam transmission. Appl. Opt,1985,24(1):53-56.
    [11]Fujise M. Free-space simulator for laser transmission[J]. Proc. SPIE,1991,1417:1-27.
    [12]Toyoda M, Toyoshima M, Tarhashi T, et al. Ground to ETS-VI narrow laser beam transmission. Proc. SPIE,1996,2699:71-80.
    [13]Keiichia S, Ryutaroa S, Shinichia I, et al. A study of global multimedia mobile satellite communication system:current status[J]. Acta Astronautica,2000,47(2-9):163-169.
    [14]Toyoshima M, Takizawa K, Kuri T, et al. Ground-to-OICETS laser communication experiments. Proc. SPIE,2006,6304:1-8.
    [15]Fletcher G D, Hicks T R, Laurent B. The SILEX optical interorbit link experimen[J]. Electron. Commun. Eng.,1991,3(6):273-279.
    [16]Nielsen T T, Oppenhaeuser G. In orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX[J]. Proc. SPIE,2002,4635:1-15.
    [17]Lange R, Smutny B, Wandernoth B.142km,5.625 Gbps free-space optical link based on homodyne bpsk modulation[J]. Proc. SPIE,2006,6105:61050A.
    [18]Gubergrits M, Goot R E, Mahlab U, et al. Adaptive power control for satellite to ground laser communication[J]. Int. J. Satell. Commun., Network,2007,25:349-362.
    [19]Venediktov V Y, Berenberg V A, Bezina N A, et al. Novel scheme of dynamic correction using negative optical feedback[J]. Proc. SPIE,1999,3432:146-152.
    [20]Vlasov G K, Nikolar A D, Vladimir V S. High-sensitive excitonic receiver of IR coherent radiation with laser readout of information[J]. Proc. SPIE,1995,2381:330-341.
    [21]Koyama Y, Aizono M, Morikawa E, et al. Evaluation of a high-power optical amplifier for intersatellite links[J]. Proc. SPIE,2003,4975:164-171.
    [22]罗彤,胡渝,李贤.星间光链路中捕获系统分析与仿真[J].应用光学,2002,23(1):5-8.
    [23]陈纯毅,杨华民,佟首峰,等.空间光通信卫星平台振动实时模拟[J].系统仿真学报,2007,19(16):3834-3837.
    [24]王建民,汤俊雄,孙东喜,等.卫星激光通信均匀信标光的研究[J].光学学报,2006,26(1):7-10.
    [25]孙兆伟,吴国强,孔宪仁,等.国内外空间光通信技术发展及趋势研究[J].无线激光通信,2005,9:61-64.
    [26]蒋丽娟,朱道伟.近地实用激光大气通信系统设计[J].光通信技术,2000,24(3)。219-222.
    [27]Naboulsi M A, Sizun H, Fornel de Frederlque. Fog attenuation prediction for optical and infrared waves[J]. Opt. Eng.,2004,43(2):319-329.
    [28]Moll F, Knapek M. Wavelength selection criteria and link availability due to cloud coverage statistics and attenuation affecting satellite, aerial, and downlink scenarios[J]. Proc. SPIE, 2007,6706:670916.
    [29]Ketprom U, Kuga Y, Jaruwatanadilok S, et al. Numerical studies on time-domain response of on-off-keyed modulated optical signals through a dense fog[J]. Appl. Opt.,2004,43(2): 496-505.
    [30]Kim A D, Ishimaru A. Optical diffusion of continuous-wave, pulsed, and density waves in scattering media and comparisons with radiative transfer[J]. Appl. Opt.,1998,37(22): 5313-5329.
    [31]Hahn D V, Duncan Donald D. Optimized link model for optical communications through clouds[J]. Proc. SPIE,2004,5550:170-181.
    [32]Wu B B, Marchant B, Kavehrad M. Channel modeling of light signals propagating through battlefield environment:analysis of channel spatial, angular and temporal dispersion[J]. Appl. Opt.,2007,46(25):6442-6448.
    [33]Chernov L A. Wave propagation in a random medium[M]. Washington:McGraw-Hill,1960: 1-587.
    [34]Tatarskii V I. Wave propagation in a turbulent medium[M]. Washington:McGraw-Hill, 1961:1-78.
    [35]Yura H T. Physical model for strong optical-amplitude fluctuations in a turbulent medium[J]. J. Opt. Soc. Am.,1974,64(1):59-67.
    [36]Churnside J H. Aperture averaging of optical scintillations in the turbulent atmosphere [J]. Appl. Opt.,1991,30(15):1982-1994.
    [37]Kerr J R, Dunphy J R. Experimental effects of finite transmitter apertures on scintillations[J]. J. Opt. Soc. Am.,1973,63(1):1-8.
    [38]饶瑞中.光在湍流大气中的传播[M].合肥:安徽科学技术出版社,2005.
    [39]Kiriazes J J, Phillops R L, Andrews L C. Analysis of fading for a free-space optical communication link subject to atmospheric scintillation. Proc. SPIE,2004,5160:253-264.
    [40]Al-Habash M A, Andrews L C, Phillips R L. Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media[J]. Opt. Eng.,2001,40(8):1554-1562.
    [41]Silbaugh E E, Welsh B M, Roggermann M C. Characterization of atmosphere turbulence phase statistics using wavefront slope measurements[J]. J. Opt. Soc. Am. A,1996,13(12): 2453-2460.
    [42]Biswas A, Wright M W. Mountain-top-to-mountain-top optical link demonstration:part I[R]. IPN Progress Report,2002:42-149.
    [43]Phillips R L, Andrews L C, Stryjewski J, et al. Beam wander experiments:terrestrial path[C]. Proc. SPIE,2006,6303:630306.
    [44]Perlot N, Giggenbach D, Henniger H, et al. Measurements of the beam-wave fluctuations over a 142-km atmospheric path[C]. Proc. SPIE,2006,6304:630410.
    [45]Gagliardi R M, Karp S. Optical communications[M].陈根祥,秦玉文,赵玉成,等译.北京:电子工业出版社,1995:2-191.
    [46]Andrews L C, Phillips R L, Hopen C Y. Scintillation model for a satellite communication link at large zenith angles[J]. Opt. Eng.,2000,39(12):3272-3280.
    [47]Nikulin V V, Khandekar R. Performance of laser communication uplinks and downlinks in the presence of pointing errors and atmospheric distortions [J]. Proc. SPIE,2005,6789: 37-45.
    [48]Nistazakis H E, Karagianni E A, Tsigopoulos A D, et al. Average capacity of optical wireless communication systems over atmospheric turbulence channels[J]. J. Lightwave Technol., 2009,27:974-979.
    [49]Davis C C, Smolyaninov 11. The effect of atmospheric turbulence on bit-error-rate in an on-off-keyed optical wireless system[J]. Proc. SPIE,2002,4489:126-137.
    [50]Ma J, Jiang Y, Yu S, et al. Packet error rate analysis of OOK, DPIM and PPM modulation schemes for ground-to-satellite optical communications[J]. Opt. Commun.,2010,283(2): 237-242.
    [51]Kiasaleh Kamran. Perfomance of coherent DPSK free-space optical communication systems in K-distributed turbulence[J]. IEEE T. Commun.,2006,54(4):604-607.
    [52]Trisno S, Davis C C. Performance of free space optical communication systems using polarization shift keying modulation[J]. Proc. SPIE,2006,6304:63040-63049.
    [53]Li J, Liu J, Taylor D. Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channels[J]. IEEE T. Commun.,2007,55(8):1598-1606.
    [54]易修雄,郭立新,吴振森.高斯波束在湍流大气斜程传输中的闪烁问题研究[J].光学学报,2005,25(4):433-438.
    [55]钱仙妹,朱文越,饶瑞中.部分相干光在湍流大气中传输的研究进展[J].大气与环境光学学报,2008,3(2):81-91.
    [56]陈纯毅,杨华民,姜会林,等.大气光通信中大气湍流影响抑制技术研究进展[J].兵工学报,30(6):779-791.
    [57]Arnon S, Kopeika N S. Free-space optical communication:detector array aperture for optical communication through thin clouds[J]. Opt. Eng.,1995,34(2):518-522.
    [58]Arnon S, Kopeika N S. Adaptive optical transmitter and receiver for space communication through thin clouds[J]. Appl. Opt.,1997,36(9):1987-1993.
    [59]Aharonovich M, Arnon S. Performance improvement of optical wireless communication through fog with a decision feedback equalizer[J]. J. Opt. Soc. Am. A,2005,22(8): 1646-1654.
    [60]Yuksel H, Davis C C. Aperture averaging analysis and aperture shape invariance of received scintil lation in free space optical communication links[J]. Proc. SPIE,2006,6304:63041E.
    [61]Wasiczko L M, Davis C C. Aperture averaging of optical scintillations in the atmosphere: experimental results[J]. Proc. SPIE,2005,5793:197-208.
    [62]Moorea C I, Burrisb H R, Suitea M R. Spatial intensity correlation and aperture averaging measurements in a 20 mile retro-reflected lasercom link[J]. Proc. SPIE,2003,5160: 474-482.
    [63]Vetelino F S, Young C, Andrews L, et al. Aperture averaging effects on the probability density of irradiance fluctuations in moderate-to-strong turbulence[J].Appl. Opt.,2007, 46(11):2099-2108.
    [64]Kumar A, Jain V K. Antenna aperture averaging and power budgeting for uplink and downlink optical satellite communication[C]. ICSCN'08,2008:126-131.
    [65]Ibrahim M M, Ibrahim A M. Performance analysis of optical receivers with space diversity reception[J]. Proc. IEEE Commun.,1996,143:369-372.
    [66]Kim 11, Hakakha H. Scintillation reduction using multiple transmitters[J]. Proc. SPIE,1997, 2990:102.
    [67]Pan F, Ma J, Tan L Y, et al. Scintillation characterization of multiple transmitters for ground-to-satellite laser communication[J]. Proc. SPIE,2004,5640:448-454.
    [68]Anguita J A, Neifeld M A, Vasic B V. Multi-beam space-time coded systems for optical atmospheric channeIs[J]. Proc. SPIE,2006,6304:63041B.
    [69]Anguita J A, Neifeld M A, Vasic B V. Spatial correlation and irradiance statistics in a multiple-beam terrestrial free-space optical communication link[J]. App. Opt.,2007,46(26): 6561-6571.
    [70]Shin E J, Chan V W S. Optical communication over the turbulent atmospheric channel using spatial diversity[J]. Proc. IEEE Conf. Global Commun.,2002,3:1-8.
    [71]Cvijetic N, Wilson S G, Brandt-Pearce M. Performance bounds for free-space optical MIMO systems with APD receivers in atmospheric turbulence[J]. IEEE J. Sel. Areas Commun., 2008,26(3):3-11.
    [72]Wilson S Q Brandt-Pearce M, Cao Q, et al. Optical repetition MIMO transmission with multipulse PPM[J]. IEEE Trans. J. Select. Areas Commun.,2005,9:1901-1910.
    [73]Wilson S G, Brandt-Pearce M, Cao Q, et al. Free-space optical MIMO transmission with Q-ary PPM[J]. IEEE Trans. Commun.,2005,53:1402-1412.
    [74]Navidpour S M, Uysal M, Kavehrad M. BER performance of free-space optical transmission with spatial diversity [J]. IEEE T. Wirel. Commun.,2007,6:2813-2819.
    [75]Tsiftsis T A, Sandalidis H G, Karagiannidis G K, et al. Optical wireless links with spatial diversity over strong atmospheric turbulence channels[J]. IEEE T. Wirel. Commun.,2009,8: 951-957.
    [76]Lee E J, Chan V W S. Diversity coherent and incoherent receivers for free-space optical communication in the presence and absence of interference[J]. J. Opt. Commun. Netw., 2010,1:463-483.
    [77]Kiasaleh Kamran. Scintillation index of a multiwavelength beam in turbulent atmosphere [J]. J. Opt. Soc. Am. A,2004,21:1452-1454.
    [78]Kiasaleh Kamran. On the scintillation index of a multi wavelength Gaussian beam in a turbulent free-space optical communications channel[J]. J. Opt. Soc. Am. A,2006,23(3): 557-566.
    [79]Kiasaleh Kamran. Impact of turbulence on multi-wavelength coherent optical communications[J]. Proc. SPIE,2005, vol.5892:58920R.
    [80]Trisno S, Smolyaninov I, Milneretal S D. Characterization of time delayed diversity to mitigate fading in atmospheric turbulence channels[J]. Proc. SPIE,2005,5892:589215.
    [81]Anguita J A, Djordjevic I B, Neifeld M A, et al. Shannon capacities and error-correction codes for optical atmospheric turbulent channels[J]. J. Opt. Netw.,2005,4(9):586-601.
    [82]Davis C C, Smolyaninov 11, Milner S D. Flexible optical wireless links and networks[J]. IEEE Commun. Mag.,2003,41(3):51-57.
    [83]Zhu X, Kahn J M. Free-space optical communication through atmospheric turbulence channels[J]. IEEE T. Commun.,2002,50(8):1293-1300.
    [84]Zhu X, Kahn J M. Performance bounds for coded free-space optical communications through atmospheric turbulence channels[J]. IEEE T. Commun.,2001,54(8):1233-1239.
    [85]Yenice Y E, Evans B G Optimum beam size for laser beam propagating through atmospheric turbulence[J]. Electron. Lett.,1999,35(21):1875-1876.
    [86]Yenice Y E, Evans B G.Adaptive beam-size control for ground to satellite laser communications[J]. Proc. SPIE,1998,3266:221-230.
    [87]Uysal M, Li J, Yu M. Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels[J]. IEEE T. Wirel. Commun.,2006,5(6): 1229-1233.
    [88]Webb W E, Marino J T. Threshold detection in an on-off binary communications channel with atmospheric scintillation[J]. Appl. Opt.,1975,14(6):1413-1417.
    [89]Hamzeh B, Kavehrad M. OCDMA-coded free-space optical links for wireless optical-mesh networks[J]. IEEE T. Commun.,2004,52:2165-2174.
    [90]Ricklin J C, Davidson F M. Atmospheric turbulence effects on a partially coherent Gaussian beam:implications for free-space laser communication[J]. J. Opt. Soc. Am. A,2002,19: 1794-1802.
    [91]O. Korotkova, Andrews L C, Phillips R L. Model for a partially coherent Gaussian beam in atmospheric turbulence with application in lasercom[J]. Opt. Eng.,2004,43 (2):330-341.
    [92]Tyson R K. Bit-error rate for free-space adaptive optics laser communications[J]. J. Opt. Soc. Am. A,2002,19(4):753-758.
    [93]Weyrauch T, Vorontsov M A. Free-space laser communications with adaptive optics: atmospheric compensation experiments[J]. J. Opt. Fiber. Commun. Rep.,2004,1:355-397.
    [94]Reimann G, Perreault J A, Bierden P A, et al. Compact adaptive optical compensation systems using continuous silicon deformable mirrors[J]. Proc. SPIE,2002,4493:35
    [95]姜文汉.61单元自适应光学系统[J].量子电子学报.1998,15(4):193-197.
    [96]邢建斌,许国良,张旭苹,等.大气湍流对激光通信系统的影响[J].光子学报,2005,34(12):1850-1852.
    [97]王朝晖.星间光通信系统BER的自适应带宽控制方法[J].燕山大学学报,2006,30(4).
    [98]高宠.马晶,谭立英,等。大气光通信中大气闪烁时间平滑效应研究[J].光学学报,2006,26(4):481-486.
    [99]Deng T P, Lu Y M. Performance evaluation and channel modeling of MIMO free space optical communication system. Proc. SPIE,2005,5985:59851C.
    [100]杨昌旗,姜文汉,饶长辉.孔径平均对自由空间光通信误码率的影响[J].光学学报,2007,27(2):212-218.
    [101]Li F, Hou Z H, Wu Y. Experiment and numerical evaluation of bit error rate for free-space communication in turbulent atmosphere[J]. Opt. Laser Technol.2013,45:104-109.
    [102]National Oceanic and Atmospheric Administration. U. S. Standard Atmosphere[S]. Washington, D. C.:U. S. Government Printing Office,1976.
    [103]盛裴轩,毛节泰,李建国,等.大气物理学[M].北京:北京大学出版社,2003.
    [104]胡晟,艾勇.自由空间光通信中气象因素影响分析[J].光学与光电技术,2003,3(1):16-21.
    [105]郑荣良.无线接入网及其应用[J].现代通信,1998,2:3-4.
    [106]Ricklin J C, Hammel S M, Eaton F D, et al. Atmospheric channel effects on free-space laser communication[J]. J. Opt. Fiber. Commun. Rep.,2006,3:111-158.
    [107]陈彦.空-地光通信系统的方案设计和关键技术分解及信道仿真[D]:[硕士].成都:电子科技大学,2003.
    [108]张逸新,迟泽英.光波在大气中的传输与成像[M].北京:国防工业出版社,1997:63-165.
    [109]宋正方.应用大气光学基础[M].北京:气象出版社,1990:2-86.
    [110]靖旭,吴毅,侯再红,等.湍流大气中激光传输光强起伏特征研究[J].光学学报,2010,30(11):3110-3116.
    [111]饶瑞中,王世鹏,刘晓春,等.实际大气中激光闪烁的概率分布[J].光学学报,1999,19(1): 81-86.
    [112]Majumdar A K. Free-space laser communication performance in the atmospheric channel[J]. J. Opt. Fiber Commun.,2005,2(4):345-396.
    [113]马晓珊,朱文越,饶瑞中.测量折射率结构常数和内尺度的三波长激光闪烁仪[J].大气与环境光学学报,2007,2(1):50-54.
    [114]王世鹏,饶瑞中,刘晓春.实际大气中激光闪烁效应的实验观测[J].光电工程,1998,25(6):120-123.
    [115]崔朝龙,黄宏华,梅海平,等.利用米散射激光雷达获取湍流信息的方法研究[J].大气与环境光学学报,2011,6(2):89-94.
    [116]周鸿飞,陈志斌,关欣.评价回归模型拟合效果的数量化方法[J].沈阳农业大学学报,2001,32(6):455-458.
    [117]Gagliardi R M, Karp S. Optical communications[M]. New York:Wiley-Interscience,1995.
    [118]Korotkova O, Andrews L C, Phillips R L. Model for a partially coherent Gaussian beam in atmospheric turbulence with application in lasercom[J]. Opt. Eng,2004,43(2):330-341.
    [119]Gradshteyn I S, Ryzhik I M. Table of integrals, series, and products [M]. USA:Academic Press,2007:929.
    [120]Klekamp A, Idler W, Dischler R. Comparison of FSK by directly modulated DFB laser with DPSK, NRZ and RZ modulation formats at 10 Gb/s.[J] Proc. ECOC 2003,2003.
    [121]朱勇,李玉权,武欣荣,等.多普勒效应对星间激光通信的影响及对策[J].军事通信技术,2003,24(4);71-74.
    [122]桑波,赵宏,谭玉山.激光多普勒扭转振动测试技术的研究.中国激光,30(8):743-746.
    [123]Li M H, Chi N, He Z X, et al. A novel scheme of high bit rate optical FSK transmitter[J]. Proc. SPIE,2007,6783:678343.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700