用户名: 密码: 验证码:
油菜籽液—液—固三相萃取动力学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双液相溶剂萃取技术是近年来开发出的新型油脂浸出技术,应用此技术处理油菜籽,可以在制取高质量毛油的同时,得到色浅、味淡、流动性好、蛋白质含量高、硫甙含量低的菜籽饼粕。
    双液相溶剂萃取技术从实验室研究到工业化应用,有许多问题需要探索和解决。本文对双液相溶剂萃取过程的动力学进行了研究,测得了菜油和硫代葡萄糖甙(以下简称硫甙)的萃取动力学数据,建立了萃取传质模型,得到了菜油和硫甙在油菜籽中的扩散系数,从而为双液相溶剂萃取技术的工业放大提供参考。为此进行的具体工作如下:
    (1) 建立适用于双液相溶剂萃取油菜籽饼粕的硫甙分析方法。通过实验证实了氯化钯法对双液相溶剂萃取的菜籽饼粕适应性良好,完全可以用于硫甙总量的测定。作者比较了氯化钯法在450nm和540nm处比色的测定效果,发现在450 nm处测定的平均误差小于在540 nm处的。另外,选用由HPLC法测定硫甙浓度在13.3~110.3 μmol/g范围内的8个油菜籽饼粕样品,作为标准样品,由此建立工作曲线。结果平均误差为6 μmol/g左右,最大误差约10μmol/g,能满足实验测定的需要。
    (2) 分析了民用磨磨碎油菜籽的颗粒粒度分布情况。通过对磨碎后的油菜籽颗粒进行筛分,测得磨碎时间分别为30 s、60 s、90 s、180 s的油菜籽颗粒名义粒径分别为0.755 mm、0.499 mm、0.424 mm、0.326 mm。这些粒径大小的油菜籽,能满足考察粒径大小对菜油和硫甙萃取速率影响的实验需要。
    (3) 考察了对萃取过程有影响的各种因素。在不同的萃取条件下,测定了菜油和硫甙在不同时间下的萃取率,发现减小油菜籽粒径、提高萃取温度、提高石油醚相溶剂比(ml石油醚/g菜籽)能促进菜油的萃取。减小油菜籽粒径、提高萃取温度、提高甲醇相溶剂比(ml甲醇/g菜籽)、提高石油醚相溶剂比能促进硫甙的萃取。作者分析了各种因素的影响,进行了机理的初步探讨。
    (4) 从油菜籽颗粒角度出发,根据菲克第二定律,对半径为R各向同性的球形油菜籽颗粒作扩散过程分析,建立萃取传质模型:
    
    并对模型进行了进一步修改,提出扩散系数随萃取时间的变化率为:
    
    
    
    
    实验数据对模型参数进行回归分析,得到双液相溶剂萃取条件下菜油和硫甙在油菜籽中的扩散系数平均值数量级为10-13 m2/s。
    (5) 分析了扩散系数与萃取温度的关系,指出了扩散系数与萃取温度满足阿仑尼乌斯定律,求得了菜油和硫甙在油菜籽中扩散的表观活化能分别为4.512 kJ/mol、0.7 kJ/mol。
Two-liquid phase solvent extraction technology is a novel method. Two improved products, a proteinaceous meal with reduced glucosinolates and a high quality triglyceride oil, both acceptable as feed and food ingredients could be yielded by the process. The meals were free-flowing, light in color, bland in taste and rich in proteins.
    Two-liquid phase solvent extraction technology has been developed since 1980's and many achievements were acquired in the labs, but there were some troubles in the industrialization. In this paper, the kinetics of extracting both of oil and glucosinolates from rapeseed particles with two-liquid phase solvent system was studied. Valuable data of the mass transfer through a serial of experiments were obtained. A mass transfer model was set up to describe the extraction process. The diffusion coefficients of the rapeseed oil and glucosinolates within rapeseed particles, which would be useful in the scale up of the process, could be calculated by the model. During the periods to finish the experimental tasks, following as main items were done.
    (1) The method to determine the glucosinolates in rapeseed meal extracted by two-liquid phase solvent system was improved. Palladium test was proved to be suitable for detection the total glucosinolates in rapeseed meal. Both wavelengths of 450nm and 540nm were test and found that detection with 450nm would gaine a minor mean error. Further more, some standard meal which the glucosinoates concentration were 13.3~110.3μmol/g detected by HPLC were selected and used to set up the standard curve. Finally, a mean error of 6μmol/g was obtained and used to determine the glucosinolates with the wavelength of 450nm.
    (2) The distribution of particle size of the ground rapeseed was determined. The mesh analysis was completed for the rapeseed particles, which were ground in 30, 60, 90, and 180s and the nominal diameters of these ground rapeseed were 0.755, 0.499, 0.424 and 0.326 mm.
    (3) Many factors influencing the extracting rate in two-liquid phase solvent extraction were studied. It was concluded that minor rapeseed diameter, higher temperature and hexane ratio were benefit for the rapeseed oil extraction. Also minor rapeseed diameter, higher
    
    temperature, higher hexane ratio and methanol ratio were benefit for the glucosinolates extraction.
    (4) A model as follows based on differential mass balances performed along the radial of the isotropic rapeseed particle was proposed:
    
    Regression for the parameters of the model using the rapeseed oil and glucosino- lates extraction rate data was completed. At last, the diffusion coefficient of the extraction process was obtained and their order of magnitude was 10-13 m2/s.
    (5) The relationship between the diffusion coefficient and temperature could be expressed by Arrhenius law and the activation energy of the extraction process was calculated.
引文
1. 陈騊声,陈永楠.油脂生产技术.北京:化学工业出版社,1993.1-10
    2. 田煜.2002年油菜籽市场前瞻.粮食与油脂.2002,3:15-17
    3. 张登辉.我国饲用菜籽蛋白资源的开发利用.甘肃畜牧兽医.2000,30(4):35-36
    4. 赵国志.油脂螺旋压榨机技术的进展.中国油脂.1999,3:6-8
    5. 汤天曙,张鑫,苏运东.用水代法生产花生小磨麻油的研究.郑州轻工业学院学报.1997,12(3):23-26
    6. 罗学刚.水代法制取核桃油技术.食品科技.1994,3:8-9
    7. 齐玉堂,刘大川.浅谈几种油脂浸出新溶剂的工艺特性及潜在应用价值.中国油脂.1996,21(4):48-50
    8. 阴景喜,端木凡林等.论四号溶剂浸出油脂的优点.中国油脂.1999,24(5):20-21
    9. 汪学德,杨天奎等.植物油浸出技术最新发展与应用.中国油脂.2000,25(1):7-9
    10.郑竞成,叶凤娟等.菜籽膨化浸出工艺小试研究.中国油脂.1995,20(1):17-19
    11.梁新宇,倪培德等.菜籽加工及发展趋势.中国油脂.1999,24(3):9-10
    12.胡小弘,张维农,张立伟.菜籽直接浸出工艺的研究.中国粮油学报,1997,12(15):25-27
    13.L.J.Rubin, L.L. Diosady, C.R. Phillips. Solvent extraction of oil bearing seeds. USA Patent, 4460504. 1984
    14.L.L. Diosady, L.J. Rubin, C.G. Tar. Extraction of particulate materials. USA Patent, 4859371. 1989
    15.史美仁,秦金平,钱仁渊.低能耗菜籽双液相萃取技术.中国油脂.1999,24(4):9-11
    16.徐世前,史美仁.双液相萃取脱毒技术对中国菜籽的适应性研究.中国油脂.1994,19(1):44-48
    17.史美仁,沈式泉,张菊珍.菜籽无氨甲醇/己烷双液相萃取技术.中国油脂.1996,21(6):25-27
    18.D.I. Mcgregor, W.J. Mullin, G.R. Fenwick. Analytical Methodology for Determining Glucosinolate Composition and Content. J.ASSOC. OFF. ANAL. CHEM. 1983, Vol. 66, No.4: 825-849
    
    
    19.于炎湖,吴谋成.饲料毒物学附毒物分析.北京:农业出版社,1992.1-123
    20.王卫国,周晓静,李建筑.菜籽饼脱毒工艺研究.粮食饲料工业.1998,5:17-18
    21.金桩,丛德新,斯琴高娃.菜籽饼脱毒方法综述.哲里木畜牧学院学报.1998,8(4):48-50
    22.杜长安,赵俊廷,莫重文等.菜籽粕热压法脱毒新工艺研究.郑州粮食学院学报.1996,9:59-62
    23.刘玉兰,董秀云.菜籽饼粕的生物化学法脱毒研究.中国粮油学报.1994,9(3):49-56
    24.Harmit Singh. Removal of Glucosinclates from Rapeseed Meal Using Bowl- Shaped Tetrameric Molecules in Apolar Solvent. J. Agric. Food Chem. 1997, 45:4522-4524
    25.陆骑风,倪培德.菜籽热喷去毒研讨.中国油脂.1994,19(1):40-43
    26.史美仁,钱仁渊,包宗宏.棉籽油料萃取脱毒方法.中国专利,0134351.3.
    2001
    27.K.Varge. Simultaneous Extraction of Oil and Antinutritional Compounds from Flaxseed. JAOCS . 1994,71(6):603-607
    28. 化学工程手册编委会.化学工程手册,萃取及浸取.北京:化学工业出版社,1983.122-128
    29.K.N. Han, D.W. fuerstenau. Kinetics of Extraction of Metals from Deep-Sea Manganese Nodules: Part 1 The Pore Diffusion Controlling Case. Metallurgical Transactions B. 1976(12), Vol.7B:679-685
    30.G.Abraham, R.J.Hron Sr., S.P.Kolfun. Modeling the Solvent Extraction of Oilseeds. JAOCS. 1988(1), Vol.65: 129-135
    31. J.T. Chien, J.E. Hoff, M.J. Lee et.al. Oil Extraction of Dried Ground Corn with Ethanol. Chemical Engineering Journal. 1990, Vol.43, B:103-113
    32. 王应虎,应卫勇,孙文粹等.三氯化铁溶液浸取锌精矿的动力学模型.高校化学工程学报.1994(12), Vol.8:338-344
    33. 田君,尹敬群.南方重稀土矿浸取动力学分析.江西科学.1996(6),Vol.2:81-86
    34. 姜文选,刘晓峰,王祝敏.一种计算扩散系数的有效方法.抚顺石油学院学
    
    报.1999(9),Vol.19:11-13
    35.E.Reverchon, M.Polette. Mathematical Modeling of Supercritical CO2 Fraction of Flower Concretes. Chem. Eng. Sci., 1996, 51(15): 3741-3753
    36.C.Roy, M.Goto. Supercritical fluid Extraction oils from Ginger Root. Ind. Eng. Chem. Res.. 1996, 35:607-611
    37. S. N. Naik, Z.H. Len et al. Extraction of Perfumes and flavours from Plant Materials with Liquid-vapour Equilibrium Conditions. Fluid Phase Equilibrium. 1989, 49: 115-126
    38.S.R. Ferreira. Extraction of Peppermint Oil by Supercritical Carbon Dioxide. J. Food Eng.. 1993, 20:121-133
    39.E.Reverchon. Modeling of Supercritical Fluid Extration from Herbaceous Matrices. Ind. Eng. Chem. Res.. 1993,22: 2721-2726
    40.A.K. Lee, K.Bulley, N.R. Fattori. Modeling of Supercritical carbon Dioxide Extraction of Canola Oil Seed in Fixed Beds. J. Amer. Oil. Chem. Soc.. 1986,63:921-925
    41.宋启煌,姚东.超临界CO2从南海翡翠贻贝中萃取EPA及DHA的研究.精细化工.1998,15(4):51-54
    42.孙爱东,葛毅强.CO2超临界流体萃取技术提取甜橙皮精油的研究.食品工业科技.1999,20(3):7-9
    43.E.Reverchon, C.Marrone. Supercritical Extraction of Clove Bud: Essention oil isolation and Mathematical modeling. Chem. Eng. Sci.. 1997,52(52):3421~3428
    44.M.Fattori, N.R.Bulley. Supercritical Fluid Extration of vegetable Oil Seeds. J. Amer. Oil Chem. Sci.. 1984, 61: 1362-1365
    45.C.Roy, B.C. Goto. Extraction Rates of Oil from Tmomto Seeds with Supercritical Carbon Dioxide. J. Chem. Eng. of Japan. 1994, 27: 768-772
    46.Sovova. Rate of the vegetable Oil Extraction with Supercritical CO2-Modeling of Extraction Curves. Chem. Res. Sci.. 1994, 49(3): 409-414
    47.陈騊声,陈永楠.油脂生产技术.北京:化学工业出版社,1993.1-50
    48.D. 斯沃恩主编,秦洪万主译.贝雷油脂化学与工艺学,第四版,第一册.北京:轻工出版社,1989.205-209
    49.(美)惠(Hui, Y.H.)主编,徐生庚,裘爱泳主译.贝雷油脂化学与工艺学,第五版,第
    
    四卷.北京:中国轻工业出版社,2001:103-109
    50.J.P. Wathelet, M. Marlier, M. Severin et al. Measurement of Glucosinolates in Rapeseeds. Natural Toxins. 1995, 3: 299-304
    51.D.R DeClercq, J.K Daun. Determination of the Total Glucosinolate Content in Canola by Reaction with Thymol and Sulfuric Acid. JAOCS. 1989,66(6):788-791
    52.D.B.Smith, D.G. Parsons, Carol Starr,A simple and rapid method of quantitatively measuring the glucosionlate concentration of rapeseed. Journal of Agricultural Science, Cambridge. 1985,105:597-603
    53.R. K. Heaney, E. A. Spinks, G.R. Fenwick,Improved Method for the Determination of the Total Glucosinolate Content of Rapeseed by Determination of Enzymically Released Glucose. ANALYST. 1988(10), Vol.113: 1515-1518
    54.S.J. Kershaw, R.A.W. Johnstone,Modification of a Mini-column Method for Rapid Routine Determination of Total Glucosinolate Content of Rapeseed by Glucose Release. JAOCS. 1990, Vol. 67: 821-826
    55.J. Jezek, B.G.D. Haggett, A. Atkinson et al. Determination of Glucosinolates Using Their Alkaline Degradation and Reaction with Ferricyanide. J. Agric. Food. Chem. 1999, 47: 4669-4674
    56.张菊珍,徐世前,史美仁.硫脲法测定菜籽饼粕中的硫代葡萄糖甙.南京化工学院学报.1992(2),14:63-68
    57.B. Matth?us, H.J. Fiebig. Simultaneous Determination of Isothiocyanates, Indoles, and Oxazolidine- thiones in Myrosinase digests of Rapeseeds and Rapeseed Meal by HPLC. J. Agric. Food. Chem. 1996, 44: 3894-3899
    58.A. Karcher, H.A. Melouk, Z.E. Rassi. High-performance Liquid Phase Separation of Glycosides.5. Determination of Individual Glucosinolates in Cabbage and Rapeseed by Laser-Induced Fluorescene Capillary Electrophoresis via the Enzymatically Released Isothiocyanate Aglycon . J. Agric. Food. Chem. 1999, 47: 4267-4274
    59.张寒俊.油菜籽和油菜饼粕中硫代葡萄糖甙的定量测定研究进展.粮食与饲料工业.2002(8):50
    60.严远鑫,李劲峰,郑树松等.Ba35SO4同位素稀释分析法高精密分析菜籽(饼)硫代葡
    
    萄糖甙总量的研究.作物学报.2002(1), Vol.28:36-41
    61.B?RJE BJ?RKQVIST. Separation and determination of intact glucosinolates in rapeseed by high-performance liquid chromatography. Journal of Chromatography. 1988 , 435:501-507
    62.Carol Starr, Janet Suttle, A.G. Morgan et al. A comparison of sample preparation and calibration techniques for the estimation of nitrogen, oil and glucosinolate content of rapeseed by near infrared spectroscopy. J.Agric.Camb. 1985,104:317-323
    63.Zhihong Yang, Junhua Xiu, Yiming Zhu. Determination of Glucosinolate in Rapeseed Meal by Infrared Spectrometry. ANALYST. 1998,2,Vol.113:52-56
    64.O. Leoni, R. Iori, S. Palmieri. Immobilization of Myrosinase on Membrane for Determining the Glucosinolate Content of Cruciferous Material. J. Agric. Food. Chem. 1991, 39: 2322-2326
    65.A.M. Szmigielska, J.J. Schoenau, V. Levers. Determination of Glucosinolates in Canola Seeds Using Anion Exchange Membrane Extraction Combined with the High-Pressure Liquid Chromatography Detection. J. Agric. Food. Chem. 2000, 48: 4487-4491
    66.A.M. Szmigielska, J.J. Schoenau. Use of Anion-Exchange Membrane Extraction for the High- Performance Liquid Chromatographic Analysis of Mustard Seed Glucosinolates. J. Agric. Food. Chem. 2000, 48: 5190-5194
    67.H.E. Doorne, G.J. Holst, G.C. Kruk. Quantitative Determination of the Glucosinolates Sinigrin and Progoitrin by Specific Antibody ELISA Assays in Brussels Sprouts. J. Agric. Food. Chem. 1998, 46: 793-800
    68.J.F. Jen, T.H. Lin, J.W. Huang et al. Direct determination of sinigrin in mustard seed without desulfatation by reversed-phase ion-pair liquid chromatography. J. of Chromatography A. 2001,912:363-368
    69.J. K. Troyer, K.K. Stephenson, J.W. Fahey. Analysis of glucosinolates from broccoli and other cruciferous vegetables by hydrophilic interaction liquid chromatography. J. of Chromatography A. 2001,919:299-304
    70.B. Matth?us, H. Luftmann. Glucosinolates in Members of the Family Brassi- caceae: Separation and Identification by LC/ESI-MS-MS. J. Agric. Food. Chem. 2000, 48: 2234-2239
    
    
    71.R.P. Tolra, R. Alonso, C. Poschenrieder et al. Determination of glucosinolates in apeseed and Thlaspi caerulescens plants by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J. of Chromatography A 2000, 889: 75-81
    72.中国农科院油料所品质育种课题组.氯化钯法快速测定油菜籽的硫代葡萄糖甙.中国油料.1982(2):74
    73.中国农科院油料所品质育种课题组.氯化钯法定量测定油菜籽中的硫葡萄糖甙.中国油料.1983(4):69-70
    74.吴谋成,黄荣汉.油菜籽(饼)中硫代葡萄糖甙总量的快速定量测定.华中农学院学报.1983,2(3):73-81
    75.尚毅,谭小力.氯化钯法测定油菜籽粒中硫甙含量的研究.陕西农业科学.2000,5:18-19
    76.刘立行.仪器分析.北京:烃加工出版社,1990:231
    77.中华人民共和国国家标准.油料种籽含油量测定法.GB/T 14488.1-93
    78.中华人民共和国国家标准.油料水分及挥发物含量测定法.GB/T 14489.1-93
    79.孙春宝,李睿华,卢寿慈等.Szego磨的工作原理及其特点.矿山机械.1998(7):18-20
    80.化学工程手册编委会.化学工程手册,第23篇 粉碎、分级及团聚.北京:化学工业出版社, 1985.1-171
    81.L.L. Diosady, C.G. Tar, L.J. Rubin et al. The Use of Liquid Cyclones in Extraction of Oil From ground Canola Seed. TRANSACTIONS of the ASAE. Vol.32(5), 1989(9~10): 1754-1758
    82.沈式泉.液-液-固三相萃取分离菜籽油和脱毒饼粕的研究.【硕士学位论文】.江苏:南京化工学院,1990
    83.童玲.卫星浸出器用于油菜籽双液相萃取模拟实验研究.【硕士学位论文】.江 苏:南京工业大学,2001
    84.杨艳.醇-烷烃体系相平衡数据的测定与关联.【硕士学位论文】.江苏:南京化工大学,2000
    85.MeiRen Shi, ShiQuan Shen. A Proposed Method for the Calculation of Theoretical Plates in Liquid-Liquid-Solid Three-Phase Extraction Columns:Methanol,Hexane and
    
    Rapeseed Meal System. The Canadian Journal of Chemical Engineering. 1994, 72(4):365-369
    86.陈维杻.超临界流体萃取的原理和应用.北京:化学工业出版社,1998.93
    87.洪楠.SPSS for Windows统计分析教程.北京:电子工业出版社,2000.279- 280
    88.化学工程手册编委会.化学工程手册,第10篇,传质.北京:化学工业出版社,1989.109-110

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700