用户名: 密码: 验证码:
董家河矿井地质构造定量评价及预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在分析总结澄合矿区地质构造发育特征及其规律的基础上,重点分析了董家河煤矿地质构造的发育特征,包括褶皱、断层的分布及组合特征,总结了矿井地质构造的发育规律,并对构造应力场进行了分析。采用模糊综合评判法,选取5个定量评价指标对董家河煤矿已采区构造复杂程度进行了定量评价,应用灰色系统建模预测了未采区评价指标值,并对未采区构造复杂程度进行了定量评价。论文取得以下主要结果:
     (1)董家河煤矿褶皱与断层构造均较发育,二者相比褶皱更为发育。褶皱大部分为封闭的短轴背向斜,展布方向主要为北东和北西向,以向斜为主。井田内已揭露的断层绝大部分为落差小于5m的小型正断层,仅发育几条北东东及东西向展布的逆断层,小断层具有密集成带和疏密相间的分布特点。断层发育有四个方向,以东西向及南北向为主,北西向及北东向次之。断层在平面上的组合形式主要为平行排列式,其次为交叉组合及不规则形式,在剖面上小断层呈地堑、地垒、阶梯式组合形式,并有层间滑动构造发育。
     (2)通过比较,选取断层密度、断层强度指数、断层走向影响指数、平面褶皱强度指数、构造面积损失系数5个定量评价指标进行模糊综合评判,通过对董家河煤矿已采区划分的156个单元进行构造复杂程度的定量评价,结果为:属于Ⅰ类的有81个单元,属于Ⅱ类的有35个单元,属于Ⅲ类的有13个单元,属于Ⅳ类的有27个单元。经与开采情况对比,评价结果与实际情况基本吻合。在此基础上利用灰色系统建模预测了未采区各项评价指标值,对未采区划分的31个单元进行了构造复杂程度定量评价,结果为:属于Ⅰ类的有17个单元,属于Ⅱ类的有10个单元,属于Ⅲ类的有4个单元。未采区构造等级以Ⅰ和Ⅱ类为主,仅在井田西部分布有Ⅲ类构造等级,未出现Ⅳ类构造等级,故矿井未采区的构造复杂程度总体较低,说明未采区较适宜综合机械化采煤。
It is mainly analyzed that Dong Jiahe Minefield development features of geologicalstructure, which includes the distribution and combination features of folds and faults, thedevelopment laws of mine geological structure is summarized and the tectonic stress field isanalyzed on the basis of analyzing and summarizing Cheng He mining area geologicalstructure development characteristics and laws in the paper. By using fuzzy comprehensiveevaluation method, five quantitative evaluation index are selected to evaluate Dong JiaheMinefield mining area structural complexity degree, Gray System Modeling is applied topredict evaluation index values of non-mining area and the structural complexity degree ofnon-mining is evaluated quantitatively. The following main results has been made in thepaper:
     (1) The structures of folds and faults are all development in Dong Jiahe Minefield, butfolds are more development. The majority of folds are closed short axis anticline and syncline,the main direction for the NE and NW, to the main syncline. The most of revealed faults dropheight are less than 5m normal faults in the minefield, and only develops a few things NEEand EW reverse faults, small faults with the distribution features of dense belts and densityand white. The faults are four directions, mainly EW and SN, NW and NE followed. Theplane combination form of faults are the main parallel form, followed by cross-portfolio andirregular form, the combination in profile form with graben,horst,ladder form, andinterlayer-gliding structures development.
     (2) By comparing, the fault density, fault strength index, the fault to affect the index, flatfold intensity index, construction area of loss coefficient of five quantitative evaluation indexare selected to use the fuzzy comprehensive evaluation, By evaluating quantitatively thestructural complexity degree of mining area in Dong Jiahe Minefield which has been divided into 156 units, The results are: 81 units of classⅠ, 35 units of classⅡ, 13 units of classⅢand27 units of classⅣ.Evaluation results are consistent with the actual exposed exploitationsituation. On this basis, the Gray System Model is used to forecast the index value ofnon-mining area and the structural complexity of non-mining area is evaluated quantitativelywhich has been divided into 31 units. The results are: 17 units of classⅠ, 10 units of classⅡ,4 units of classⅢ. The main tectonic scale are classⅠandⅡin non-mining area, the classⅢare only distributed in minefield western, classⅣare not appear, so mine non-mining areawith a whole lower structural complexity degree, it is show that non-mining area is moreappropriate for comprehensive mechanical mining.
引文
[1]秦建芝,郝庆军.我国煤炭资源开发利用中存在问题的分析及对策[A].林业、森林与野生动植物资源保护法制建设研究—2004年中国环境资源法学研讨会(年会)论文集(第四册)[C],2004
    [2]彭苏萍.中国煤矿高产高效矿井地质保障系统[J].河北煤炭,1999(增刊),(S1):1~4
    [3]曹代勇,穆宣社,傅正辉等.为现代化矿井建设服务的地质构造定量研究技术[A].世纪之交煤矿地质学术论文集[C].西安:西安地图出版社,1999:147~152
    [4]贾建称,陈健,柴宏有,张妙缝.矿井构造现状与发展趋势[J].煤田科学技术,2008,36(10):72~77
    [5]徐龙,徐风银,朱兴珊,马志存,薛涛.矿井构造预测与评价的研究现状及发展方向[J].淮南工业学院学报(自然科学版),1995,15(02): 21~25
    [6]黄立华.渭北煤田东缘韩城构造带内各构造类型的厘定及其意义[J].陕炭,1989,(02):49~51
    [7]杨新庆,王大曾,李增学.宁阳县石屯煤矿小构造展布规律分析[J].山东科技大学学报(自然科学版),1989,8(02):38~42
    [8]汪云甲,黄广龙.煤矿小断层规律的统计研究[J].矿山测量,1992,(01):50~53
    [9]李春虎.杨庄矿中小型断层特征及应用[J].煤炭科学技术,1988,(06):6~7
    [10] Rendu, J.M. An Intruduction to Geostatistical Methhod of Mineral Evalution, 1981
    [11] Habbert, W.C. Stress distributions of faulting[J], Geol.Soc.Am.Ball. 1951, 62
    [12] Huntington, J.F. Methods and apptications of fracture trace analysis in the quantifycationof structural geology[J]. Grd.Mag., 1969, 106(06)
    [13] Levine.J.R.etc. Vitrinite anisotropy under differential stress and high confining pressureand temperature, Preliminary observations,Inter.J[J]. Cval Geol., 1986,6
    [14]宁爱国.回归分析在矿井小构造预测中的应用[J].煤田地质与勘探,1988,(06):21~23
    [15]徐凤银,王桂梁,朱兴珊,龙荣生.矿井地质构造定量预测中的难点及其研究[J].煤田地质与勘探,1992,20(01):27~32
    [16]宋瑞林.河南芦沟煤矿探采对比[J].煤田地质与勘探,1988,(06): 32~36
    [17]赵源礼.白家庄矿区松树坑矿井的探采对比[J].山西矿业学院学报,1988,(03)
    [18]王桂梁,朱炎铭.论煤层流变[J].中国矿业大学学报,1988,(03):16~23
    [19]李增学,马兴祥.实用矿井地质研究方法与进展[M].徐州:中国矿业大学出版社,1993
    [20]徐凤银,魏铭康.矿井构造预测与评价的理论、方法及其应用[M].徐州:中国矿业大学出版社,1993
    [21]王文侠.湖南金竹山—渣渡矿区煤反射率的有限应变分析[J].中国矿业大学学报,1987,(04): 62~68
    [22] Hower, J.C.etc. Vitrinite Reflectance anisotropy as a tectonic fabric element[J].Geology, 1981, (04)
    [23] Milici,R.C. The Allegheny structural front in Tennessee and its regional tectonicimplications[J]. Am.Journ.Sc., 1970, 268(02)
    [24]李应山.煤岩微观分析在正确判断地质构造方面的应用[J].煤炭科学技术,l990,(03)
    [25] Heard,H.C. Transition from brittle to ductile follow in solenhofen limestone as afunction of temperature, confining pressure and interstitial fluid pressure[J].Geol.soc.Am.Men, 1962, 79
    [26] Levine.J.R.etc. Optical anisotropy of coal as an indicator of tection deformationBroadTopCoal Field,Pannsylvania[J]. Gelo.Soc.Am.Ball, 1984, 95 (01)
    [27] Hayess, W.B.&Koch G.S: Construting and Analyzing Area-of-Influnce Polygons byComputer[J]. Computer&Geoscvences, 1983
    [28]谢和平.非线性大变形有限元分析及在预测岩层移动中的应用[J].中国矿业大学学报.1988, (02):94~104
    [29] Hubbert.M.K.etc.Rolefluid pressure in mechanic of overthrust faulting[J],Geol.Soc.Am.Ball, 1959, 62
    [30]赵宗沛等.煤矿地质摄影测量[J].煤炭科学技术,1985,(08)
    [31]刘志刚.论矿井构造定量预测[J].矿井地质,1990,(01):39~44
    [32]徐凤银等.矿井构造定量预测中的几个关键问题及其处理[J].煤田地质与勘探,1992,(01)
    [33] R.K索博列夫,朱雪芬译.煤层的小构造破坏及其预测[J].煤田地质动态,(06)
    [34] H.Omer,门桂珍等译.断层带的随机模型化与模拟[J].国外煤田地质,1991,(04)
    [35]钱光谟,曹代勇等.煤田构造研究方法[M].北京:煤炭工业出版社,1994
    [36]詹才高,范念寒,陆汝纶,武法东.应用等性快段指数法定量划分华北煤矿勘探类型[J].煤田地质与勘探,1985,(05): 16~24
    [37]赵明鹏.构造解析法在矿井地质构造预测中的应用[J].阜新矿业学院学报,1991,(03):68~71
    [38]徐凤银,龙荣生,夏玉成,谢仕康.矿井地质构造定量评价及其预测[J].煤炭学报,1991,16(04):93~102
    [39]徐凤银,龙荣生,谢高文,李汝明.矿井地质构造定量预测中的评价指标及其研究方法[J].矿井安全与环保,1991,(05):21~25
    [40]王桂梁,龙荣生,徐凤银等.矿井构造预测[M].北京:煤炭工业出版社,1993
    [41]夏玉成,徐凤银.灰色关联分析在模糊综合评判中的应用[J].西安矿业学院学报,1991,11(1):44~50
    [42]朱宝龙,夏玉成.人工神经网络在矿井构造定量评价中的应用[J].煤田地质与勘探,2001,29(06):15~17
    [43]权新昌.澄合矿区煤系地层沉积环境及成煤条件分析[J].中国煤田地质,2006,18(03):17~19
    [44]马炳泰等.澄合矿务局志[M].北京:煤炭工业出版社,1999
    [45]刘娜.澄合矿区煤系沉积特征和聚煤规律[D].西安科技大学,2010
    [46]夏玉成,杨梅忠等.陕西渭北煤矿区地质与灾害防治[M].西安:西安地图出版社,1996
    [47]西安科技大学,董家河煤矿.澄合矿务局董家河煤矿矿井地质报告[R].2009
    [48]王生全.董家河井田断层构造的发育规律及预测[J].西安科技学院学报,2001,21(01):47~50
    [49]周云霞,曹代勇.矿井地质构造定量评价模型探讨[J].煤田地质与勘探,2001,29(02):16~18
    [50]李增学,马兴祥等.实用矿井地质研究—方法与进展[M].北京:地质出版社,1993
    [51]刘思峰,郭天榜,党耀国等.灰色系统理论及其应用[M].北京:科学出版社,1990
    [52]李鹏.邢东煤矿地质构造分析与评价[D].西安科技大学,2010
    [53]夏玉成,樊怀仁.矿井构造定量评价的原则和方法[J].西安科技学院学报,1998,18(04):323~327
    [54]王生全.模糊综合评判法在矿井构造复杂程度定量评价中的应用[J].西北地质,1997,18(01):44~48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700