用户名: 密码: 验证码:
GLUT4囊泡的量子点标记及其在活细胞内纳米级实时定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葡萄糖转运蛋白GLUT4在肌肉细胞和脂肪细胞的葡萄糖摄取过程中起着关键作用,对维持体内葡萄糖的动态平衡至关重要。GLUT4在细胞内的循环过程涉及到细胞胞吐和胞吞活动的许多分子机制。深入研究GLUT4囊泡在胞内转运的完整动态过程,有助于进一步揭示GLUT4的转位机制和胞内大分子跨膜转运的基本生命现像。但是,由于三维单微粒跟踪技术的局限,只能观察GLUT4囊泡在胞内转运的某些短时程和局部区域的过程,这导致与GLUT4囊泡胞内转运过程相关的许多重要科学问题还没有得到解答。本文结合了新的纳米级三维单微粒跟踪技术和量子点标记技术,为全细胞范围内GLUT4囊泡转运机制研究提供了高精度、长时程的实时监测及分析平台。
     本文主要完成了以下几个方面的工作:
     1)将量子点标记技术引入到纳米级三维单微粒跟踪研究领域。设计了用量子点标记葡萄糖转运蛋白囊泡的实验流程,证明了这种标记方法的灵敏性、特异性、无毒性。实验结果表明,与传统的荧光染料相比,量子点因其光物理特性,在全细胞范围内GLUT4囊泡胞内转运过程研究中具有某些优越性。为解决三维纳米级跟踪中图像信噪比低、目标分割难、跟踪时程短、空间分辨率低等问题提供了新的思路。
     2)对单微粒的三维纳米级定位算法进行了研究。考虑到实时性和分辨率的要求,本文重点研究了宽场显微镜荧光图像的离焦图像和离焦距离的关系,得出了二者的关系公式,从原理上为自校正离焦定位系统的设计奠定了基础。
     3)设计和构建了自校正离焦定位系统。搭建了进行三维纳米级跟踪的硬件和软件基本平台。设计了一套能对Z轴位移进行精确控制的压电晶体纳米级微位移控制器。对TILLVision成像系统软件进行了改造,在原有的成像系统软件中加入了三维纳米级离焦定位算法。
     本文所建立的有关GLUT4囊泡三维纳米级实时定位的新方法和新的实验系统,亦可应用于内分泌细胞和神经细胞分泌机制研究以及蛋白质跨膜转运研究等前沿科学领域。进一步发展,有可能在一定条件下实现对活体细胞内蛋白质大分子的三维纳米级实时定位和跟踪。
Glut4 (Glucose Transporter 4), which plays a key role in insulin uptake in muscle and fat cells, is essential for maintaining whole body glucose homeostasis. The recycling of GLUT4 between the intracellular compartments and the cell surface involves many molecular mechanisms of endocytosis and exocytosis. A further investigation in GLUT4 translocation is helpful for revealing the basic life phenomenon of the across-membrane transport of macromolecules in live cells. However, only some short-term processes of GLUT4 translocation in partial aereas of the cell could be observed because of the limitations of the current 3D single particle tracking technique. This results that lots of important scientific problems on GLUT4 translocation can not be solved yet. By combining the new 3D single particle positioning technique with nano-precision with the quantum dots labeling technique, this study provides a platform suitable for long-term, real time mornitoring and analying on the GLUT4 trafficking in whole cell.
     The main works of this thesis are presented as follows:
     1. Quantum dots were introduced into the research of single particle tracking as an alternative to conventional dyes. A special protocol was developed to label GLUT4 in L6 cells and was demonstrated to be sensitive, specific, nontoxic. The results indicate that, compared with conventional dyes, quantum dots are advantageous in the research of 3D single particle positioning due to their unique optical and spectroscopic properties. Some difficult problems in 3D single particle positioning, such as low spacial resolution, low signal noise ratio, difficulties in object segmentation, short tracking time duration, have been solved by this method.
     2. Algorithms for 3D single particle positioning were investgated. Considering the request of real time and spatial resolution, we put the emphsis on investigating the relationship between the off-focus image and the off-focus distance. An approximately formula between the diameter of the outmost ring and the off-focus distance in Z-axis of single particle was established, which provided solid theory basis for real-time 3D single particle positioning with nano precision.
     3. A self-adjustable off-focus positioning system, including hardware and software platforms, was designed and established to perform real-time 3D single particle tracking. A piezocrystal mirco-displacement controller was designed to control the movement of object lens in Z-axis precisely. The Algorithm of real-time 3D single particle tracking was inserted to the software of TILLVision imaging system to meet the needs for real-time image acquisition and processing.
     The new method and experiment system of 3D single particle positioning established in this thesis can also be used in frontier science areas such as secretion mechanism of endocrine and neron cells, across-membrane transport of protein. With further development, this method has the potential of positioning and tracking protein macromolecules in live cells in real time and 3D.
引文
[1]D. Axelrod. Lateral motion of membrane proteins and biological function. J. Membr. Bio.1983.75:p.1-10.
    [2]M. McCloskey, M. Poo. Protein diffusion in cell membranes:some biological implications. Int. Rev. Cytol.1984.87:p.19-81.
    [3]W. W. Ghosh, R. N. Webb. Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. Biophysical. Journal.1994.66:p.1301-1318.
    [4]M. de Brabander, R. Nuydens, H. Geerts, et al. Dynamic behavior of the transferrin receptor followed in living epidermoid carcinoma (A431) cells with nanovid microscopy. Cell. Motil. Cytoskeleton.1998.9(1):p.30-47.
    [5]J. Gelles, B. J. Schnapp, M. P. Sheetz. Tracking kinesin driven movements with nanometer-scale precision. Nature (Lond.).1988.331:p.450-453.
    [6]R. Peters, R. J. Cherry. Lateral and rotational diffusion of bacteriorhodopsin in lipid bilayers:experimental test of the Saffman-Delbruck equations. Proc. Natl. Acad. Sci. USA.1982.79(14):p.4317-4321.
    [7]P. G. Saffman, M. Delbruck. Brownian motion in biological membranes. Proc. Natl. Acad. Sci. USA.1975.72(8):p.3111-3113.
    [8]W. L. C. Vaz, M. Criado, V. M. C. Madeira, et al. Size dependence of the translational diffusion of large integral membrane proteins in liquid-crystalline phase lipid bilayers:a study using fluorescence recovery after photobleaching. Biochem. 1982.21(22):p.5608-5612.
    [9]W. W. Webb, L. S. Barak, D. W. Tank, et al. Molecular mobility on the cell surface. Biochem. Soc. Symp.1981.46:p.191-205.
    [10]A. Kusumi, Y. Sako, M. Yamamoto. Confined lateral diffusion of membrane
    receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J.1993.65(5): p.2021-2040.
    [11]C. M. Anderson, G. N. Georgiou, I. E. G. Morrison, et al. Tracking of cell surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera. J. Cell Sci.,1992.101(2):p.415-425.
    [12]R. N. Ghosh. Mobility and clustering of individual low density lipoprotein receptor molecules on the surface of human skin fibroblasts. PhD thesis. Cornell University, Ithaca, New York.1991.260.
    [13]M. Speidel, A. Jonas, E. L. Florin. Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging. OPTICS. LETTERS.2003.28(2):p.69-71.
    [14]K. F. Petersen, G.. I. Shulman. Pathogenesis of skeletal muscle insulin resistance in type 2 diabetes mellitus. Am. J. Cardiol,2002.90(5A):p.11G-18G.
    [15]H. Sone, H. Suzuki, A. Takahashi et al. Disease model:hyperinsulinemia and insulin resistance. Trends in Mol. Med.2001.7(7):p.320-322.
    [16]N. J. Bryant, R. Govers, D. E. James. Regulated transport of the glucose transporter glut4. Nat Rev Mol Cell Biol.2002.3(4):p.267-277. [17] O. Karylowski, A. Zeigerer, A. Cohen et al. GLUT4 is retained by an interacellular cycle of vesicle formation and fusion with endosomes. Mol. Biol. Cell,2004.15(2): p.870-882. [18] U. Becherer, T. Moser., W. Stuhmer, et al. Calcium regulates exocytosis at the level of single vesicles. Nat. Neurosci,2003.6(8):p.846-853. [19] J. M. Muretta, I. Romenskaia., C. C. Mastick. Insulin release GLUT4 from static storage compartments intocycling endosomes and increases the rate constant for GLUT4 exocytosis. J. Biol. Chem.2008.283(1):p.311-323 [20] A. C. F. Coster, R. Govers, D. E. James. Insulin Stimulates the Entry of GLUT4 into the Endosomal Recycling Pathway by a Quantal Mechanism. Traffic,2004.5(10):p. 763-771.
    [21]R. Govers, A. C. F. Coster, D. E. James. Insulin increases cell surface GLUT4 levels by dose dependently discharging GLUT4 into a cell surface recycling pathway. Mol. Cell. Biol.2004.24(14):p.6456-6466.
    [22]J. C. Hou, J. E. Pession. Ins (endocytosis) and outs (exocytosis) of GLUT4 trafficking. Curr. Opin. Cell. Biol.2007.19(4):p.466-473.
    [23]V. Ribon, A. R. Saltiel. Insulin stimulates tyrosine phosphorylation of the proto-oncogene product of c-Cbl in 3T3-L1 adipocytes. Biochem. J.1997.324(Pt3): p.839-845.adipocytes.
    [24]D. J. Stephens, V. J. Allan. Light microscopy techniques for live cell imaging. Science.2003.300:p.82-86.
    [25]C. J. Weijer. Visualizing signals moving in cells. Science.2003.300(5616):p. 96-100.
    [26]A. Miyawaki, A. Sawano, T. Koqure. Lighting up cells:labelling proteins with fluorophores. Nat. Cell. Biol.2003.5:p. S1-S7.
    [27]F. Kulzer, S. Kummer, R. Matzke, et al. Single-molecule optical switching of terrylene in p-terphenyl. Nature.1997.387:p.688-691.
    [28]R. M. Dickson, A. B. Cubitt, R. Y. Tsien, et al. On/off blinking and switcing behaviour of single molecules of green fluorescent protein. Nature.1997.388:p. 355-358..
    [29]A. Henglein. Small-particle research:physiochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev.1989.89:p.1861-1873.
    [30]Large clusters and collides:metals in the embryonic state.
    [31]M. Nirmal, L. Brus. Luminescence photophysics in semiconductor nanocrystals. Acc. Chem. Res.1999.32:p.407-414.
    [32]T. Jamieson, R. Bakhshi, D. Petrova, et al. Biological applications of quantum dots. Biomaterials.2007.28(31):p.4717-4723..
    [33]M. G Bawendi, M. L. Steigerwald, L. E. Brus. The quantum mechanics of larger semiconductor clusters ('quantum dots'). Annu. Rev. Phys. Chem.1990.41:p. 477-496.
    [34]A. P. Alivisatos. Semiconductor clusters, nanocrystals, and quantum dots. Science. 1996.271(5251):p.933-937.
    [35]A. P. Alivisatos. Nanocrystals:building blocks for modern materials design. Endeavour,1997.21:p.56-60.
    [36]AI. M. Efros, M. Rosen. The electronic structure of semiconductor nanocrystals. Annu. Rev. Mater. Sci.2000.30:p.475-521.
    [37]C. B. Murray, C. R. Kagan. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci.2000. 30:p.545-610.
    [38]D. Evanko. Quantum dots go with the flow. Nature. Methods.2006.3:p.662-663.
    [39]B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec et al. (CdSe)ZnS core-shell quantum dots:synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B.1997.101(46):p.9463-9475.
    [40]W. C. W. Chan. S. M. Nie. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. science.1998.216(5385):p.2016-2018.
    [41]X. Y. Wu, H. J. Liu, J. Q. Liu, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol., 2003.21:p.41-46.
    [42]L. C. Mattheakis, J. M. Dias, Y. J. Choi, et al. Optical coding of mammalian cells using semiconductor quantum dots. Anal. Biochem.2004.327(2):p.200-208.
    [43]S. J. Rosenthal. Bar-coding biomolecules with fluorescent nanocrystals. Nat. Biotechnol.,2001.19:p.621-622.
    [44]M. Y. Han, X. H. Gao, J. Z. Su. et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol,2001.19:p.631-635.
    [45]K. Hanaki, A. Momo, T. Oku, et al. Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker Biochem. Biophys. Res. Commun.2003.302(3):p.496-501.
    [46]J. K. Jaiswal, H. Mattoussi, J. M. Mauro. et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol.2003.21:p.47-51.
    [47]A, Sukhanova, L. Venteo, J. Devy, et al. Highly stable fluorescent nanocrystals as a novel class of labels for immunohistochemical analysis of paraffin-embedded tissue sections. Lab. Invest.2002.82:p(9).1259-1261.
    [48]X. H. Gao, L.Yang, J. A. Petros, et al. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol.2005.16(1):p.63-72.
    [49]J. A. Kloepfer, R. E. Mielke, M. S. Wong, et al. Quantum dots as strain-and metabolism-specific microbiological lables. Appl. Environ.Microbiol,2003.69(7):p. 4205-4213.
    [50]G. D. Pinaud F, S. C. Williams, W. J. Parak, et al. Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B,2001.105(37):p.8861-8871.
    [51]S. R. Cordero, P. J. Carson, R. A. Estabrook, et al. Photo-activated luminescence of CdSe quantum dot monolayers. J. Phys. Chem. B.2000.104:p.12137-12142..
    [52]M. Jones, J. Nedeljkovic, R. J. Ellingson, et al. Photoenhancement of luminescence in colloidal CdSe quantum dot solutions. J. Phys. Chem. B,2003.107(41): p.11346-11352.
    [53]M. Dahan, S. Levi, C. Luccardini, et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science,2003.302(5644):p.442-445.
    [54]X. Michalet, F. Pinaud, T. D. Lacoste, et al. Properties of fluorescent semiconductor nanocrystals and their application to biological labeling. Single Mol.,2001.2:p. 261-276.
    [55]M. Nirmal, B. O. Dabbousi, M. G. Bawendi, et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature,1996.383:p.802-804.
    [56]AI. L. Efros, M. Rosen. Random telegraph signal in the photoluminescence intensity of a single quantum dot. Phys.Rev. Lett.,1997.78:p.1110-1113.
    [57]M. Kuno, D. P. Fromm, H. F. Hamann, et al. Nonexponential'blinking'kinetics of single CdSe quantum dots:a universal power law behavior. J. Chem. Phys.2000. 112:p.3117-3120.
    [58]F. Koberling, A. Mews, T. Basche. Oxygen-induced blinking of single CdSe nanocrystals. Adv. Mater.2001.13(9):p.672-676.
    [59]M. E. Akerman, W. C. W. Chan, P. Laakkonen, et al. Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci.USA,2002.99(20):p.12617-12621.
    [60]M. Dahan, T. Laurence, F. Pinaud. Time-gated biological imaging by use of colloidal quantum dots. Opt. Lett.,2001.26(11):p.825-827.
    [61]X. G. Peng, M. C. Schlamp, A. V. Kadavanich, et al. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility.. J. Am. Chem. Soc.1997.119(30):p.7019-7029.
    [62]M. A. Hines, P. Guyot-sionnest. Synthesis of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. B.1996.100(2):p.468-471.
    [63]X. G. Peng, J. Wickham, A. P. Alivisatos. Kinetics of Ⅱ-Ⅵ and Ⅲ-Ⅴ colloidal semiconductor nanocrystal growth:'focusing'of size distributions. J Am Chem Soc, 1998.120:p.5343-5344.
    [64]J. Aldana, Y. A. Wang,X. G. Peng. Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols J. Am. Chem. Soc.2001.123(36):p.8844-8850.
    [65]W. J. Parak, D. Gerion, D. Zanchet, et al. Conjugation of DNA to silanized colloidal semiconductor nanocrystaline quantum dots. Chem. Mater.2002.14(5):p. 2113-2119.
    [66]A. Schroedter, H. Weller. Biofunctionalization of silica-coated CdTe and gold nanocrystals. Nano Lett.2002.2(12):p.1363-1367.
    [67]T. Pellegrino, L. Manna, S. Kudera, et al. Hydrophobic nanocrystals coated with an amphiphilic polymer shell:a general route to water soluble nanocrystals. Nano. Lett. 2004 4(4):p.703-707.
    [68]M. A. Petruska, A. P. Bartko, V. I. Klimov. An amphiphilic approach to nanocrystal quantum dot-titania nanocomposites J. Am. Chem. Soc.2004 126(3):p.714-715.
    [69]B. Ballou, B. C. Lagerholm, L. A. Ernst, et al. Noninvasive imaging of quantum dots in mice. Bioconjugate. Chem.2004 15:p.79-86.
    [70]W. C. W. Chan, D. J. Maxwell, X. H. Gao, et al. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol.,2002.13(1): p.40-46.
    [71]R. Mahtab, H. H. Harden, C. J. Murphy. Temperature-and salt-dependent binding of long DNA to protein-sized quantum dots:thermodynamics of'inorganic protein'-DNA interactions J. Am. Chem. Soc.2000.122(1):p.14-17.
    [72]H. Mattoussi, J. M. Mauro, E. R. Goldman, et al. Bioconjugation of highly luminescent colloidal CdSe-ZnS quantum dots with an engineered two-domain recombinant protein Phys. Status. Solidi. B.2001.224(1):p.277-283.
    [73]E. R. Goldman, G P. Anderson, P. T. Tran, et al. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal. Chem.,2002.74(4):p.841-847.
    [74]E. R. Goldman, E. D. Balighian, H. Mattoussi, et al. Avidin:a natural bridge for quantum dot-antibody conjugates. J. Am. Chem. Soc.2002124:p.6378-6382.
    [75]M. Bruchez Jr, M. Moronne, P. Gin, et al. Semiconductor nanocrystals as fluorescent biological labels. Science.1998.281:p.2013-2016.
    [76]S. J. Rosenthal, I. Tomlinson, E. M. Adkins, et al. Targeting cell surface receptors with ligand-conjugated nanocrystals. J. Am. Chem. Soc.2002.124(17):p.4586-4597.
    [77]J. O. Winter, T. Y. Liu, B. A. Korgel, C. E. Schmidt. Recognition molecule directed interfacing between semiconductor quantum dots and nerve cells. Adv. Mater.2001. 13:p.1673-1677.
    [78]C. Y. Chang, H. Ma, S. M. Nie, et al. Quantum dot-labeled trichosanthin. Analyst. 2000.125:p.1029-1031.
    [79]S. Pathak, S. K. Choi, N. Arnheim, et al. Hydroxylated quantum dots as luminescent probes for in situ hybridization. J. Am. Chem. Soc.2001.123(17):p.4103-4104.
    [80]D. Gerion, W. J. Parak, S. C. Williams, et al. Sorting fluorescent nanocrystals with DNA. J. Am. Chem. Soc.2002.124(24):p.7070-7074.
    [81]D. Gerion, F. Chan, B. Kannan, et al. Ultra-fast room-temperature single nucleotide polymorphism detection and multi-allele DNA detection using fluorescent nanocrystal probes and microarray. Anal. Chem.2003.75:p.4766-4772.
    [82]J. M. Ness, R. S. Akhtar, C. B. Latham, et al. Combined tyramide signal amplification and quantum dots for sensitive and photostable immunofluorescence detection. J. Histochem. Cytochem.2003 51(8):p.981-987.
    [83]D. S. Lidke, P. Nagy, R. Heintzmann, et al. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat. Biotechnol. 2004.22:p.198-203.
    [84]A. M. Derfus, W. C. W. Chan, S. N. Bhatia. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett.2004.4(1):p.11-18.
    [85]L. E. Riknas, T. Yamano. Mechanisms of cadmium-mediated acute hepatotoxicity. J. Biochem. Mol. Toxicol.2000.14(2):p.110-117.
    [86]H. Pearson. Developmental biology:your destiny, from day one. Nature.2002.417: p.14-15.
    [87]B. Dubertret, P. Skourides, D. J. Norris, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science.2002.298:p.1759-1762.
    [88]W. J. Parak, R. Boudreau, M. L. Gros, et al. Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv. Mater.2002. 14(12):p.882-885.
    [89]F. Patolsky, R. G.ill, Y. Weizmann, et al. Lighting-up the dynamics of telomerization and DNA replication by CdSe-ZnS quantum dots. J. Am. Chem. Soc.2003. 125(46):p.13918-13919.
    [90]N. Y. Morgan, S. English., W. Chen, et al. Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots. Acad. Radiol.2005.12(3): p.313-323.
    [91]L. M. Chen, A. Zurita., P. U. Ardelt, et al. Design and validation of a bifunctional ligand display system for receptor targeting. Chem. Biol.2004.11 (8):p.1081-1091.
    [92]Y. T. Lim, S. Kim., A. Nakayama, et al. Selection of quantum dot wavelengths for biomedical assays and imaging. Mol. Imaging.2003.2(1):p.50-64.
    [93]R. M. Hoffman. Green fluorescent protein imaging of tumour growth, metastasis, and angiogenesis in mouse models. Lancet. Oncol.2002.3(9):p.546-556.
    [94]F. S. L. Thong, C. B. Dugani, Klip, A. Turning signals on and off:GLUT4 traffic in the insulin-signaling highway. Physiology.2005.20(4):p.271-284.
    [95]G. D. Holman, I. V. Sandoval. Moving the insulin-regulated glucose transporter GLUT4 into and out of storage. Trends. Cell. Biol.2001.11(4):p.173-179.
    [96]Q. H. Wang, Z. Khayat, K. Kishi, et al. GLUT4 translocation by insulin in intact muscle cells:detection by a fast and quantitative assay. FEBS. Lett.1998.427 (2):p. 193-197.
    [97]E. M. Van Dam, R. Govers, D. E. James. Akt activation is required at a late stage of insulin-induced a glut4 translocation to the plasma membrane. Mol. Endcrinol.2005. 19(4) p.1067-1077.
    [98]A. Anas,T. Okuda, N. Kawashima. Clathrin-mediated endocytosis of quantum dot-peptide conjugates in living cells. ACS. Nano.2009.3(8):p.2419-2429.
    [99]V. Bolt, T. E. McGraw. GLUT4 is internalized by a cholesterol-dependent nystatin-sensitive mechanism inhibited by insulin. EMBO. J.2006.25(24): p.5648-5658.
    [100]X. H. Gao, W. C. W. Chan, S. M. Nie. Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolour optical encoding. J. Biomed. Opt.2002.7(4):p. 532-537.
    [101]A. Shiohara, A. Hoshino, K. Hanaki, et al. On the cyto-toxicity caused by quantum dots. Microbiol. Immunol.2004.48(9):p.669-675.
    [102]J. Lovric, H. S. Bazzi, Y. Cuie, et al. Differences in subcelluar distribution and toxicity of green and red emitting CdTe quantum dots. J. Mol. Med.2005.83:p. 378-385.
    [103]R. Hardman. A toxicologic review of Quantum Dots:toxicity depends on physicochemical and environmental factors. Environ. Health. Perspect.2006.114(2): p.165-172.
    [104]D. Maysinger, J. Lovric, A. Eisenberg, et al. Fate of micelles and quantum dots in cells. Eur. J. Pharm. Biopharm.2006.65(3):p.270-281.
    [105]J. A. Kloepfer, R. E. Mielke, M. S. Wong. Quantum dots as strain-and metabolism-specific microbiological labels. Appl. Environ. Microbiol.2003.69(7) p.4205-4213.
    [106]W. J. Parak, T. Pellegrino, C. Plank. Labelling of cells with quantum dots. Nanotechnology.2005.16:p. R9-R25.
    [107]J. K. Jaiswal, E. R. Goldman, H. Mattoussi, et al. Use of quantum dots for live cell imaging. Nat. Methods.2004.1(4):p.73-78.
    [108]U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, et al. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods.2008.5(9):p.763-755.
    [109]H. P. Kao, A. S.Verkman. Tracking of single fluorescent particles in three dimensions:use of cylindrical optics to encode particle position. Biophys. J.1994. 67(3):p.1291-1300.
    [110]M. Schmidt, M. Nagorni, S. W. Hell. Subresolution axial distance measurements in far-field fluorescence microscopy with precision of 1 nanometer. Rev. Sci. Instrum. 2000.71(7):p.2742-2745.
    [111]C.M. Ajo-Franklin, L. Kam, S. G. Boxer. High refractive index substrates for fluorescence microscopy of biological interfaces with high z contrast. Proc. Natl. Acad. Sci. USA,2001.98(24):p.13643-13648.
    [112]B. Huang, W.Q.Wang., M. Bates. three-denensional high-resolution imaging by stochastic optical reconstruction microscopy. sciencexpress.2008.10(1126):p.1-3.
    [113]H. Qian, M.P. Sheetz, Elson. Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys. J.,1991.60:p.910-921.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700