用户名: 密码: 验证码:
微胶囊饲料的研制及对日本对虾仔稚幼体消化生理影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海水仔稚幼体赖以生存的生物活饵由于营养不全面、生产成本高、易携带病原菌、供给不稳定等缺点与不足,成为制约海水养殖产业化发展的瓶颈。微粒饲料不仅能有效弥补生物活饵的缺点与不足,而且质量和产量均可有效保证,更适合工厂化育苗生产。
     本论文的主要研究内容如下:
     1.采用喷雾干燥法、复合凝聚法、锐孔凝固浴法、流化床法制备微胶囊饲料,对微胶囊的物理性能进行分析比较。喷雾干燥法采用的壁材分别为明胶、明胶和麦芽糊精复合物,大部分微胶囊饲料粒径小于178μm,加工过程包膜维生素C的保留率仅为20.51%。壁材明胶、明胶和麦芽糊精复合物两种微胶囊的脂类包埋率分别为26.59%、18.07%,氮保留率分别为36.03%、24.93%。微观形态显示喷雾干燥法有较好的包埋效果,以明胶为壁材的微胶囊表面有褶皱,而以明胶和麦芽糊精为壁材的微胶囊表面有孔洞。复合凝聚法制备的壁材明胶和阿拉伯胶复合物的微胶囊出现粘连,微观形态没有明显的微胶囊效果,脂类包埋率和氮保留率分别为26.37%、27.47%,不适合于制备芯材组成复杂的微胶囊饲料。锐孔凝固浴法制备的微胶囊饲料粒径较大,表面粗糙凹陷,且有大量的裂缝,缺乏工业生产设备,难以大量制备微胶囊饲料。流化床法先将基础饲料通过挤出-滚圆法制成微丸,后于流化床底喷包衣制备成壁材乙基纤维素的微胶囊饲料,饲料形态规则,粒径合适,表面为均匀光滑一致的包衣膜,包衣效果良好,微胶囊饲料的包含率为97.2±1.7%,脂类包埋率为63.2±3.7%。在35.0‰的NaCl溶液中250-420μm的微胶囊饲料浸泡20 min、40 min、60 min氮保留率分别为73.6±2.6%、65.8±3.5%、53.7±4.2%。
     2.分别以明胶和乙基纤维素作为包衣壁材,流化床方法制备微胶囊饲料,饲料表面的微观形态为连续、致密的包衣膜,包衣完整,包衣效果明显。加工过程维生素C的保留率为88.2%。微胶囊饲料的粒径合适、沉降速度慢,分散性能好。壁材明胶微胶囊饲料、壁材乙基纤维素微胶囊饲料的产率分别为97.3%、98.2%;包含率分别为92.2%、95.8%;脂类包埋率分别为76.8%、85.3%;浸入35.0‰的NaCl溶液1 h溶出的游离氨基酸总量分别占游离氨基酸总量的87.14%、82.82%;pH值分别为5.98、6.24。壁材乙基纤维素微胶囊饲料在不同体系(pH、温度)的缓释性能优于壁材明胶微胶囊饲料。
     3.将微胶囊饲料饲喂10日龄的日本对虾糠虾Ⅱ期幼体20天,养殖试验分为四组:对照组饲喂50%虾片+50%卤虫;试验组Ⅰ饲喂50%壁材明胶的微胶囊饲料+25%虾片+25%卤虫;试验组Ⅱ饲喂100%壁材明胶的微胶囊饲料;试验组Ⅲ饲喂100%壁材乙基纤维素微胶囊饲料。各试验组幼体均能摄食饲料,试验组Ⅲ幼体有着最佳的生长效果,体重增长313.4%,而对照组体重增长仅为213.4%。与对照组相比,微胶囊饲料组(试验组Ⅱ、试验组Ⅲ)的日本对虾幼体在体重、全长和成活率方面均有显著性提高。试验组Ⅱ与试验组Ⅲ相比,日本对虾幼体的体重和成活率差异不显著,但全长差异显著。微胶囊饲料组的幼体与对照组相比较,蛋白酶活力、淀粉酶活力有显著性差异,但是碱性磷酸酶活力没有显著性差异。试验组Ⅱ和试验组Ⅲ相比,淀粉酶活力和碱性磷酸酶活力差异不显著,但胰蛋白酶活力差异显著。本研究中壁材明胶、乙基纤维素对日本对虾幼体消化酶(胰蛋白酶、淀粉酶、碱性磷酸酶)的活力没有显著性的影响,说明了幼体的消化酶活力主要受饲料中的营养成分调控。
     4.组织学切片观察各试验组日本对虾幼体的肠道和肝胰脏结构,中肠管壁组织由内向外依次分成四层结构,分别是纹状缘、粘膜层、粘膜下层、肌层,肝胰脏主要结构有分泌细胞、吸收细胞和消化腺,相比较,未见异常,不同壁材的微胶囊饲料对消化道的结构无明显影响,能满足幼体消化系统的正常发育。各试验组的日本对虾肠道上皮细胞未见异常。日本对虾幼体肠道吸收营养成分的重要方式是胞饮作用。对各试验组日本对虾幼体中肠的营养状态微观结构发现,营养成分从少到多,依次为对照组、试验组Ⅰ、试验组Ⅱ、试验组Ⅲ,证实微胶囊饲料在消化道中有着明显的缓释作用,壁材乙基纤维素微胶囊比壁材明胶微胶囊缓释作用更强。
     5.在蛋白含量相同的前提下,改变芯材蛋白源(酪蛋白和鱼粉)的比例,以了解幼体对蛋白源的可选择性,分别对饲料和幼体的氨基酸进行测定,对幼体的生长和消化酶活力分析发现,饲料配方中酪蛋白含量的增加降低了幼体的生长性状和消化酶活力。饲料配方中鱼粉含量的增加要优于酪蛋白含量的增加。在粗脂肪相同的前提下,以鱼油取代饲料配方中的裂壶藻粉,分别对饲料和幼体的脂肪酸组成进行分析比较,日本对虾幼体的脂肪酸18:2n-6的含量能反映饲料的脂肪酸18:2n-6含量差异。鱼油替代裂腹藻粉,能促进幼体的生长和消化酶活力的提高。
Live food is a key bottleneck to the culture of crustacean larvae and marine fish larvae. Live food poses many problems for the larviculture such as risk of pathogen transmission, expense of culture and problems with availability. The ultimate solution to the above problems is development of microdiet to partially or completely replace live food. Microdiets can provide a reliable and reproducible feed supply.
     The mian contents of this research are as follows:
     1. Different methods to prepare the microencapsulated diet. Gelatin and gelatin/maltodextrin as wall material were adopted to prepare the microencapsulated diet by spray-drying respectively. The frequency distributions of the microencapsulated diets were in normal distribution. The retention efficiency of coated Vitamin C was 20.51% during the spray drying process. SEM images showed the gelatin-walled microcapsules and gelatin/maltodextrin-walled microcapsules with a uniform film around the core. The lipid encapsulation efficiency of gelatin-walled, gelatin/maltodextrin-walled was 26.59%, 18.07% respectively , the nitrogen retention efficiency of the microencapsulate diet was 36.03%,24.93% respectively. The gelatin/gum-walled microencapsulated diet was prepared by coacervation. SEM images showed the diets were not with a uniform film and adhere each other. The lipid encapsulation efficiency and nitrogen retention efficiency of microencapsulated diets is 26.37%,27.47%. Coacervation is not adapted to prepare the microencapsulated diet. The calcium-alginate microencapsulated diet was prepared by pore-coagulation bath method. SEM images showed there are some depressions and many small cracks on the microcapsule coarse surface. The pore-coagulation bath method was not adapted to industrialized production. The basal diet as core material was made into pellets by extrusion-spheronization, then the pellets were put into the fluidized bed, adopting the mode of bottom spray coating to complete the coating process. SEM images showed that the appearance of the diet microencapsulated with ethyl cellulose with a uniform surface and a continuous film around the core. The inclusion efficiency, lipid encapsulation efficiency of the microencapsulated diet was 97.2±1.7%, 63.2±3.7% respectively. The nitrogen retention efficiency of the microencapsulated diet incubation in 35‰NaCl solution for 20 min, 40 min and 60 min was 73.6±2.6%, 65.8±3.5% and 53.7±4.2% respectively.
     2. The diets microencapsulated with gelatin and ethyl cellulose for larval shrimp (Penaeus japonicus) were produced using fluidized bed coating process. The two microencapsulated diets were within a broad size range. The size of the diet microencapsulated with ethyl cellulose was smaller than that of the diet microencapsulated with gelatin. SEM images showed the appearance of the microencapsulated diets was a dense film with a superior physical quality. The retention efficiency of vitamin C was 88.2% in the coating process. Despite the less amount of wall material used, the diet microencapsulated with ethyl cellulose had a better performance with regard to production efficiency, lipid encapsulation efficiency and free amino acid retention efficiency compared with the diet microencapsulated with gelatin. The pH value of the diet microencapsulated with gelatin and ethyl cellulose was 5.98, 6.24 respectively. The diet microencapsulated with ethyl cellulose had better performance with slow release characteristic in different solution (pH, temperature) compared with the diet microencapsulated with gelatin.
     3. The mysisⅡlarval shrimp (Penaeus japonicus) 10 days after hatch (DAH) were fed different diets respectively for 20 days. There were four treatments. Control: 50% shrimp flake+50% Artemia; GroupⅠ: 50% diet microencapsulated with gelatin + 25% shrimp flake +25% Artemia; GroupⅡ: 100% diet microencapsulated with gelatin; GroupⅢ: 100% diet microencapsulated with ethyl cellulose. The growth and survival of the larval shrimp confirmed the microencapsulated diets with good digestibility. There were significant differences in growth and survival, trypsin activity, and amylase activity of the larvae between the two microencapsulated diet groups and the control (P<0.05), but there was no significant difference in alkaline phosphatase activity in the larvae of each group (P>0.05). There were significant differences in total length and trypsin activity of the larvae between the two microencapsulated diet groups (P<0.05). The results showed that the larval digestive enzymes adapted to the feed composition, and the wall materials had no significant effect on the digestive enzymes activity of the larval shrimp.
     4. The microscopic structure of the intestine was classified as four layers, striated border, mucosa, submucosa and muscular layer. There were many goblet cells and columnar cells in the hepatopancreas. No available information about the differentiation of the intestine and hepatopancreas of the shrimp larvae from different treatments was detected under histological analysis. A large basal nucleus, abundant mitochondria, some zymogen granules and lipid droplets in intestine epithelium were visible. The big mitochondria with large number mainly scattered at the top of the cells. The pinocytotic activity of the gut enterocytes for their intracellular digestion.The nutrient components in intermediate intestine of shrimp larvae decreased gradually in the order of GroupⅢ, GroupⅡ, GroupⅠand the control. Wall material had no significant effect on the digestive system and the microencapsulated diets with slow and controlled release characteristic in the digestive tract of the larval shrimp.
     5. On the condition that the protein content is same, change the composition of amino acid in the feed formulation by changing the the content of casein and fish meal. The amino acid of the diet and the larval shrimp were compared. Increasing the content of casein and decreasing the content of fish meal in the feed formulation decreased the growth performace of the larval shrimp and digestive enzyme activity. On the condition that the fat content is same, fish oil substitute the Schizochytrium algal meal in the feed formulation. The composition and content of fatty acid of the diet and larval shrimp were compared. The fatty acid 18:2n-6 showed a dramatic proportional increase in larval tissue relative to its proportional composition in both the live and formulated diets. Fish oil substitute Schizochytrium algal meal in the feed formulation can improve growth performance and digestive enzyme activity of the larval shrimp.
引文
1. Concei??o L E C, Yúfera M, Makridis P, et al. Live feeds for early stages of fish rearing [J]. Aquaculture Research, 2010, 41:613–640.
    2. Sorgeloos P, Dhert P, Candreva P. Use of the brine shrimp, Artemia spp., in marine fish larviculture [J]. Aquaculture, 2001, 200:147–159.
    3. Hamre K, Srivastava A, R?nnestad I, et al. Several micronutrients in the rotifer Brachionus sp. may not fulfil the nutritional requirements of marine fish larvae [J]. Aquaculture Nutrition, 2008, 14:51–60.
    4. Hamre K, Mollan T A, S?le ?, et al. Rotifers enriched with iodine and selenium increase survival in Atlantic cod (Gadus morhua) larvae [J]. Aquaculture, 2008, 284:190–195.
    5. Hamre K, Harboe T. Artemia enriched with high n-3 HUFA may give a large improvement in performance of Atlantic halibut (Hippoglossus hippoglossus L.) larvae [J]. Aquaculture, 2008, 277:239–243.
    6. Person-Le Ruyer J. Early weaning of marine fish larvae onto microdiets: constraints and perspectives [R]. Advances in Tropical Aquaculture, Tahiti, Feb.20–March4, 1989. Ifemer, Actes de Colloque Brest France, 1993, 9:625–642.
    7.闫冬春.白斑综合症病毒(WSSV)的PCR检测条件优化及浮游动物中间宿主的调查研究[D]. [博士学位论文].青岛:中国海洋大学, 2004.
    8. Drillet G, Frou?l S, Sichlau M H, et al. Status and recommendations on marine copepod cultivation for use as live feed [J]. Aquaculture, 2011, 315:155–166.
    9. Blaxter J H S. Pattern and variety in development. In Fish Physiology [M]. Hoar W S, Randall D J, Brett J R. (Eds) Academic Press. Vol. XIA, 1988, 1–58.
    10. Kj?rsvik E, Hoehne-Reitan K, Reitan K I. Egg and larval quality criteria as predictive measures for juvenile production in turbot (Scophthalmus maximus L.) [J]. Aquaculture, 2003, 227: 9–20.
    11.于海瑞.大黄鱼仔稚鱼消化生理、蛋白质和蛋氨酸需要量的研究[D]. [博士学位论文].青岛:中国海洋大学, 2006.
    12. Lazo J P. Development of the digestive system in red drum (Sciaenops ocellatus) larvae [D]. [博士学位论文].Austin: The University of Texas, 1999.
    13. Chen B N, Qin J G, Kumar M S, et al. Ontogenetic development of the digestive system in yellowtail kingfish Seriola lalandi larvae [J]. Aquaculture, 2006, 256:489–501.
    14. Gisbert E, Rodriguez A, Castelló-Orvay F, et al. A histological study of the development of the digestive tract of Siberian sturgeon Acipenser baeri during early ontogeny [J]. Aquaculture, 1998, 167:195–209.
    15. Dabrowski K. The feeding of fish larvae: present“state of the art”and perspectives [J]. Reproductiom Nutrition Development, 1984, 24:807–833.
    16. Falk-Petersen I B. Comparative organ differentiation during early life stages of marine fish [J]. Fish & Shellfish Immunology, 2005, 19:397–412.
    17. Yúfera M, Darias M J. The onset of exogenous feeding in marine fish larvae [J]. Aquaculture, 2007, 268:53–63.
    18. Alvarez-González C A, Moyano-López F J, Civera-Cerecedo R, et al. Development ofdigestive enzyme activity in larvae of spotted sand bass Paralabrax maculatofasciatus II: Electrophoretic analysis [J]. Fish Physiology and Biochemistry, 2010, 36:29–37.
    19. Kono N, Tsukamoto Y, Zenitani H. RNA:DNA ratio for diagnosis of the nutritional condition of Japanese anchovy Engraulis japonicus larvae during the first-feeding stage [J]. Fishery Science, 2003, 69:1096–1102.
    20. Lemos D, Garcia-Carre?o F L, Hernández P. Ontogenetic variation in digestive proteinase activity, RNA and DNA content of larval and postlarval white shrimp Litopenaeus schmitti [J]. Aquaculture, 2002, 214:363–380.
    21. Penglase S, Nordgreen A, Meeren T, et al. Increasing the level of selenium in rotifers (Brachionus plicatilis‘Cayman’) enhances the mRNA expression and activity of glutathione peroxidase in cod (Gadus morhua L.) larvae [J]. Aquaculture, 2010, 306:259–269.
    22. Kolkovski S. Digestive enzymes in fish larvae and juveniles-implications and applications to formulated diets [J]. Aquaculture, 2001, 200:181–201.
    23. Chen B N, Qin J G, Kumar M S, et al. Ontogenetic development of digestive enzymes in yellowtail kingfish Seriola lalandi larvae [J]. Aquaculture, 2006, 260:264–271.
    24.潘鲁青,王伟.日本对虾幼体几种消化酶活力的研究[J].海洋与湖沼, 1997, 2:15–18.
    25. Jones D A, Kumlu M, Le Vay L, et al. The digestive physiology of herbivorous, omnivorous and carnivorous crustacean larvae: a review [J]. Aquaculture, 1997, 155:285–295.
    26.潘鲁青,刘泓宇,肖国强.甲壳动物幼体消化酶研究进展[J].中国水产科学, 2006, 13(3):492–501.
    27. Chong A, Hashim R, Lee L, et al. Characterization of protease activity in developing discus Symphysodon aequifasciata larva [J]. Aquaculture Research, 2002, 33:663–672.
    28. Gisbert E, Giménez G, Fernández I, et al. Development of digestive enzymes in common dentex Dentex dentex during early ontogeny [J]. Aquaculture, 2009, 287:381–387.
    29. Kolkovski S, Tandler A, Kissil G W, et al. The effect of dietary exogenous digestive enzymes on ingestion, assimilation, growth and survival of gilthead seabream (Sparus aurata, Sparidae, Linnaeus) larvae [J]. Fish Physiology and Biochemistry, 1993, 12:203–209.
    30. Johnston D J, Ritar A J, Thomas C W. Digestive enzyme profiles reveal digestive capacity and potential energy sources in fed and starved spiny lobster (Jasus edwardsii) phyllosoma larvae [J]. Comparative Biochemistry and Physiology, 2004, 138B:137–144.
    31. Kuz’mina V V, Golovanova I L. Contribution of prey proteinases and carbohydrases in fish digestion [J]. Aquaculture, 2004, 234:347–360.
    32. Kolkovski S, Tandler A, Izquierdo M S. Effects of live food and dietary digestive enzymes on the efficiency of microdiets for seabass (Dicentrarchus labrax) larvae [J]. Aquaculture, 1997, 148:313–322.
    33. Zambonino Infante J L, Cahu C L. Dietary modulation of some digestive enzymes and metabolic processes in developing marine fish: Applications to diet formulation [J]. Aquaculture, 2007, 268:98–105.
    34. Kurokawa T, Shiraishi M, Suzuki T. Quantification of exogenous protease derived from zooplankton in the intestine of Japanese sardine (Sardinops melanotictus) larvae [J]. Aquaculture, 1998, 161:491–499.
    35. Cahu C L, Zambonino Infante J L, Péres A. Algal addition in sea bass (Dicentrarchus labrax) larvae rearing: effect on digestive enzymes [J]. Aquaculture, 1998, 161:479–489.
    36. Ma H, Cahu C, Zambonino J, et al. Activities of selected digestive enzymes during larval development of large yellow croaker (Pseudosciaena crocea) [J]. Aquaculture, 2005, 245:239–248.
    37. Wang C, Xie S, Zhu X, et al. Effects of age and dietary protein level on digestive enzyme activity and gene expression of Pelteobagrus fulvidraco larvae [J]. Aquaculture, 2006, 254:554–562.
    38. Murray H M, Gallant J W, Johnson S C, et al. Cloning and expression analysis of three digestive enzymes from Atlantic halibut (Hippoglossus hippoglossus) during early development: Predicting gastrointestinal functionality [J]. Aquaculture, 2006, 252:394–408.
    39. Douglas S E, Mandla S, Gallant J W. Molecular analysis of the amylase gene and its expression during development in the winter flounder, Pleuronectes americanus [J]. Aquaculture, 2000, 190:247–260.
    40. Kortner T M, Overrein I, ?ie G, et al. The in?uence of dietary constituents on the molecular ontogeny of digestive capability and effects on growth and appetite in Atlanticcod larvae (Gadus morhua) [J]. Aquaculture, 2011, 315:114–120.
    41. Gireesh R, Biju A, Muthiah P. Biochemical changes during larval development in the shortneck clam, Paphia malabarica Chemnitz [J]. Aquaculture Research, 2009, 40:1510–1515.
    42. Samaee S. Quantitative composition of egg protein, lipid, fatty acid, and free amino acid in common dentex (Dentex dentex L.) and their relations to viability and larval development [D]. [博士学位论文]. Salzburg:University of Salzburg, 2010.
    43. Arag?o C, Concei??o L E C, Dinis M T, et al. Amino acid pools of rotifers and Artemia under different conditions: nutritional implications for fish larvae [J]. Aquaculture, 2004, 234:429–445.
    44. Carvalho A P, Oliva-Teles A, Bergot P. A preliminary study on the molecular weight profile of soluble protein nitrogen in live food organisms for fish larvae [J]. Aquaculture, 2003, 225:445–449.
    45. Concei??o L E C, Arag?o C. Novel methodologies in marine fish larval nutrition [J]. Fish Physiology and Biochemistry, 2010, 36:1–16.
    46. Cahu C, Zambonino Infante J. Substitution of live food by formulated diets in marine fish larvae [J]. Aquaculture, 2001, 200:161–180.
    47.刘峰.大黄鱼和半滑舌鳎仔稚鱼人工微颗粒饲料蛋白源选择及其加工工艺相关研究[D]. [博士学位论文].青岛:中国海洋大学, 2007.
    48. Zambonino Infante J L, Cahu C L, Peres A. Partial substitution of di- and tripeptides for native proteins in Sea Bass diet improves Dicentrarchus labrax larval development [J]. The Journal of Nutrition, 1997, 127:608–614.
    49. Carvalho A P, Sa R, Oliva-Teles A, et al. Solubility and peptide profile affect the utilization of dietary protein by common carp (Cyprinus carpio) during early larval stages [J]. Aquaculture, 2004, 234:319–333.
    50. Kolkovski S, Tandler A. The use of squid protein hydrolysate as a protein source in microdiets for gilthead seabream Sparus aurata larvae [J]. Aquaculture Nutrition, 2000, 6:11-15.
    51. Cahu C L, Zambonino Infante J L, Quazuguel P, et al. Protein hydrolysate vs.fish meal in compound diets for 10-day old sea bass larvae Dicentrachus labrax larvae [J]. Aquaculture, 1999, 171:109–119.
    52. Arag?o C, Concei??o L E C, Martins D, et al. A balanced dietary amino acid profile improves amino acid retention in post-larval Senegalese sole (Solea senegalensis) [J]. Aquaculture, 2004, 233:293–304.
    53. Ohkubo N, Sawaguchi S, Nomura K, et al. Utilization of free amino acids, yolk protein and lipids in developing eggs and yolk-sac larvae of Japanese eel Anguilla japonica [J]. Aquaculture, 2008, 282:130–137.
    54. Applebaum S L, R?nnestad I. Absorption, assimilation and catabolism of individual free amino acids by larval Atlantic halibut (Hippoglossus hippoglossus) [J]. Aquaculture, 2004, 230:313–322.
    55.李爱杰.水产动物营养与饲料学[M].北京:中国农业出版社, 1996.
    56. Saavedra M, Pous?o-ferreira P, Yúfera M, et al. A balanced amino acid diet improves Diplodus sargus larval quality and reduces nitrogen excretion [J]. Aquaculture Nutrition, 2009, 15:517–524.
    57. Concei??o L E C, Grasdalen H, Dinis M T. A new method to estimate the relative bioavailability of individual amino acids in fish larvae using C-NMR spectroscopy [J]. Comparative Biochemistry and Physiology, 2003, 134B:103–109.
    58. Cara J B, Moyano F J, Zambonino J L, et al. The whole amino acid profile as indicator of the nutritional condition in cultured marine fish larvae [J]. Aquaculture Nutrition, 2007, 13:94–103.
    59. Bell J G, McEvoy L A, Estevez A, et al. Optimising lipid nutrition in first-feeding flatfish larvae [J]. Aquaculture, 2003, 227:211–220.
    60. Izquierdo M S, Socorro J, Arantzamendi L, et al. Recent advances in lipid nutrition in fish larvae [J]. Fish Physiology and Biochemistry, 2000, 22:97–107.
    61. Koven W, Anholt R V, Lutzky S, et al. The effect of dietary arachidonic acid on growth, survival, and cortisol levels in different-age gilthead seabream larvae (Sparus auratus) exposed to handling or daily salinity change [J]. Aquaculture, 2003, 228:307–320.
    62. Van Anholt R D, Koven W M, Lutzky S. Dietary supplementation with arachidonic acid alters the stress response of gilthead seabream (Sparus aurata) larvae [J]. Aquaculture, 2004, 238:369–383.
    63. Lund V, Steenfeldt S J, Hansen B W. Effect of dietary arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid on survival, growth and pigmentation in larvae ofcommon sole (Solea solea L.) [J]. Aquaculture, 2007, 273: 532–544.
    64. Navarro J C, James Henderson R, McEvoy L A, et al. Lipid conversions during enrichment of Artemia [J]. Aquaculture, 1999, 174:155–166.
    65. Tocher D R. Fatty acid requirements in ontogeny of marine and freshwater fish [J]. Aquaculture Research, 2010, 41:717–732.
    66.刘镜恪,陈晓琳,周利,等.真鲷仔稚鱼微粒饲料中DHA与EPA最佳比例的研究[J].海洋科学, 2004, 28(2):18–20.
    67. Cahu C L, Gisbert E, Villeneuve L A N, et al. In?uence of dietary phospholipids on early ontogenesis of fish [J]. Aquaculture Research, 2009, 40:989–999.
    68.卢素芳.磷脂在黄颡鱼仔稚鱼人工微粒饲料中应用及其作用机理的研究[D]. [博士学位论文].武汉:华中农业大学, 2008.
    69. Shiau S. Nutrient requirements of penaeid shrimps [J]. Aquaculture, 1998, 164:77–93.
    70. Paibulkichakul C, Piyatiratitivorakul S, Kittakoop P, et al. Optimal dietary levels of lecithin and cholesterol for black tiger prawn Penaeus monodon larvae and postlarvae [J]. Aquaculture, 1998, 167:273–281.
    71. Morais S, Cahu C, Zambonino-Infante J L, et al. Dietary TAG source and level affect performance and lipase expression in larval sea bass (Dicentrarchus labrax) [J]. Lipid, 2004, 39:449–458.
    72. Waagb? R. Water-soluble vitamins in fish ontogeny [J]. Aquaculture Research, 2011, 315:49–60.
    73. Hamre K, Kross?y C, Lock E, et al. Roles of lipid-soluble vitamins during ontogeny of marine fish larvae [J]. Aquaculture Research, 2010, 41:733–744.
    74. Darias M J, Mazurais D, Koumoundouros G, et al. Overview of vitamin D and C requirements in fish and their in?uence on the skeletal system [J]. Aquaculture, 2007, 264:408–417.
    75. Guerriero G, Ferro R, Russo G L, et al. Vitamin E in early stages of sea bass (Dicentrarchus labrax) development [J]. Comparative Biochemistry and Physiology, 2004, 138A:435–439.
    76. Giménez G, Kotzamanis Y, Hontoria F, et al. Modelling retinoid content in live prey: A tool for evaluating the nutritional requirements and development studies in fish larvae [J]. Aquaculture, 2007, 267:76–82.
    77. Haga Y, Du S, Satoh S, et al. Analysis of the mechanism of skeletal deformity in fish larvae using a vitamin A-induced bone deformity model [J]. Aquaculture, 2011, 315:26–33.
    78. Lall S. The minerals. In: Halver J and R Hardy (eds.). Fish Nutrition. 3rd Ed [M]. Amsterdam: Academic Press, 2002, 259–308.
    79. Barata E N, Hubert F, Concei??o L E C, et al. Prey odour enhances swimming activity and feed intake in the Senegalese sole [J]. Aquaculture, 2009, 293:100–107.
    80. Kolkovski S, Arieli A, Tandler A. Visual and chemical cues stimulate microdiet ingestion in sea bream larvae [J]. Aquaculture International, 1997, 5:527–536.
    81.陈四清,于东祥,马爱军,等.微颗粒饲料的研究与应用[J].饲料工业, 2001, 22(1):25–27.
    82. Langdon C. Microparticle types for delivering nutrients to marine fish larvae [J]. Aquaculture, 2003, 227:259–275.
    83.金泽昭夫,陈世杰.日本水产微粒饲料[J].福建水产, 1987, (2):81–85.
    84. Gallardo P P, Pedroza-Islas R, García-Galano T, et al. Replacement of live food with a microbound diet in feeding Litopenaeus setiferus (Burkenroad) larvae [J]. Aquaculture Research, 2002, 33:681–691.
    85. Partridge G J, Southgate P C. The effect of binder composition on ingestion and assimilation of microbound diets (MBD) by barramundi Lates calcarifer Bloch larvae [J]. Aquaculture Research, 1999, 30:879–886.
    86. Guthrie K M, Rust M B. Acceptability of various microparticulate diets to first-feeding walleye Stizostedion vitreum larvae [J]. Aquaculture Nutrition, 2000, 6:153–158.
    87. Gawlicka A, McLaughlin L, Hung S S O, et al. Limitations of carrageenan microbound diets for feeding white sturgeon, Acipenser transmontanus, larvae [J]. Aquaculture, 1996, 141:245–265.
    88. Kolkovski S, Tandler A. The use of squid protein hydrolysate as a protein source in microdiets for gilthead seabream Sparus aurata larvae [J]. Aquaculture Nutrition, 2000, 6:11–15.
    89. Hamre K, Naess T, Espe M, et al. A formulated diet for Atlantic halibut (Hippoglossus hippoglossus, L.) larvae [J]. Aquaculture Nutrition, 2001, 7:123–132.
    90. Holme M, Zeng C, Southgate P C. Use of microbound diets for larval culture of the mudcrab, Scylla serrata [J]. Aquaculture, 2006, 257:482–490.
    91. D'Abramo L R, Perez E I, Sangha R, et al. Successful culture of larvae of Litopenaeus vannamei fed a microbound formulated diet exclusively from either stage PZ2 or M1 to PL1 [J]. Aquaculture, 2006, 261:1356–1362.
    92. Kovalenko E E, D'Abramo L R, Ohs C L, et al. A successful microbound diet for the larval culture of freshwater prawn Macrobrachium rosenbergii [J]. Aquaculture, 2002, 210:385–395.
    93. Rosas C, Tut J, Baeza J, et al. Effect of type of binder on growth, digestibility, and energetic balance of Octopus maya [J]. Aquaculture, 2008, 275:291–297.
    94. Liu F, Ai Q, Mai K, et al. Effects of dietary binders on survival and growth performance of postlarval Tongue Sole, Cynoglossus semilaevis (Günther) [J]. Journal of the World Aquaculture Society, 2008, 39:500–509.
    95. Partridge G J, Southgate P C. The effect of binder composition on ingestion and assimilation of microbound diets (MBD) by barramundi Lates calcarifer Bloch larvae. Aquacultutre Research, 1999, 30:879–886.
    96. Huang H, Chen X D, Yuan W. Microencapsulation based on emulsification for producing pharmaceutical products: A literature review [J]. Developments in Chemical Engineering and Mineral Processing, 2006, 14:515–544.
    97. Nelson G. Application of microencapsulation in textiles [J]. International Journal of Pharmaceutics, 2002, 242:55–62.
    98. Gouin S. Microencapsulation: industrial appraisal of existing technologies and trends [J]. Trends in Food Science & Technology, 2004, 15:330–347.
    99. Grilli E, Messina M R, Tedeschi M, et al. Feeding a microencapsulated blend of organic acids and nature identical compounds to weaning pigs improved growth performance and intestinal metabolism [J]. Livestock Science, 2010, 133:173–175.
    100.过世东.水产饲料生产学[M].北京:中国农业出版社, 2004.
    101.Segovia-Quintero M A, Reigh R C. Coating crystalline methionine with tripalmitin-polyvinyl alcohol slows its absorption in the intestine of Nile tilapia, Oreochromis niloticus [J]. Aquaculture, 2004, 238:355–367.
    102.Walford J, Lim T M, Lam T J. Replacing live foods with microencapsulated diets in the rearing of seabass (Lates calcarifer) larvae: do the larvae ingest and digestprotein-membrane microcapsules? [J]. Aquaculture, 1991, 92:225–235.
    103.Fernández-Díaz C, Yúfera M. Capacity of gilthead seabream, Sparus aurata L., larvae to break down dietary microcapsules [J]. Aquaculture, 1995, 134:269–278.
    104.Yúfera M, Sarasquete M C, Fernández-Díaz C. Testing protein-walled microcapsules for the rearing of first-feeding gilthead sea bream (Sparus aurata L) larvae [J]. Marine Freshwater Research, 1996, 47, 211–216.
    105.Nordgreen A, Yúfera M, Hamre K. Evaluation of changes in nutrient composition during production of cross-linked protein microencapsulated diets for marine fish larvae and suspension feeders [J]. Aquaculture, 2008, 285:159–166.
    106.Monroigó, Navarro J C, Amat F, et al. Enrichment of Artemia nauplii in essential fatty acids with different types of liposomes and their use in the rearing of gilthead sea bream (Sparus aurata) larvae [J]. Aquaculture, 2006, 251:491–508.
    107.Monroigó, Navarro J C, Amat F, et al. Enrichment of Artemia nauplii in vitamin A, vitamin C and methionine using liposomes [J]. Aquaculture, 2007, 269:504–513.
    108.?nal U, Langdon C. Characterization of lipid spray beads for delivery of glycine and tyrosine to early marine fish larvae [J]. Aquaculture, 2004, 233:495–511.
    109.Langdon C, Nordgreen A, Hawkyard M, et al. Evaluation of wax spray beads for delivery of low-molecular weight, water-soluble nutrients and antibiotics to Artemia [J]. Aquaculture, 2008, 284:151–158.
    110.Langdon C J, Buchal M A. Comparison of lipid-walled microcapsules and lipid spray beads for the delivery of water-soluble, low-molecular-weight materials to aquatic animals [J]. Aquaculture Nutrition, 1998, 4:275–284.
    111.?nal U, Langdon C. Characterization of lipid spray beads for delivery of glycine and tyrosine to early marine fish larvae [J].Aquaculture, 2004, 233:495–511.
    112.Cha S, Lee J, Song C, et al. Effects of chitosan-coated diet on improving water quality and innate immunity in the olive flounder, Paralichthys olivaceus [J]. Aquaculture, 2008, 278:110–118.
    113.Anas A, Philip R, Singh I S B. Chitosan as a wall material for a microencapsulated delivery system for Macrobrachium rosenbergii (de Man) larvae [J]. Aquaculture research, 2008, 39:885–890.
    114.?nal U, Langdon C. Development and characterization of complex particles for deliveryof amino acids to early marine fish larvae [J]. Marine Biology, 2005, 146:1031–1038.
    115.Langdon C, Clack B, ?nal U. Complex microparticles for delivery of low-molecular weight, water-soluble nutrients and pharmaceuticals to marine fish larvae [J]. Aquaculture, 2007, 268:143–148.
    116.Barros H P, Valenti W C. Food intake of Macrobrachium rosenbergii during larval development [J]. Aquaculture, 2003, 216:165–176.
    117.López-Alvarado J, Langdon C J, Teshima S, et al. Effects of coating and encapsulation of crystalline amino acids on leaching in larval feeds [J]. Aquaculture, 1994, 122:335–346.
    118.Kv?le A, Yúfera M, Nyg?rd E, et al. Leaching properties of three different micropaticulate diets and preference of the diets in cod (Gadus morhua L.) larvae [J]. Aquaculture, 2006, 251:402–415.
    119.Teshima S, Ishikawa M, Koshio S. Nutritional assessment and feed intake of microparticulate diets in crustaceans and fish [J]. Aquaculture Research, 2000, 31:691–702.
    120.Concei??o L E C, Morais S, R?nnestad I. Tracers in fish larvae nutrition: A review of methods and applications [J]. Aquaculture, 2007, 267:62–75.
    121.Tonheim S K, Nordgreen A, H?g?y I, et al. In vitro digestibility of water-soluble and water-insoluble protein fractions of some common fish larval feeds and feed ingredients [J]. Aquaculture, 2007, 262:426–435.
    122.Cara B, Moyano F J, Gander B, et al. Development of a novel casein-protamine based microparticles for early feeding of fish larvae: In vitro evaluation [J]. Journal of Microencapsulation, 2007, 24(6):505–514.
    123.Smith D M, Tabrett S J. Accurate measurement of in vivo digestibility of shrimp feeds [J]. Aquaculture, 2004, 232:563–580.
    124.R?nnestad I, Rojas-García C R, Tonheim S K, et al. In vivo studies of digestion and nutrient assimilation in marine fish larvae [J]. Aquaculture, 2001, 201:161–175.
    125.Morais S, Concei??o L E C, Dinis M T, et al. A method for radiolabeling Artemia with applications in studies of food intake, digestibility, protein and amino acid metabolism in larval fish [J]. Aquaculture, 2004, 231:469–487.
    126.Gamboa-Delgado J, Ca?avate J P, Zerolo R, et al. Natural carbon stable isotope ratios as indicators of the relative contribution of live and inert diets to growth in larval Senegalesesole (Solea senegalensis) [J]. Aquaculture, 2008, 280:190–197.
    127.Le Vay L, Gamboa-Delgado J. Naturally-occurring stable isotopes as direct measures of larval feeding efficiency, nutrient incorporation and turnover [J]. Aquaculture, 2011, 315:95–103.
    128.Hovde S C, Vidal M C, Opstad I, et al. Design and synthesis of 14C-labelled proteins as tools for protein digestion studies in fish larvae [J]. Aquaculture Nutrition, 2005, 11:395–401.
    129.Jomori R K, Ducatti C, Carneiro D J, et al. Stable carbon ( 13C) and nitrogen ( 15N) isotopes as natural indicators of live and dry food in Piaractus mesopotamicus (Holmberg, 1887) larval tissue [J]. Aquaculture Research, 2008, 39:370–381.
    130.?nal U, Langdon C. Characterization of two microparticle types for delivery of food to altricial fish larvae [J]. Aquaculture Nutrition, 2000, 6:159–170.
    131.Meyer E. Molecular biological analyses of nutrient transporters and growth physiology in marine invertebrate larvae [D]. [博士学位论文]. California: University of Southern California, 2006.
    132.Soto-Rodriguez S A, Sim?es N, Jones D A, et al. Assessment of fluorescent-labeled bacteria for evaluation of in vivo uptake of bacteria (Vibrio spp.) by crustacean larvae [J]. Journal of Microbiological Methods, 2003, 52:101–114.
    133.R?nnestad I, Kamisaka Y, Concei??o L E C, et al. Digestive physiology of marine fish larvae: Hormonal control and processing capacity for proteins, peptides and amino acids [J]. Aquaculture, 2007, 268:82–97.
    134.MacKinlay D. Physiology of fish eggs and larvae [C]. Manaus Brazil: International Congress on the Biology of Fish, 2004, 83–88.
    135.宋盛宪,翁雄.日本对虾健康养殖(水产养殖实用技术丛书) [M].北京:海洋出版社, 2004.
    136.Marín-Magán V, Ca?avate J P. Fluorometric determination of selectivity between live and inert food by Penaeus japonicus larvae [J]. Aquaculture, 1995, 134:307–311.
    137.Kontara E K M, Coutteau P, Sorgeloos P. Effect of dietary phospholipid on requirements for and incorporation of n-3 highly unsaturated fatty acids in postlarval Penaeus japonicus Bate [J]. Aquaculture, 1997, 158:305–320.
    138.Camara M R, Coutteau P, Sorgeloos P. Dietary phosphatidylcholine requirements in larvaland postlarval Penaeus japonicus Bate [J]. Aquaculture Nutrition, 1998, 160:103–116.
    139.Moe Y Y, Koshio S, Teshima S. Effect of vitamin C derivatives on the performance of larval kuruma shrimp, Marsupenaeus japonicus [J]. Aquaculture, 2004, 242:501–512.
    140.Moe Y Y, Koshio S, Ishikawa M, et al. Vitamin C requirement of kuruma shrimp postlarvae, Marsupenaeus japonicus (Bate), using L-ascorbyl-2-monophosphate-Na/Ca [J]. Aquaculture Research, 2005, 36:739–745.
    141.Lemos D, Rodríguez A. Nutritional effects on body composition, energy content and trypsin activity of Penaeus japonicus during early postlarval development [J]. Aquaculture, 1998, 160:103–116.
    142.农业部.全国出口水产品优势养殖区域发展规划(2008-2015年) [M].北京:中国农业出版社, 2007.
    143.王武.鱼类增养殖学[M].北京:中国农业出版社, 2000.
    144.Wang Q, Zhuang Z, Deng J, et al. Stock enhancement and translocation of the shrimp Penaeus chinensis in China [J]. Fisheries Research, 2006, 80:67–79.
    145.Hong W, Zhang Q. Review of captive bred species and fry production of marine fish in China [J]. Aquaculture, 2003, 227:305–318.
    146.Hamasaki K, Kitada S. A review of kuruma prawn Penaeus japonicus stock enhancement in Japan [J]. Fisheries Research, 2006, 80:80–90.
    147.Cahu C, Zambonino Infante J, Takeuchi T. Nutritional components affecting skeletal development in fish larvae [J]. Aquaculture, 2003, 227:245–258.
    148.Fernández I, Pimentel M S, Ortiz-Delgado J B, et al. Effect of dietary vitamin A on Senegalese sole (Solea senegalensis) skeletogenesis and larval quality [J]. Aquaculture, 2009, 295:250–265.
    149.Cavalli R O, Batista F M M, Lavens P, et al. Effect of dietary supplementation of vitamins C and E on maternal performance and larval quality of the prawn Macrobrachium rosenbergii [J]. Aquaculture, 2003, 227:131–146.
    150.Ring? E, Myklebust R, Mayhew T M. Bacterial translocation and pathogenesis in the digestive tract of larvae and fry [J]. Aquaculture, 2007, 268:251–264.
    151.Cock J, Gitterle T, Salazar M, et al. Breeding for disease resistance of Penaeid shrimps [J]. Aquaculture, 2009, 286:1–11.
    152.Olafsen J A. Interactions between fish larvae and bacteria in marine aquaculture [J].Aquaculture, 2001, 200:223–247.
    153.Bricknell I, Dalmo R A. The use of immuno stimulants in fish larval aquaculture [J]. Fish & Shellfish Immunology, 2005, 19:457–472.
    154.Fernández-Díaz C, Yúfera M, Pascual V. Microencapsulated food for fish larvae and prodution method thereof [P]. European patent, WO 200400285.
    155.Holme M, Zeng C, Southgate P C. A review of recent progress toward development of a formulated microbound diet for mud crab, Scylla serrata, larvae and their nutritional requirements [J]. Aquaculture, 2009, 286:164–175.
    156.Koven W, Kolkovski S, Hadas E, et al. Advances in the development of microdiets for gilthead seabream, Sparus aurata: a review [J]. Aquaculture, 2001, 194:107–121.
    157.Hamlin H J, Kling L J. The culture and early weaning of larval haddock (Melanogrammus aeglefinus) using a microparticulate diet [J]. Aquaculture, 2001, 201:61–72.
    158.Jennifer M H. Dietary studies for larviculture of Atlantic Cod (Gadus morhua) [D]. [博士学位论文]. Halifax: Dalhousie University, 2007.
    159.Battaglene S C, Cobcroft J M. Advances in the culture of striped trumpeter larvae: A review [J]. Aquaculture, 2007, 268:195–208.
    160.Iglesias J, Sánchez F J, Bersano J G F, et al. Rearing of Octopus vulgaris paralarvae: Present status, bottlenecks and trends [J]. Aquaculture, 2007, 266:1–15.
    161.Takeuchi T. A review of feed development for early life stages of marine finfish in Japan [J]. Aquaculture, 2001, 200:203–222.
    162.Williams K C. A review of feeding practices and nutritional requirements of postlarval groupers [J]. Aquaculture, 2009, 292:141–152.
    163.麦康森,赵锡光,谭北平,等.我国水产动物营养研究与渔用饲料的发展战略研究[J].浙江海洋学院学报(自然科学版), 2001, 20(增刊):1–5.
    164.于海瑞.大黄鱼仔、稚鱼营养生理及其开口饲料的开发研究[D]. [硕士学位论文].青岛:中国海洋大学, 2003.
    165.常青.半滑舌鳎仔稚鱼营养生理与开口饲料的开发研究[D]. [博士学位论文].青岛:中国海洋大学, 2006.
    166.邹记兴,常林,向文洲,等.点带石斑鱼的亲鱼培育、产卵受精和胚胎发育[J].水生生物学报, 2003, 27(4):378–383.
    167.陈浩如,孙丽华,王肇鼎,等.军曹鱼(Rachycentron canadum)早期发育阶段的摄食及其影响因子[J].生态科学, 2004, 23(4):299–304.
    168.徐万士,竺俊全.花尾胡椒鲷人工育苗技术[J].水产养殖, 2003, 24(1):25–26.
    1.吴克刚,柴向华.食品微胶囊技术[M].北京:中国轻工业出版社, 2006.
    2. Gharsallaoui A, Roudaut G, Chambin O, et al. Applications of spray-drying in microencapsulation of food ingredients: An overview [J]. Food Research International, 2007, 40:1107–1121.
    3. Dewettinck K, Huyghebaert A. Fluidized bed coating in food technology [J]. Trends in Food Science & Technology, 1999, 10:163–168.
    4. Yuliani S, Torley P J, D’Arcy B, et al. Extrusion of mixtures of starch and d-limonene encapsulated withβ-cyclodextrin: Flavour retention and physical properties [J]. Food Research International, 2006, 39:318–331.
    5. Gibbs B F, Kermasha S, Alli I, et al. Encapsulation in the food industry: a review [J]. International Journal of Food Sciences and Nutrition, 1999, 50:213–224.
    6.刘永霞,于才渊.微胶囊技术的应用及其发展[J].中国粉体技术, 2003, 9(3):36–40.
    7.许时婴,张晓鸣,夏书芹,等.微胶囊技术-原理与应用[M].北京:化学工业出版社, 2006.
    8. Jones D A, Holland D L, Jabborie S. Current status of microencapsulated diets for aquaculture [J]. Applied Biochenistry and Biotechnology, 1984, 10:275–288.
    9. Yúfera M, Kolkovski S, Fernández-Díaz C, et al. Delivering bioactive compounds to fish larvae using microencapsulated diets [J]. Aquaculture, 2003, 227:277–291.
    10.王加启,于建国.饲料分析与检验[M].北京:中国计量出版社, 2004.
    11.过世东.水产饲料生产学[M].北京:中国农业出版社, 2004.
    12.谷文英,过世东.配合饲料工艺学[M].北京:中国轻工业出版社, 1999.
    13.裴成江,杨正德.饲料粉碎粒度研究[J].饲料博览, 2009, (6):16–18.
    14.刘峰.大黄鱼和半滑舌鳎仔稚鱼人工微颗粒饲料蛋白源选择及其加工工艺相关研究[D]. [博士学位论文].青岛:中国海洋大学, 2007.
    15.过世东.水产饲料粒度控制要求与粒度控制技术[J].新工艺, 2006, 1:32–37.
    16.全国饲料工业标准技术委员会. GB-T 5918-2008饲料产品混合均匀度的测定[S].北京:中国标准出版社, 2008.
    17. Vehring R, Foss W R, Lechuga-Ballesteros D. Particle formation in spray drying [J]. Aerosol Science, 2007, 38:728–746.
    18. Jafari S M, Assadpoor E, Bhandari B, et al. Nano-particle encapsulation of fish oil by spray drying [J]. Food Research International, 2008, 41:172–183.
    19.黄志强,李保国,罗富源,等.喷雾干燥法制备微胶囊化水产开口料[J].中国饲料, 2007, (20):34–36.
    20.苗玉涛,王安利.喷雾干燥生产鱼虾微胶囊饲料研究[J].广东饲料, 2006, 15(5):17–18.
    21. Pedroza-Islas R, Vernon-Carter E J, Durán-Domínguez C, et al. Using biopolymer blends for shrimp feedstuff microencapsulation–I. Microcapsule particle size, morphology and microstructure [J]. Food Research International, 1999, 32(5):367–374.
    22. Pedroza-Islas R, Alvarez-Ramírez J, Vernon-Carter E J. Using biopolymer blends for shrimp feedstuff microencapsulation–II: dissolution and floatability kinetics as selectioncriteria [J]. Food Research International, 2000, 33(2):119–124.
    23. Fuchs M, Turchiuli C, Bohin M, et al. Encapsulation of oil in powder using spray drying and ?uidised bed agglomeration [J]. Journal of Food Engineering, 2006, 75:27–35.
    24. Anwar S H, Weissbrodt J, Kunz B. Microencapsulation of fish oil by spray granulation and fluid bed film coating [J]. Journal of Food Science, 2010, 75:359–371.
    25.过世东.饲料加工工艺学[M].北京:中国农业出版社, 2010.
    26.罗莉,林仕梅,叶元土,等.水产饲料常用粘合剂粘合性能测定[J].饲料工业, 1998, 19(9):18–19.
    27. Sollohub K, Cal K. Spray drying technique:Ⅱ. current applications in pharmaceutical technology [J]. Journal of Pharmaceutical Sciences, 2010, 99(2):587–597.
    28.徐学明.饲料热敏性组分在加工中的损失及其后添加技术[J].中国饲料, 2002, (6):20–22.
    29. Semyonov D, Ramon O, Kaplun Z, et al. Microencapsulation of Lactobacillus paracasei by spray freeze drying [J]. Food Research International, 2010, 43:193–202.
    30. Nordgreen A, Tonheim S, Hamre K. Protein quality of larval feed with increased concentration of hydrolysed protein: effects of heat treatment and leaching [J]. Aquaculture Nutrition, 2009, 15:525–536.
    31.董志俭.复合凝聚薄荷油微胶囊的研究[D]. [博士学位论文].无锡:江南大学, 2008.
    32. Dong Z J, TouréA, Jia C S, et al. Effect of processing parameters on the formation of spherical multinuclear microcapsules encapsulating peppermint oil by coacervation [J]. Journal of Microencapsulation, 2007, 24(7):634–646.
    33.王承南,钟海雁,谢碧霞.油茶籽油微胶囊凝聚法工艺技术的研究[J].中南林学院学报, 2008, 21(4):28–31.
    34.谢艳丽,蒋敏,陈鸿雁.复凝聚法制备明胶/阿拉伯胶含油微胶囊工艺过程的研究[J].化学世界, 2006, (1):33–37.
    35. Knauer J, Southgate P C. Assimilation of gelatin-acacia microencapsulated lipid by Pacific oyster (crassostrea gigas) spat [J]. Aquaculture, 1997, 153:291–300.
    36. Yúfera M, Pascual E, Fernández-Díaz C, et al. A highly efficient microencapsulated food for rearing early larvae of marine fish [J]. Aquaculture, 1999, 177:249–256.
    37. Liu X D, Yu W Y, Zhang Y, et al. Characterization of structure and diffusion behaviour of Ca-alginate beads prepared with external or internal calcium sources [J]. Journal ofMicroencapsulation, 2002, 19:775–782.
    38.张杰.蛋白类药物海藻酸盐微胶囊的制备及体外释放行为的研究[D]. [博士学位论文].大连:大连理工大学, 2007.
    39.闫征,过世东.蛋氨酸微胶囊的制备及其释放效果的研究[J].粮食与饲料工业, 2006, (1):36–37.
    40. Wu Z, Zhao Y, Kaleem I, et al. Preparation of calciume-alginate microcapsuled microbial fertilizer coating Klebsiella oxytoca Rs-5 and its performance under salinity stress [J]. European Journal of Soil Biology, 2011, 471:52–159.
    41. Watano S, Nakamura H, Hamada K, et al. Fine particle coating by a novel rotating fluidized bed coater [J]. Powder Technology, 2004, 141:172–176.
    42.李军国,梁玮,牛力斌,等.挤出滚圆法制备水产动物微颗粒饲料工艺分析[J].饲料与畜牧, 2010, (5):14–17.
    43.祝爱侠.过瘤胃脂肪的制备及对山羊生长性能的影响[D]. [硕士学位论文].武汉:武汉工业学院, 2007.
    44. Daud W R W. Fluidized bed dryers–recent advances [J]. Advanced Powder Technology, 2008, 19:403–418.
    45.支冰芳,郭林群,孔茵.挤出-滚圆和流化床包衣法制备硫普罗宁肠溶微丸的研究[J].医药导报, 2006, 25(9):942–944.
    46. Sousa J J, Sousa A, Podczeck F, et al. Factors influencing the physical characteristics of pellets obtained by extrusion-spheronization [J]. International Journal of Pharmaceutics, 2002, 232:91–106.
    47. Rajniak P, Mancinelli C, Chern R T, et al. Experimental study of wet granulation in ?uidized bed: Impact of the binder properties on the granule morphology [J]. International Journal of Pharmaceutics, 2007, 334:92–102.
    48. Andrew J E, Holm J, Huntingford F A. The effect of pellet texture on the feeding behaviour of gilthead sea bream (Sparus aurata L.) [J]. Aquaculture, 2004, 232:471–479.
    49. Cox S L, Bruce M P, Ritar A J. Ingestion of artificial diets with different textures as determined by the inert marker ytterbium oxide during culture of early-stage phyllosoma of the spiny lobster, Jasus edwardsii [J]. Aquaculture Nutrition, 2011, 17:152–158.
    50. Fernández-Díaz C, Yúfera M. Capacity of gilthead seabream, Sparus aurata L., larvae to break down dietary microcapsules [J]. Aquaculture, 1995, 134:269–278.
    1. KuShaari K, Pandey P, Song Y, et al. Monte Carlo simulations to determine coating uniformity in a Wurster fluidized bed coating process [J]. Power Technology, 2006, 166:81–90.
    2. Pauli-Bruns A, Knop K, Lippold B C. Preparation of sustained release matrix pellets by melt agglomeration in the fluidized bed: Influence of formulation variables and modeling of agglomerate growth [J]. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 74:503–512.
    3. Bruschi M L, Cardoso M L C, Lucchesi M B, et al. Gelatin microparticles containing propolis obtained by spray-drying technique: preparation and characterization [J]. International Journal of Pharmaceutics, 2003, 264:45–55.
    4. Xing F, Cheng G, Yang B, et al. Microencapsulation of capsaicin by the complex coacervation of gelatin, acacia and tannins [J]. Journal of Applied Polymer Science, 2004, 91:2669–2675.
    5. Kolkovski S, Tandler A. The use of squid protein hydrolysate as a protein source in microdiets for gilthead seabream Sparus aurata larvae [J]. Aquaculture Nutrition, 2000, 6:11–15.
    6.冷延国.明胶微胶囊化技术研究[D]. [博士学位论文].北京:北京化工大学, 1999.
    7. Katikaneni P R, Upadrashta S M, Neau S H, et al. Ethylcellulose matrix controlled release tablets of a water-soluble drug [J]. International Journal of Pharmaceutics, 1995, 123:19–125.
    8.于小云.空气悬浮包衣法制备缓释微丸[D]. [硕士学位论文].沈阳:沈阳药科大学, 2001.
    9. AOAC. Official methods of analysis of the Association of Official Analytical Chemists (18th ed) [M]. Arlington, VA, USA. 2006.
    10.王加启,于建国.饲料分析与检验[M].北京:中国计量出版社, 2004.
    11. Dewettinck K, Messens W, Deroo L, et al. Agglomeration tendency during top-spray fluidized bed coating with gelatin and starch hydrolysate [J]. Food Science and Technology, 1998, 31:576–584.
    12. Werner S R L, Jones J R, Paterson A R H, et al. Air-suspension particle coating in thefood industry: Part I–state of the art [J]. Powder Technology, 2007, 171:25–33.
    13. Werner S R L, Jones J R, Paterson A R H, et al. Air-suspension particle coating in the food industry: PartⅡ–micro-level process approach [J]. Powder Technology, 2007, 171:34–45.
    14. Yúfera M, Pascual E, Fernández-Díaz C, et al. A highly efficient microencapsulated food for rearing early larvae of marine fish [J]. Aquaculture, 1999, 177:249–256.
    15. Hede P D, Bach P, Jensen A D. Two-fluid spray atomization and pneumatic nozzles for fluid bed coating/agglomeration purposes: A review [J]. Chemical Engineering Science, 2008, 63:3821–3842.
    16. Barletta M, Tagliaferri V. Influence of process parameters in electrostatic fluidized bed coating [J]. Surface and Coatings Technology, 2006, 200:4619–4629.
    17.蒋斌,柴本银,窦刚,等.流化床喷雾造粒颗粒包覆过程的因素研究[J].干燥技术与设备, 2008, 6(4):199–202.
    18. R?nnestad I, Tonheim S K, Fyhn H J, et al. The supply of amino acids during early feeding stages of marine fish larvae: a review of recent findings [J]. Aquaculture, 2003, 227:147–164.
    19. Kolkovski S, Czesny S, Yackey C, et al. The effect of vitamins C and E in (n-3) highly unsaturated fatty acids-enriched Artemia nauplii on growth, survival, and stress resistance of fresh water walleye Stizostedion vitreum larvae [J]. Aquaculture Nutrition, 2000, 6:199–206.
    20.曹康,金征宇.现代饲料加工技术[M].上海:上海科学技术文献出版社, 2003.
    21. Anderson J S, Sunderland R. Effect of extruder moisture and dryer processing temperature on vitamin C and E and astaxanthin stability [J]. Aquaculture, 2002, 207:137–149.
    22. Soliman A K, Jauncey K, Roberts R J. Stability of L-ascorbic acid (Vitamin C) as its forms in fish feeds during processing, storage, and leaching [J]. Aquaculture, 1987, 60:73–83.
    23. Yúfera M, Fernández-Díaz C, Pascual E. Food microparticles for larval fish prepared by internal gelation [J]. Aquaculture, 2005, 248:253–262.
    24. Yúfera M, Kolkovski S, Fernández-Díaz C, et al. Delivering bioactive compounds to fish larvae using microencapsulated diets [J]. Aquaculture, 2003, 227:277–291.
    25. Petkam P, Moodie G E E. Food particle size, feeding frequency, and the use of prepared food to culture larval walking catfish (Clarias macrocephalus) [J]. Aquaculture, 2001, 194: 349–362.
    26. Genodepa J, Southgate P C, Zeng C. Diet particle size preference and optimal ration for mud crab, Scylla serrata, larvae fed microbound diets [J]. Aquaculture, 2004, 230:493–505.
    27. Cunha I, Planas M. Optimal prey size for early turbot larvae (Scophthalmus maximus L.) based on mouth and ingested prey size [J]. Aquaculture, 1999, 175:103–110.
    28. Gelabert R, Pacheco A. Selectivity of particle size by the shrimp Litopenaeus vannamei (Boone, 1931) larvae [J]. Aquaculture Nutrition, 2011, 17:244–247.
    29. ?nal U, Langdon C. Lipid spray beads for delivery of riboflavin to first-feeding fish larvae [J]. Aquaculture, 2004, 233:477–493.
    30. Kolkovski S. Digestive enzymes in fish larvae and juveniles—implications and applications to formulated diets [J]. Aquaculture, 2001, 200:181–201.
    31.刘云凤,邵斌,王义永,等.食品和饲料添加剂工业中微胶囊产品的特性研究[J].中国食品添加剂,2004, 6(3):36–39.
    32. Langdon C. Microparticle types for delivering nutrients to marine fish larvae [J]. Aquaculture, 2003, 227:259–275.
    33. Papandroulakis N, Dimitris P, Pascal D. An automated feeding system for intensive hatcheries [J]. Aquaculture Engineering, 2002, 26:13–26.
    34. Alver M O, Tenn?y T, Alfredsen J A, et al. Automatic control of rotifer density in larval first feeding tanks [J]. Control Engineering Practice, 2008, 16:347–355.
    35. Hoehne-Reitan K, Kj?rsvik E, Reitan K I. Development of the pH in the intestinal tract of larval turbot [J]. Marine Biology, 2001, 139:1159–1164.
    36. Yúfera M, Fernández-Díaz C, Vidaurreta A, et al. Gastrointestinal pH and development of the acid digestion in larvae and early juveniles of Sparus aurata (Pisces: Teleostei) [J]. Marine biology, 2004, 144:863–869.
    37. Fyhn H J, Serigstad B. Free amino acids as energy substrate in developing eggs and larvae of the cod Gadus morhua [J]. Marine Biology, 1987, 296:335–341.
    38.薛敏,解绶启,崔奕波,等.鱼类促摄食物质研究进展[J].水生生物学报, 2003, 27(6):639–643.
    39. Yúfera M, Kolkovski S, Fernández-Díaz C, et al. Free amino acid leaching from a protein-walled microencapsulated diet for fish larvae [J]. Aquaculture, 2002, 214:273–287.
    40.梁玮,李军国,董颖超,等.不同工艺制备的水产开口饵料溶失规律试验研究[J].饲料工业, 2011, 32(5):34–39.
    41.罗莉,林仕梅,叶元土,等.水产饲料常用粘合剂粘合性能测定[J].饲料工业, 1998, 19(9):18–19.
    42.刘兴海,刘伟.鱼虾饵料的粘合机理及影响饵料在水中稳定性的因素[J].饲料工业, 2001, 12(2):24–26.
    43. Kv?le A, Yúfera M, Nyg?rd E, et al. Leaching properties of three different micropaticulate diets and preference of the diets in cod (Gadus morhua L.) larvae [J]. Aquaculture, 2006, 251:402–415.
    44. Cole E T, Scott R A, Connor A L, et al. Enteric coated HPMC capsules designed to achieve intestinal targeting [J]. International Journal of Pharmaceutics, 2002, 231:83–85.
    45. Clear N J, Milton A, Humphrey M, et al. Evaluation of the Intelisite capsule to deliver theophylline and frusemide tablets to the small intestine and colon [J]. European Journal of Pharmaceutical Sciences, 2001, 13:375–384.
    46. Chopra R, Alderborn G, Podczeck F, et al. The in?uence of pellet shape and surface properties on the drug release from uncoated and coated pellets [J]. International Journal of Pharmaceutics, 2002, 239:171–178.
    47. Pedroza-Islas R, Alvarez-Ramírez J, Vernon-Carter E J. Using biopolymer blends for shrimp feedstuff microencapsulation–II: dissolution and floatability kinetics as selection criteria [J]. Food Research International, 2000, 33:119–124.
    1. Cahu C, Zambonino Infante J. Substitution of live food by formulated diets in marine fishlarvae [J]. Aquaculture, 2001, 200:161–180.
    2. Lazo J P, Mendoza R, Holt G J, et al. Characterization of digestive enzymes during larval development of red drum (Sciaenops ocellatus) [J]. Aquaculture, 2007, 265:194–205.
    3. R?nnestad I, Kamisaka Y, Concei??o L E C, et al. Digestive physiology of marine fish larvae: Hormonal control and processing capacity for proteins, peptides and amino acids [J]. Aquaculture, 2007, 268:82–97.
    4. Gisbert E, Giménez G, Fernández I, et al. Development of digestive enzymes in common dentex Dentex dentex during early ontogeny [J]. Aquaculture, 2009, 287:381–387.
    5. Kolkovski S, Tandler A, Izquierdo M S. Effects of live food and dietary digestive enzymes on the efficiency of microdiets for seabass (Dicentrarchus labrax) larvae [J]. Aquaculture, 1997, 148:313–322.
    6. Kurokawa T, Shiraishi M, Suzuki T. Quantification of exogenous protease derived from zooplankton in the intestine of Japanese sardine (Sardinops melanotictus) larvae [J]. Aquaculture, 1998, 161:491–499.
    7. Chen B N, Qin J G, Kumar M S, et al. Ontogenetic development of the digestive system in yellowtail kingfish Seriola lalandi larvae [J]. Aquaculture, 2006, 256:489–501.
    8. Govoni J J, Boehlert G W, Watanabe Y. The physiology of digestion in fish larvae [J]. Environmental Biology of Fishes, 1986, 16:59–77.
    9. Zambonino Infante J L, Cahu C L. Ontogeny of the gastrointestinal tract of marine fish larvae [J]. Comparative Biochemistry and Physiology, 2001, 130C:477–487.
    10.张志峰,马爱军,于利,等.中国对虾幼体中肠的超微结构[J].海洋与湖沼, 1999, 30(2):145–149.
    11.王吉桥.南美白对虾生物学研究与养殖[M].北京:海洋出版社, 2003.
    12. Sonaje K, Chen Y, Chen H, et al. Enteric-coated capsules filled with freeze-dried chitosan/poly(g-glutamic acid) nanoparticles for oral insulin delivery [J]. Biomaterials, 2010, 31:3384–3394.
    13. Pauli-Bruns A, Knop K, Lippold B C. Preparation of sustained release matrix pellets by melt agglomeration in the fluidized bed: Influence of formulation variables and modeling of agglomerate growth [J]. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 74:503–512.
    14. Madene A, Jacquot M, Scher J, et al. Flavour encapsulation and controlled release– areview [J]. International Journal of Food Science and Technology, 2006, 41:1–21.
    15. Wu L, Liu M. Preparation and characterization of cellulose acetate-coated compound fertilizer with controlled-release and water-retention [J]. Polymers for advanced technologies, 2008, 19:785–792.
    16.梁蕊.吸水保水缓释肥料的制备及其性能研究[D]. [博士学位论文].兰州:兰州大学, 2007.
    17.宋健,陈磊,李效军.微胶囊化技术及应用[M].北京:化学工业出版社, 2001.
    18. Niu H, Chang J, Guo S, et al. Effects of spray-dried blood cell meal with microencapsulated methionine substituting fish meal on the growth, nutrient digestibility and amino acid retention of Litopenaeus vannamei [J]. Aquaculture Research, 2011, 42:480–489.
    19. Anal A K, Singh H. Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery [J]. Trends in food science & Technology, 2007, 18:241–251.
    20.王军霞,王维娜,王亚斌,等.日本对虾的营养需求[J].海洋通报, 2003, 22(5):78–85.
    21. Hamasaki K, Kitada S. A review of kuruma prawn Penaeus japonicus stock enhancement in Japan [J]. Fisheries Research, 2006, 80:80–90.
    22. Brock J A, Bullis R. Disease prevention and control for gametes and embryos of fish and marine shrimp [J]. Aquaculture, 2001, 197:137–159.
    23. Pan L Q, Xiao G Q, Zhang H X, et al. Effects of different dietary protein content on growth and protease activity of Eriocheir sinensis larvae [J]. Aquaculture, 2005, 246:313–319.
    24. Uys W, Hecht T. Assays on the digestive enzymes of sharptooth catfish, Clarias gariepinus (Pisces: Clariidae) [J]. Aquaculture, 1987, 63:301–313.
    25. Bessey O A, Lowry O H, Brock M J. A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum [J]. The Journal of Biological Chemistry, 1946, 164:321-329.
    26. Bradford M M. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein dye binding [J]. Analytical Biochemistry, 1976, 72:248–254.
    27. Kelly S P, Larsen S D, Collins P M, et al. Quantitation of inert feed ingestion in larval silver sea bream (Sparus sarba) using auto-?uorescence of alginate-based microparticulate diets [J]. Fish Physiology and Biochemistry, 2000, 22:109–117.
    28. Tesser M B, Portella M C. Degradation analysis of microencapsulated diet in pacu (Piaractus mesopotamicus Holmberg, 1887) larvae intestine through scanning electron microscopy (SEM) [J]. Acta Scientiarum. Animal Sciences, 2003, 1:49–52.
    29. Le Vay L, Jones D A, Puello-Cruz A C, et al. Digestion in relation to feeding strategies exhibited by crustacean larvae [J]. Comparative Biochemistry and Physiology, 2001, 128A:623–630.
    30. Kotani T, Fushimi H. Determination of appropriate feeding schedules from diel feeding rhythms in finfish larviculture [J]. Aquaculture, 2011, 315:104–113.
    31. Fernández-Díaz C, Yúfera M. Detecting growth in gilthead seabream, Sparus aurata L., larvae fed microcapsules [J]. Aquaculture, 1997, 153:93–102.
    32. Ohs C L, D’anramo L R, Buddington R K, et al. Evaluation of a spray-dried artificial diet for larval culture of freshwater prawn, Macrobrachium rosenbergii, and striped bass, Morone saxatilis [J]. Aquaculture Nutrition, 1998, 4:73–82.
    33. Langdon C. Microparticle types for delivering nutrients to marine fish larvae [J]. Aquaculture, 2003, 227:259–275.
    34.刘峰.大黄鱼和半滑舌鳎仔稚鱼人工微颗粒饲料蛋白源选择及其加工工艺相关研究[D]. [博士学位论文].青岛:中国海洋大学, 2007.
    35. Munilla-Moran R, Stark J R, Barbour A. The role of exogenous enzymes in digestion in cultured turbot larvae (Scophthalmus maximus L.) [J]. Aquaculture, 1990, 88:337–350.
    36. Tovar D, Zambonino J, Cahu C, et al. Effect of live yeast incorporation in compound diet on digestive enzyme activity in sea bass (Dicentrarchus labrax) larvae [J]. Aquaculture, 2002, 204:113–123.
    37. Lemieux H, Blier P, Dutil J D. Do digestive enzymes set a physiological limit on growth rate and food conversion efficiency in the Atlantic cod (Gadus morhua)? [J]. Fish Physiology and Biochemistry, 1999, 20:293–303.
    38. Brito R, Chimal M E, Gaxiola G, et al. Growth, metabolic rate, and digestive enzyme activity in the white shrimp Litopenaeus setiferus early post larvae fed different diets [J]. Journal of Experimental Marine Biology and Ecology, 2000, 255:21–36.
    39. Cahu C L, Zambonino Infante J L, Péres A, et al. Algal addition in sea bass (Dicentrarchus labrax) larvae rearing: effect on digestive enzymes [J]. Aquaculture, 1998, 161:479–489.
    40. Cahu C L, Zambonino Infante J L. Early weaning of sea bass (Dicentrarchus labrax) larvae with a compound diet: Effect on digestive enzymes [J]. Comparative Biochemistry and Physiology, 1994, 109A:213–222.
    41. Ribeiro L, Zambonino-Infante J L, Cahu C, et al. Digestive enzymes profile of Solea senegalensis post larvae fed Artemia and a compound diet [J]. Fish Physiology and Biochemistry, 2002, 27:61–69.
    42. Le Moullac G, Klein B, Sellos D, et al. Adaptation level and of trypsin, chymotrypsin and cu-amylase to casein protein source in Penaeus vannamei (Crustacea Decapoda) [J]. Journal of Experimental Marine Biology and Ecology, 1996, 208:107–125.
    43. Abi-Ayad A, Kestemont P. Comparison of the nutritional status of goldfish (Carassius auratus) larvae fed with live, mixed or dry diet [J]. Aquaculture, 1994, 128:163–176.
    44. Hernández J C S, Murueta J H C. Activity of trypsin from Litopenaeus vannamei [J]. Aquaculture, 2009, 290:190–195.
    45. Péres A, Cahu C L, Zambonino Infante J L, et al. Amylase and trypsin responses to intake of dietary carbohydrate and protein depend on the development stage in sea bass (Dicentrarchus labrax) larvae [J]. Fish Physiology and Biochemistry, 1996, 15(3):237–242.
    46. Tengjaroenkul B, Smith B J, Caceci T, et al. Distribution of intestinal enzyme activities along the intestinal tract of cultured Nile tilapia, Oreochromis niloticus L. [J]. Aquaculture, 2000, 182:317–327.
    47. Gawlicka A, Parent B, Horn M H, et al. Activity of digestive enzymes in yolk-sac larvae of Atlantic halibut Hippoglossus hippoglossus: indication of readiness for first feeding [J]. Aquaculture, 2000, 184:303–314.
    48.潘鲁青,王伟.日本对虾幼体几种消化酶活力的研究[J].海洋与湖沼, 1997, 2:15–18.
    49. Zambonino Infante J L, Cahu C L. Dietary modulation of some digestive enzymes and metabolic processes in developing marine fish: Applications to diet formulation [J]. Aquaculture, 2007, 268:98–105.
    50. Ribeiro L, Sarasquete C, Dinis M T. Histological and histochemical development of the digestive system of Solea senegalensis (Kaup 1858) larvae [J]. Aquaculture, 1999, 171:293–308.
    51. Papadakis I E, Zaiss M M, Kyriakou Y, et al. Histological evaluation of the elimination of Artemia nauplii from larval rearing protocols on the digestive system ontogeny of shi drum (Umbrina cirrosa L.) [J]. Aquaculture, 2009, 286:45–52.
    52. Darias M J, Mazurais D, Koumoundouros G, et al. Dietary vitamin D3 affects digestive system ontogenesis and ossification in European sea bass (Dicentrachus labrax, Linnaeus, 1758) [J]. Aquaculture, 2010, 298:300–307.
    53. Ostaszewska T, Dabrowski K, Hliwa P, et al. Nutritional regulation of intestine morphology in larval cyprinid fish, silver bream (Vimba vimba) [J]. Aquaculture Research, 2008, 39:1268–1278.
    54. Fontagne S, Geurden I, Escaffre A, et al. Histological changes induced by dietary phospholipids in intestine and liver of common carp (Cyprinus carpio L.) larvae [J]. Aquaculture, 1998, 161:213–223.
    55. Yúfera M, Fernández-Díaz C, Pascual E, et al. Towards an inert diet for first-feeding gilthead seabream Sparus aurata L. larvae [J]. Aquaculture Nutrition, 2000, 6:143–152.
    56. Cahu C, Zambonino Infante J L. Early weaning of sea bass Dicentrarchus labrax larvae with a compound diet: Effect on digestive enzymes [J]. Comparative Biochemistry and Physiology, 1994, 109A:213–222.
    57.成永旭,李少菁,王桂忠,等.锯缘青蟹幼体肝胰腺细胞结构变化与其营养状况的关I.蚤状幼体I期的研究[J].厦门大学学报(自然科学版), 1998, 37 (4):576–581.
    58.盛洪建,董颖超,薛敏,等.不同粘合剂制备微颗粒饲料对西伯利亚鲟仔鱼生长的影响[J].渔业现代化, 2009, 36(3):36-40.
    59. Wang Q, Toshio T, Hirofumi F. Studies on the role of peptidase and powder soybean lecithin in microparticle diets for red sea bream pagrus major larvae [J].水生生物学报, 2006, 30(6):734–741.
    60.于海瑞.大黄鱼仔稚鱼消化生理、蛋白质和蛋氨酸需要量的研究[D]. [博士学位论文].青岛:中国海洋大学, 2006.
    61. Gisbert E, Piedrahita R H, Conklinm D E. Ontogenetic development of the digestive system in California halibut (Paralichthys californicus) with notes on feeding practices[J]. Aquaculture, 2004, 232:455–470.
    62.楼允东.组织胚胎学(第二版) [M].北京:中国农业出版社, 1996.
    63. Bouhlic M, Gabaudan J. Histological study of the organogenesis of digestive system and swim bladder of the Dover sole, Solea solea (Linnaeus 1758) [J]. Aquaculture, 1992, 102:373–396.
    64. Ring? E, Olsen R E, Mayhew T M, et al. Electron microscopy of the intestinal microflora of fish [J]. Aquaculture, 2003, 227, 395–415.
    65. Partridge G J, Southgate P C. The effect of binder composition on ingestion and assimilation of microbound diets (MBD) by barramundi Lates calcarifer Bloch larvae. Aquacultutre Research, 1999, 30:879–886.
    66. Segovia-Quintero M A, Reigh R C. Coating crystalline methionine with tripalmitin-polyvinyl alcohol slows its absorption in the intestine of Nile tilapia, Oreochromis niloticus [J]. Aquaculture, 2004, 238:355–367.
    1. R?nnestad I, Thorsen A, Finn R N. Fish larval nutrition: a review of recent advances in the roles of amino acids [J]. Aquaculture, 1999, 177:201–216.
    2. Finn R N, Fyhn H J. Requirement for amino acids in ontogeny of fish [J]. Aquaculture Research, 2010, 41:684–716.
    3. Saavedra M, Pous?o-ferreira P, Yúfera M, et al. A balanced amino acid diet improves Diplodus sargus larval quality and reduces nitrogen excretion [J]. Aquaculture Nutrition, 2009, 15:517–524.
    4. Hong W, Zhang Q. Review of captive bred species and fry production of marine fish inChina [J]. Aquaculture, 2003, 227:305–318.
    5. Izquierdo M S, Socorro J, Arantzamendi L, et al. Recent advances in lipid nutrition in fish larvae [J]. Fish Physiology and Biochemistry, 2000, 22:97–107.
    6. Gimenez G, Estevez A, Henderson R J, et al. Changes in lipid content, fatty acid composition and lipid class composition of eggs and developing larvae (0–40 days old) of cultured common dentex (Dentex dentex Linnaeus 1758) [J]. Aquaculture Nutrition, 2008, 14:300–308.
    7. Bransden P, Butterfield G M, Walden J, et al. Tank colour and dietary arachidonic acid affects pigmentation, eicosanoid production and tissue fatty acid profile of larval Atlantic cod (Gadus morhua) [J]. Aquaculture, 2005, 250:328–340.
    8. Lund V, Steenfeldt S J, Hansen B W. Effect of dietary arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid on survival, growth and pigmentation in larvae of common sole (Solea solea L.) [J]. Aquaculture, 2007, 273:532–544.
    9. Bell J G, McEvoy L A, Estevez A, et al. Optimising lipid nutrition in first-feeding flatfish larvae [J]. Aquaculture, 2003, 227:211–220.
    10. Sargent J, McEvoy L, Estevze A, et al. Lipid nutrition of marine fish during early development: current status and future directions [J]. Aquaculture, 1999, 179:217–229.
    11. Arag?o C, Concei??o L E C, Dinis M T, et al. Amino acid pools of rotifers and Artemia under different conditions: nutritional implications for fish larvae [J]. Aquaculture, 2004, 234:429–445.
    12. Brown M R, Battaglene S C, Morehead D T, et al. Ontogenetic changes in amino acid and vitamins during early larval stages of striped trumpeter (Latris lineata) [J]. Aquaculture, 2005, 248:263–274.
    13. Nankervis L, Southgate P C. Enzyme and acid treatment of fish meal for incorporation into formulated microbound diets for barramundi (Lates calcarifer) larvae [J]. Aquaculture Nutrition, 2009, 15:135–143.
    14. Kolkovski S, Tandler A. The use of squid protein hydrolysate as a protein source in microdiets for gilthead seabream Sparus aurata larvae [J]. Aquaculture Nutrition, 2000, 6:11–15.
    15. R?nnestad I, Concei??o L E C, Arag?o C, et al. Amino acids are absorbed faster and assimilated more efficiently than protein in postlarval Senegal sole (Solea senegalensis)[J]. Journal of Nutrition, 2000, 130:2809–2812.
    16. Salhi M, Hernández-Cruz C M, Bessonart M, et al. Effect of different dietary polar lipid levels and different n-3 HUFA content in polar lipids on gut and liver histological structure of gilthead seabream (Sparus aurata) larvae [J]. Aquaculture, 1999, 179:253–263.
    17. Li M H, Robinson E H, Tucker C S, et al. Effects of dried algae Schizochytrium sp., a rich source of docosahexaenoic acid, on growth, fatty acid composition, and sensory quality of channel catfish Ictalurus punctatus [J]. Aquaculture, 2009, 292:232–236.
    18. Pettersen A K, Turchini G M, Jahangard S, et al. Effects of different dietary microalgae on survival, growth, settlement and fatty acid composition of blue mussel (Mytilus galloprovincialis) larvae [J]. Aquaculture, 2010, 309:115–124.
    19. Hamre K, Harboe T. Artemia enriched with high n-3 HUFA may give a large improvement in performance of Atlantic halibut (Hippoglossus hippoglossus L.) larvae [J]. Aquaculture, 2008, 277:239–243.
    20. Tonheim S K, Nordgreen A, H?g?y I, et al. In vitro digestibility of water-soluble and water-insoluble protein fractions of some common fish larval feeds and feed ingredients [J]. Aquaculture, 2007, 262:426–435.
    21. Srivastava A, Hamre K, Stoss J, et al. Protein content and amino acid composition of the live feed rotifer (Brachionus plicatilis): With emphasis on the water soluble fraction [J]. Aquaculture, 2006, 254:534–543.
    22. Bsc L N. Quantitative and qualitative aspects of the protein nutrition of barramundi (lates calcarifer) larvae fed formulated foods [D]. [博士学位论文]. Queensland: James Cook University, 2005.
    23. R?nnestad I, Tonheim S K, Fyhn H J, et al. The supply of amino acids during early feeding stages of marine fish larvae: a review of recent findings [J]. Aquaculture, 2003, 227:147–164.
    24.于海瑞.大黄鱼仔稚鱼消化生理、蛋白质和蛋氨酸需要量的研究[D]. [博士学位论文].青岛:中国海洋大学, 2006.
    25. Hansen J M, Lazo J P, Klinga L J. A method to determine protein digestibility of microdiets for larval and early juvenile fish [J]. Aquaculture Nutrition, 2009, 15:615–626.
    26. Arag?o C, Concei??o L E C, Fyhn H, et al. Estimated amino acid requirements duringearly ontogeny in fish with different life styles: gilthead seabream (Sparus aurata) and Senegalese sole (Solea senegalensis) [J]. Aquaculture, 2004, 242:589–605.
    27. Millamena O M, Teruel M B, Kanazawa A, et al. Quantitative dietary requirements of postlarval tiger shrimp, Penaeus monodon, for histidine, isoleucine, leucine, phenylalanine and tryptophan [J]. Aquaculture, 1999, 179:169–179.
    28. Pinto W, Figueira L, Ribeiro L, et al. Dietary taurine supplementation enhances metamorphosis and growth potential of Solea senegalensis larvae [J]. Aquaculture, 2010, 309:159–164.
    29. Li P, Mai K, Trushenski J, et al. New developments in fish amino acid nutrition towards functional and environmentally oriented aquafeeds [J]. Amino acids, 2008, 37:43–53.
    30. Saavedra M, Concei??o L E C, Pous?o-Ferreira P, et al. Amino acid profiles of Diplodus sargus (L., 1758) larvae: Implications for feed formulation [J]. Aquaculture, 2006, 261:587–593.
    31. Saavedra M, Concei??o L E C, Helland S, et al. Effect of lysine and tyrosine supplementation in the amino acid metabolism of Diplodus sargus larvae fed rotifers [J]. Aquaculture, 2008, 284:180–184.
    32. Dabrowski K, Zhang Y, Kwasek K, et al. Effects of protein-, peptide- and free amino acid-based diets in fish nutrition [J]. Aquaculture Research, 2010, 41:668–683.
    33. Das S K, Tiwari V K, Venkateshwarlu G, et al. Growth, survival and fatty acid composition of Macrobrachium rosenbergii (de Man, 1879) post larvae fed HUFA-enriched Moina micrura [J]. Aquaculture, 2007, 269:464–475.
    34. May-Helen H. Towards development of a formulated diet for mud crab (Scylla serrata) larvae, which emphasis on lipid nutrition [D]. [博士学位论文]. Queensland: James Cook University, 2007.
    35. Lund V, Steenfeldt S J, Hansen B W. Effect of dietary arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid on survival, growth and pigmentation in larvae of common sole (Solea solea L.) [J]. Aquaculture, 2007, 273:532–544.
    36. Monta?o M, Navarro J C. Fatty acids of wild and cultured Penaeus vannamei larvae from Ecuador [J]. Aquaculture, 2003, 142:259–268.
    37. Blair T, Castell J, Neil S, et al. Evaluation of microdiets versus live feeds on growth, survival and fatty acid composition of larval haddock (Melanogrammus aeglefinus) [J].Aquaculture, 2003, 225:451–461.
    38. George S B, Fox C, Wakeham S. Fatty acid composition of larvae of the sand dollar Dendraster excentricus (Echinodermata) might re?ect FA composition of the diets [J]. Aquaculture, 2008, 285:167–173.
    39. Buchet V, Zambonino Infante J L, Cahu C L. Effect of lipid level in a compound diet on the development of red drum (Sciaenops ocellatus) larvae [J]. Aquaculture, 2000, 184:339–347.
    40. Morais S, Concei??o L E C, R?nnestad I, et al. Dietary neutral lipid level and source in marine fish larvae: Effects on digestive physiology and food intake [J]. Aquaculture, 2007, 268:106–122.
    41. Izquierdo M S, Tandler A, Salhi M, et al. Influence of dietary polar lipids’quantity and quality on ingestion and assimilation of labelled fatty acids by larval gilthead seabream [J]. Aquaculture Nutrition, 2001, 7:153–160.
    42. Gisbert E, Villeneuve L, Zambonino-Infante J L, et al. Dietary phospholipids are more efficient than neutral lipids for long-chain polyunsaturated fatty acid supply in European sea bass Dicentrarchus labrax larval development [J]. Lipids, 2005, 40:609–618.
    43. Morais S, Torten M, Nixon O, et al. Food intake and absorption are affected by dietary lipid level and lipid source in seabream (Sparus aurata L.) larvae [J]. Journal of Experimental Marine Biology and Ecology, 2006, 331:51–63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700