用户名: 密码: 验证码:
肺炎链球菌β半乳糖苷酶BgaC和铁色素结合蛋白PiaA的结构和功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.肺炎链球菌p半乳糖苷酶BgaC的结构和功能研究
     肺炎链球菌BgaC是粘附在细菌表面的p半乳糖苷酶,它能特异性地水解宿主蛋白上修饰的寡糖链中β(1,3)半乳糖苷键连接的半乳糖和N乙酰葡萄糖胺。我们分别解析了1.80A的BgaC及其与半乳糖复合物1.95A的晶体结构。在pH5.5到8.0之间,BgaC都是以稳定的二体形式存在,每个亚单位都是由三个不同的结构域组成:一个由经典的TIM桶组成的催化结构域以及紧接着的两个功能未知的全部由β折叠片组成的结构域。其中活性中心是有TIMβ桶的桶壁以及从第一个ABD延伸出来的一个loop共同组成的。将结合有半乳糖的复合物结构和apo形式的BgaC进行比较,发现活性中心Trp243和Tyr455发生了显著的构象变化。通过对底物进入通道的模拟计算以及手工搭建的Galp(1,3)NAG复合物结构,我们找到了三个对BgaC的底物催化特异性可能有很关键作用的残基。随后的单点突变结合活性检测进一步确定了Trp240和Tyr455主要的贡献是稳定NAG部分,而Trp243对于半乳糖环的稳定有很重要的作用。另外,我们还推测其他的属于GH-35家族的半乳糖苷酶和BgaC一样,拥有类似的结构域组成模式,并且都有一个很保守的与底物特异性相关的芳香族残基从BgaC的第二个结构域对应的部分伸出来。
     2.肺炎链球菌铁色素结合蛋白PiaA的结构和功能研究
     铁元素营养缺陷是革兰氏阳性致病菌肺炎链球菌在侵染人体的过程中遇到众多营养缺陷的问题之一。为了保证能获得足够的铁,该菌会利用ABC转运系统Pia来吸收螯合有铁的羟戊酸类铁色素,其中底物结合蛋白PiaA为膜脂蛋白。PiaA对ferrichrome有非常高的亲和力,这使得该蛋白具有能从宿主中结合浓度非常低的铁的能力。我们分别解析了PiaA-apo形式以及ferrichrome复合形式的一对晶体结构。与其他的class Ⅲ底物结合蛋白一样,PiaA也是通过α螺旋将N端和C端的两个结构域连接起来的。一系列的保守残基将ferrichrome稳固在两个domain的之间的裂缝处。随着ferrichrome的结合,在这个裂缝入口处的两个高度柔性的区域发生了显著的构象变化,这暗示着它们可能对于ferrichrome的结合以及释放可能有很大的贡献。将PiaA的结构与来自Escherchia coli的维生素B12ABC转运系统的底物结合蛋白BtuF进行结构比较,发现两个保守的谷氨酸Glu119和Glu262可能会与跨膜蛋白的精氨酸形成盐桥。基于结构的序列比对显示PiaA对ferrichrome的结合模式在其同源蛋白中都非常保守,我们推测含有这些蛋白的细菌无论是革兰氏阳性菌还是革兰氏阴性菌也一样会对ferrichrome的衍生抗生素albomycin具有敏感性。
1. Structural and functional research on β-galactosidase BgaC from Streptococcus pneumoniae
     The surface-exposed P-galactosidase BgaC from Streptococcus pneumoniae was reported to be a virulence factor because of its specific hydrolysis activity towards the p(1,3)-linked galactose and N-acetylglucosamine [Ga1β(1,3)NAG] moiety of oligosaccharides on the host molecules. Here we report the crystal structure of BgaC at1.8A and its complex with galactose at1.95A. At pH5.5to8.0, BgaC exists as a stable homodimer, each subunit of which consists of three distinct domains:a catalytic domain of a classic (α/β)8TIM barrel, followed by two all-β domains(ABDs) of unknown function. The side-walls of the TIM β-barrel and a loop extended from the first ABD constitute the active site. Superposition of the galactose-complexed structure to the apo-form revealed significant conformational changes of residues Trp243and Tyr455. Simulation of a putative substrate entrance tunnel and modeling of a complex structure with Ga1p(1,3)NAG enabled us to assign three key residues to the specific catalysis. Site-directed mutagenesis in combination with activity assays further proved that residues Trp240and Tyr455contribute to stabilizing the N-acetylglucosamine moiety, whereas Trp243is critical for fixing the galactose ring. Moreover, we propose that BgaC and other galactosidases in the GH-35family share a common domain organization and a conserved substrate-determinant aromatic residue protruding from the second domain.
     2. Structural and functional research on the siderophore binding protein PiaA from Streptococcus pneumoniae
     Iron scarcity is one of the nutrition limitations that the Gram-positive infectious pathogens Streptococcus pneumoniae encounter in the human host. To guarantee sufficient iron supply, the ATP binding cassette (ABC) transporter Pia is employed to uptake iron chelated by hydroxamate siderophore, via the membrane-anchored substrate-binding protein PiaA. The high affinity towards ferrichrome enables PiaA to capture iron at a very low concentration in the host. We presented here the crystal structures of PiaA in both apo and ferrichrome-complexed forms at2.7and2.1A resolution, respectively. Similar to other class III substrate binding proteins, PiaA is composed of an N-terminal and a C-terminal domain bridged by an a-helix. At the inter-domain cleft, a molecule of ferrichrome is stabilized by a number of highly conserved residues. Upon ferrichrome binding, two highly flexible segments at the entrance of the cleft undergo significant conformational changes, indicating their contribution to the binding and/or release of ferrichrome. Superposition to the structure of Escherichia coli ABC transporter BtuF enabled us to define two conserved residues:Glu119and Glu262, which were proposed to form salt bridges with two arginines of the permease subunits. Further structure-based sequence alignment revealed that the ferrichrome binding pattern is highly conserved in a series of PiaA homologs encoded by both Gram-positive and negative bacteria, which were predicted to be sensitive to albomycin, a sideromycin antibiotic derived from ferrichrome.
引文
Adams PD, Afonine PV, Bunkoczi G, et al.2010. PHENIX:a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66: 213-221.
    Aguilar CF, Sanderson I, Moracci M, Ciaramella M, Nucci R, Rossi M & Pearl LH.1997. Crystal structure of the beta-glycosidase from the hyperthermophilic archeon Sulfolobus solfataricus: resilience as a key factor in thermostability. JMol Biol 271:789-802.
    Ahn YO, Zheng M, Bevan DR, et al.2007. Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 35. Phytochemistry 68:1510-1520.
    Alpers DH.1969. Separation and isolation of rat and human intestinal beta-galactosidases. J Biol Chem 244:1238-1246.
    Andersson B, Gray B & Eden CS.1988. Role of attachment for the virulence of Streptococcus pneumoniae. Acta Otolaryngol Suppl 454:163-166.
    Andersson B, Dahmen J, Frejd T, Leffler H, Magnusson G, Noori G & Eden CS.1983. Identification of an active disaccharide unit of a glycoconjugate receptor for pneumococci attaching to human pharyngeal epithelial cells. JExp Med 158:559-570.
    Asp NG & Dahlqvist A.1972. Human small intestine-galactosidases:specific assay of three different enzymes. AnalBiochem 47:527-538.
    Barocchi MA, Ries J, Zogaj X, et al.2006. A pneumococcal pilus influences virulence and host inflammatory responses. ProcNatlAcadSci USA 103:2857-2862.
    Bergmann S & Hammerschmidt S.2006. Versatility of pneumococcal surface proteins. Microbiology 152:295-303.
    Bergmann S, Rohde M, Chhatwal GS & Hammerschmidt S.2001. alpha-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol Microbiol 40:1273-1287.
    Bergmann S, Rohde M, Preissner KT & Hammerschmidt S.2005. The nine residue plasminogen-binding motif of the pneumococcal enolase is the major cofactor of plasmin-mediated degradation of extracellular matrix, dissolution of fibrin and transmigration. Thromb Haemost 94:304-311.
    Borths EL, Locher KP, Lee AT & Rees DC.2002. The structure of Escherichia coli BtuF and binding to its cognate ATP binding cassette transporter. Proc Natl Acad Sci USA 99: 16642-16647.
    Boukhalfa H & Crumbliss AL.2002. Chemical aspects of siderophore mediated iron transport. Biometals 15:325-339.
    Braun V & Killmann H.1999. Bacterial solutions to the iron-supply problem. Trends Biochem Sci 24:104-109.
    Braun V & Braun M.2002. Iron transport and signaling in Escherichia coli. FEBS Lett 529: 78-85.
    Braun V & Herrmann C.2007. Docking of the periplasmic FecB binding protein to the FecCD transmembrane proteins in the ferric citrate transport system of Escherichia coli. J Bacteriol 189:6913-6918.
    Brown JS, Gilliland SM & Holden DW.2001. A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. Mol Microbiol 40: 572-585.
    Brown JS, Gilliland SM, Ruiz-Albert J & Holden DW.2002. Characterization of pit, a Streptococcus pneumoniae iron uptake ABC transporter. Infect Immun 70:4389-4398.
    Brown JS, Ogunniyi AD, Woodrow MC, Holden DW & Paton JC.2001. Immunization with components of two iron uptake ABC transporters protects mice against systemic Streptococcus pneumoniae infection. Infect Immun 69:6702-6706.
    Bruns CM, Nowalk AJ, Arvai AS, McTigue MA, Vaughan KG, Mietzner TA & McRee DE.1997. Structure of Haemophilus influenzae Fe(+3)-binding protein reveals convergent evolution within a superfamily. Nat Struct Biol 4:919-924.
    Bruns CM, Anderson DS, Vaughan KG, Williams PA, Nowalk AJ, McRee DE & Mietzner TA. 2001. Crystallographic and biochemical analyses of the metal-free Haemophilus influenzae Fe3+-binding protein. Biochemistry 40:15631-15637.
    Bushley KE, RipollDR & Turgeon BG.2008. Module evolution and substrate specificity of fungal nonribosomal peptide synthetases involved in siderophore biosynthesis. BMC Evol Biol 8: 328.
    Cabrera G, Xiong A, Uebel M, Singh VK & Jayaswal RK.2001. Molecular characterization of the iron-hydroxamate uptake system in Staphylococcus aureus. Appl Environ Microbiol 61: 1001-1003.
    Camara M, Boulnois GJ, Andrew PW & Mitchell TJ.1994. A neuraminidase from Streptococcus pneumoniae has the features of a surface protein. Infect Immun 62:3688-3695.
    Clarke TE, Ku SY, Dougan DR, Vogel HJ & Tari LW.2000. The structure of the ferric siderophore binding protein FhuD complexed with gallichrome. Nat Struct Biol 7:287-291.
    Clarke TE, Braun V, Winkelmann G, Tari LW & Vogel HJ.2002. X-ray crystallographic structures of the Escherichia coli periplasmic protein FhuD bound to hydroxamate-type siderophores and the antibiotic albomycin. JBiol Chem 277:13966-13972.
    Collaborative Computational Project N.1994. The CCP4 suite:programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50:760-763.
    Cornelissen CN & Sparling PF 1994. Iron piracy:acquisition of transferrin-bound iron by bacterial pathogens. MolMicrobiol 14:843-850.
    Corpet F.1988. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16: 10881-10890.
    Cundell DR, Gerard NP, Gerard C, Idanpaan-Heikkila I & Tuomanen El.1995. Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377:435-438.
    Davies G & Henrissat B.1995. Structures and mechanisms of glycosyl hydrolases. Structure 3: 853-859.
    Davis G, Sinnott ML, Wither SG.1998. Comprehensive biological catalysis, Academic 119-208
    Davies GJ, Wilson KS & Henrissat B.1997. Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J321 (Pt 2):557-559.
    Davis IW, Leaver-Fay A, Chen VB, et al.2007. MolProbity:all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35:W375-383.
    Julers DH, Jacobson RH, Wigley D, et al.2000. High resolution refinement of p-galactosidase in a new crystal form reveals multiple metal-binding sites and provides a structural basis for a-complementation. Protein Sci.9:1685-1699
    Dintilhac A, Alloing G, Granadel C & Claverys JP.1997. Competence and virulence of Streptococcus pneumoniae:Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. MolMicrobiol 25:727-739.
    Emsley P & Cowtan K.2004. Coot:model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126-2132.
    Erdem H & Pahsa A.2005. Antibiotic resistance in pathogenic Streptococcus pneumoniae isolates in Turkey. JChemother 17:25-30.
    Garcia P, Garcia JL, Garcia E & Lopez R.1986. Nucleotide sequence and expression of the pneumococcal autolysin gene from its own promoter in Escherichia coli. Gene 43:265-272.
    Garcia P, Gonzalez MP, Garcia E, Lopez R & Garcia JL.1999. LytB, a novel pneumococcal murein hydrolase essential for cell separation. Mol Microbiol 31:1275-1281.
    Garcia P, Paz Gonzalez M, Garcia E, Garcia JL & Lopez R.1999. The molecular characterization of the first autolytic Iysozyme of Streptococcus pneumoniae reveals evolutionary mobile domains. MolMicrobiol 33:128-138.
    Gause GF.1955. Recent studies on albomycin, a new antibiotic. Br MedJ2:1177-1179.
    Gosink KK, Mann ER, Guglielmo C, Tuomanen El & Masure HR.2000. Role of novel choline binding proteins in virulence of Streptococcus pneumoniae. Infect Immun 68:5690-5695.
    Gouet P, Robert X & Courcelle E.2003. ESPript/ENDscript:Extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res31:3320-3323.
    Hammerschmidt S.2006. Adherence molecules of pathogenic pneumococci. Curr Opin Microbiol 9:12-20.
    Hammerschmidt S, Talay SR, Brandtzaeg P & Chhatwal GS.1997. SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component. Mol Microbiol 25:1113-1124.
    Hammerschmidt S, Bethe G, Remane PH & Chhatwal GS.1999. Identification of pneumococcal surface protein A as a lactoferrin-binding protein of Streptococcus pneumoniae. Infect Immun 67:1683-1687.
    Hartmann A, Fiedler HP & Braun V.1979. Uptake and conversion of the antibiotic albomycin by Escherichia coli K-12. Eur JBiochem 99:517-524.
    Hava DL & Camilli A.2002. Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol Microbiol 45:1389-1406.
    Heightman TD, Ermert P, Klein D & Vasella A.1995. Synthesis of galactose-and N-acetylglucosamine-derived tetrazoles and their evaluation as P-glycosidase inhibitors. Helv. Chim.Acta 78:514-532.
    Henrissat B.1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J280 (Pt 2):309-316.
    Henrissat B & Bairoch A.1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J293 (Pt 3):781-788.
    Henrissat B & Bairoch A.1996. Updating the sequence-based classification of glycosyl hydrolases. Biochem J316. Pt 2):695-696.
    Henrissat B & Davies G.1997. Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637-644.
    Hermoso JA, Lagartera L, Gonzalez A, et al.2005. Insights into pneumococcal pathogenesis from the crystal structure of the modular teichoic acid phosphorylcholine esterase Pee. Nat Struct Mol Biol 12:533-538.
    Hidaka M, Fushinobu S, Ohtsu N, Motoshima H, Matsuzawa H, Shoun H & Wakagi T.2002. Trimeric crystal structure of the glycoside hydrolase family 42 beta-galactosidase from Thermus thermophilus A4 and the structure of its complex with galactose. JMol Biol 322: 79-91.
    Holmes AR, McNab R, Millsap KW, Rohde M, Hammerschmidt S, Mawdsley JL & Jenkinson HF. 2001. The pavA gene of Streptococcus pneumoniae encodes a fibronectin-binding protein that is essential for virulence. MolMicrobiol 41:1395-1408.
    Honda S, Akao E, Suzuki S, Okuda M, Kakehi K & Nakamura J.1989. High-performance liquid chromatography of reducing carbohydrates as strongly ultraviolet-absorbing and electrochemically sensitive 1-phenyl-3-methyl-5-pyrazolone derivatives. Anal Biochem 180: 351-357.
    Hoskins J, Alborn WE, Jr., Arnold J, et al.2001. Genome of the bacterium Streptococcus pneumoniae strain R6. JBacteriol 183:5709-5717.
    Huber RE & Brockbank RL.1987. Strong inhibitory effect of furanoses and sugar lactones on beta-galactosidase Escherichia coli. Biochemistry 26:1526-1531.
    Huber RE, Hakda S, Cheng C, Cupples CG & Edwards RA.2003. Trp-999 of beta-galactosidase (Escherichia coli) is a key residue for binding, catalysis, and synthesis of allolactose, the natural lac operon inducer. Biochemistry 42:1796-1803.
    Hvorup RN, Goetz BA, Niederer M, Hollenstein K, Perozo E & Locher KP.2007. Asymmetry in the structure of the ABC transporter-binding protein complex BtuCD-BtuF. Science 317: 1387-1390.
    Hyams C, Camberlein E, Cohen JM, Bax K & Brown JS.2010. The Streptococcus pneumoniae capsule inhibits complement activity and neutrophil phagocytosis by multiple mechanisms. Infect Immun 78:704-715.
    Jacobson RH, Zhang XJ, DuBose RF & Matthews BW.1994. Three-dimensional structure of beta-galactosidase from E. coli. Nature 369:761-766.
    Jarva H, Janulczyk R, Hellwage J, Zipfel PF, Bjorck L & Meri S.2002. Streptococcus pneumoniae evades complement attack and opsonophagocytosis by expressing the pspC locus-encoded Hic protein that binds to short consensus repeats 8-11 of factor H. J Immunol 168: 1886-1894.
    Jarva H, Hellwage J, Jokiranta TS, Lehtinen MJ, Zipfel PF & Meri S.2004. The group B streptococcal beta and pneumococcal Hie proteins are structurally related immune evasion molecules that bind the complement inhibitor factor H in an analogous fashion. J Immunol 172:3111-3118.
    Jedrzejas MJ.2001. Pneumococcal virulence factors:structure and function. Microbiol Mol Biol Rev 65:187-207; first page, table of contents.
    Jenkins J, Lo Leggio L, Harris G & Pickersgill R.1995. Beta-glucosidase, beta-galactosidase, family A cellulases, family F xylanases and two barley glycanases form a superfamily of enzymes with 8-fold beta/alpha architecture and with two conserved glutamates near the carboxy-terminal ends of beta-strands four and seven. FEBS Lett 362:281-285.
    Jeong JK, Kwon O, Lee YM, et al.2009. Characterization of the Streptococcus pneumoniae BgaC protein as a novel surface beta-galactosidase with specific hydrolysis activity for the Galbetal-3GlcNAc moiety of oligosaccharides. JBacteriol 191:3011-3023.
    Jones CS, Mahuran D, Lowden JA, et al.1984 Human placental P-galactosidase. Structural and immunological observations. Can. J. Biochem. CellBiol.62:529-534.
    Juers DH, Heightman TD, Vasella A, McCarter JD, Mackenzie L, Withers SG & Matthews BW. 2001. A structural view of the action of Escherichia coli (lacZ) beta-galactosidase. Biochemistry 40:14781-14794.
    Kadioglu A, Weiser JN, Paton JC & Andrew PW.2008. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nature Reviews Microbiology 6: 288-301.
    Karpowich NK, Huang HH, Smith PC & Hunt JF.2003. Crystal structures of the BtuF periplasmic-binding protein for vitamin B12 suggest a functionally important reduction in protein mobility upon ligand binding. JBiol Chem 278:8429-8434.
    Kim JO, Romero-Steiner S, Sorensen UB, et al.1999. Relationship between cell surface carbohydrates and intrastrain variation on opsonophagocytosis of Streptococcus pneumoniae. Infect Immun 67:2327-2333.
    King SJ, Hippe KR & Weiser JN.2006. Deglycosylation of human glycoconjugates by the sequential activities of exoglycosidases expressed by Streptococcus pneumoniae. Mol Microbiol 59:961-974.
    Korkhov VM, Mireku SA & Locher KP.2012. Structure of AMP-PNP-bound vitamin B12 transporter BtuCD-F. Nature 490:367-372.
    Korkhov VM, Mireku SA, Hvorup RN & Locher KP.2012. Asymmetric states of vitamin B(1)(2) transporter BtuCD are not discriminated by its cognate substrate binding protein BtuF. FEBS Lett 586:972-976.
    Koshland DE.1953. Stereochemistry and the mechanism of enzymatic reactions. Biol. Rev.28: 416-426.
    Koster W.1991. Iron(Ⅲ) hydroxamate transport across the cytoplasmic membrane of Escherichia coli. Biol Met 4:23-32.
    Krewulak KD & Vogel HJ.2008. Structural biology of bacterial iron uptake. Biochim Biophys Acta 1778:1781-1804.
    Krivan HC, Roberts DD & Ginsburg V.1988. Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAc beta 1-4Gal found in some glycolipids. ProcNatlAcadSci USA 85:6157-6161.
    LaForce FM, Boose DS & Ellison RT,3rd.1986. Effect of aerosolized Escherichia coli and Staphylococcus aureus on iron and iron-binding proteins in lung lavage fluid. JInfect Dis 154: 959-965.
    Laskowski RA, MacArthur MW, Moss DS & Thornton JM.1993. PROCHECK:a program to check the stereochemical quality of protein structure. JAppl Cryst 26:283-291.
    Lawrence MC, Pilling PA, Epa VC, Berry AM, Ogunniyi AD & Paton JC.1998. The crystal structure of pneumococcal surface antigen PsaA reveals a metal-binding site and a novel structure for a putative ABC-type binding protein. Structure 6:1553-1561.
    Lee YH, Deka RK, Norgard MV, Radolf JD & Hasemann CA.1999. Treponema pallidum TroA is a periplasmic zinc-binding protein with a helical backbone. Nat Struct Biol 6:628-633.
    Lee YH, Dorwart MR, Hazlett KR, Deka RK, Norgard MV, Radolf JD & Hasemann CA.2002. The crystal structure of Zn(II)-free Treponema pallidum TroA, a periplasmic metal-binding protein, reveals a closed conformation. JBacteriol 184:2300-2304.
    Lipsitch M, Whitney CG, Zell E, Kaijalainen T, Dagan R & Malley R.2005. Are anticapsular antibodies the primary mechanism of protection against invasive pneumococcal disease? Plos Medicine 2:62-68.
    Liu J, Rutz JM, Feix JB & Klebba PE.1993. Permeability properties of a large gated channel within the ferric enterobactin receptor, FepA. ProcNatlAcadSci USA 90:10653-10657.
    Locher KP, Lee AT & Rees DC.2002. The E. coli BtuCD structure:a framework for ABC transporter architecture and mechanism. Science 296:1091-1098.
    Maksimainen M, Paavilainen S, Hakulinen N & Rouvinen J.2012. Structural analysis, enzymatic characterization, and catalytic mechanisms of beta-galactosidase from Bacillus circulans sp. alkalophilus. FEBSJ219:1788-1798.
    Maksimainen M, Hakulinen N, Kallio JM, Timoharju T, Turunen O & Rouvinen J.2011. Crystal structures of Trichoderma reesei beta-galactosidase reveal conformational changes in the active site. J Struct Biol 174:156-163.
    Marra A, Lawson S, Asundi JS, Brigham D & Hromockyj AE.2002. In vivo characterization of the psa genes from Streptococcus pneumoniae in multiple models of infection. Microbiology 148:1483-1491.
    McCool TL & Weiser JN.2004. Limited role of antibody in clearance of Streptococcus pneumoniae in a murine model of colonization. Infection and Immunity 72:5807-5813.
    McCool TL, Cate TR, Moy G & Weiser JN.2002. The immune response to pneumococcal proteins during experimental human carriage. Journal of Experimental Medicine 195: 359-365.
    Miethke M & Marahiel MA.2007. Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413-451.
    Miethke M, Klotz O, Linne U, May JJ, Beckering CL & Marahiel MA.2006. Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis. Mol Microbiol 61:1413-1427.
    Miller JH.1972. Experiments in Molecular Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 398-404.
    Murshudov GN, Vagin AA & Dodson EJ.1997. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53:240-255.
    Neilands JB.1995. Siderophores:structure and function of microbial iron transport compounds. J Biol Chem 270:26723-26726.
    Nelson AL, Roche AM, Gould JM, Chim K, Ratner AJ & Weiser JN.2007. Capsule enhances pneumococcal colonization by limiting mucus-mediated clearance. Infect Immun 75:83-90.
    Newcomer ME, Gilliland GL & Quiocho FA.1981. L-Arabinose-binding protein-sugar complex at 2.4 A resolution. Stereochemistry and evidence for a structural change. J Biol Chem 256: 13213-13217.
    Nucci R, Moracci M, Vaccaro C, Vespa N & Rossi M.1993. Exo-glucosidase activity and substrate specificity of the beta-glycosidase isolated from the extreme thermophile Sulfolobus solfataricus. Biotechnol Appl Biochem 17:239-250.
    Ohto U, Usui K, Ochi T, Yuki K, Satow Y & Shimizu T.2012. Crystal structure of human beta-galactosidase:structural basis of Gml gangliosidosis and morquio B diseases. J Biol Chem 287:1801-1812.
    Ollinger J, Song KB, Antelmann H, Hecker M & Helmann JD.2006. Role of the Fur regulon in iron transport in Bacillus subtilis. JBacteriol 188:3664-3673.
    Otwinowski Z & Minor W.1997. Processing X-ray Diffraction Data Collection in Oscillation Mode. Macromolecular Crystallography 276:307-326.
    Paulsen IT, Nguyen L, Sliwinski MK, Rabus R & Saier MH, Jr.2000. Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. JMol Biol 301:75-100.
    Pereira-Rodriguez A, Fernandez-Leiro R, Gonzalez-Siso MI, Cerdan ME, Becerra M & Sanz-Aparicio J.2012. Structural basis of specificity in tetrameric Kluyveromyces lactis beta-galactosidase. J Struct Biol 177:392-401.
    Peuckert F, Miethke M, Albrecht AG, Essen LO & Marahiel MA.2009. Structural basis and stereochemistry of triscatecholate siderophore binding by FeuA. Angew Chem Int EdEngl 48: 7924-7927.
    Peuckert F, Ramos-Vega AL, Miethke M, Schworer CJ, Albrecht AG, Oberthur M & Marahiel MA. 2011. The siderophore binding protein FeuA shows limited promiscuity toward exogenous triscatecholates. Chem Biol 18:907-919.
    Postle K & Larsen RA.2007. TonB-dependent energy transduction between outer and cytoplasmic membranes. Biometals 20:453-465.
    Pramanik A & Braun V.2006. Albomycin uptake via a ferric hydroxamate transport system of Streptococcus pneumoniae R6. JBacteriol 188:3878-3886.
    Pramanik A, Stroeher UH, Krejci J, et al.2007. Albomycin is an effective antibiotic, as exemplified with Yersinia enterocolitica and Streptococcus pneumoniae. Int JMed Microbiol 297:459-469.
    Riley M.1993. Functions of the gene products of Escherichia coli. Microbiol Rev 57:862-952.
    Ring A, Weiser JN & Tuomanen EI 1998. Pneumococcal trafficking across the blood-brain barrier. Molecular analysis of a novel bidirectional pathway. JClin Invest 102:347-360.
    Rohrbach MR, Braun V & Koster W.1995. Ferrichrome transport in Escherichia coli K-12: altered substrate specificity of mutated periplasmic FhuD and interaction of FhuD with the integral membrane protein FhuB. JBacteriol 177:7186-7193.
    Rojas AL, Nagem RA, Neustroev KN, et al.2004. Crystal structures of beta-galactosidase from Penicillium sp. and its complex with galactose. JMolBiol 343:1281-1292.
    Roosenberg JM,2nd, Lin YM, Lu Y & Miller MJ.2000. Studies and syntheses of siderophores, microbial iron chelators, and analogs as potential drug delivery agents. Curr Med Chem 7: 159-197.
    Rosenow C, Ryan P, Weiser JN, Johnson S, Fontan P, Ortqvist A & Masure HR.1997. Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae. Mol Microbiol 25:819-829.
    Schryvers AB & Stojiljkovic I.1999. Iron acquisition systems in the pathogenic Neisseria. Mol Microbiol32:1117-1123.
    Schwecke T, Gottling K, Durek P, et al.2006. Nonribosomal peptide synthesis in Schizosaccharomyces pombe and the architectures of ferrichrome-type siderophore synthetases in fungi. Chembiochem 1:612-622.
    Sebulsky MT & Heinrichs DE.2001. Identification and characterization of fhuD1 and fhuD2, two genes involved in iron-hydroxamate uptake in Staphylococcus aureus. J Bacteriol 183: 4994-5000.
    Sebulsky MT, Shilton BH, Speziali CD & Heinrichs DE.2003. The role of FhuD2 in iron(III)-hydroxamate transport in Staphylococcus aureus. Demonstration that FhuD2 binds iron(III)-hydroxamates but with minimal conformational change and implication of mutations on transport. JBiol Chem 278:49890-49900.
    Sebulsky MT, Speziali CD, Shilton BH, Edgell DR & Heinrichs DE.2004. FhuDl, a ferric hydroxamate-binding lipoprotein in Staphylococcus aureus:a case of gene duplication and lateral transfer. JBiol Chem 279:53152-53159.
    Shaper M, Hollingshead SK, Benjamin WH, Jr. & Briles DE.2004. PspA protects Streptococcus pneumoniae from killing by apolactoferrin, and antibody to PspA enhances killing of pneumococci by apolactoferrin [corrected]. Infect Immun 72:5031-5040.
    Shouldice SR, Dougan DR, Skene RJ, Tari LW, McRee DE, Yu RH & Schryvers AB.2003. High resolution structure of an alternate form of the ferric ion binding protein from Haemophilus influenzae. JBiol Chem 278:11513-11519.
    Sinnott ML.1978. Ions, ion-pairs and catalysis by the lacZ beta-galactosidase of Escherichia coli. FEBS Lett 94:1-9.
    Sinnott ML.1990. Catalytic mechanisms of enzymic glycosyl transfer, Chem. Rev.90:1171-1202
    Skalova T, Dohnalek J, Spiwok V, et al.2005. Cold-active beta-galactosidase from Arthrobacter sp. C2-2 forms compact 660 kDa hexamers:crystal structure at 1.9A resolution. J Mol Biol 353:282-294.
    Slack FJ & Ruvkun G. 1998. A novel repeat domain that is often associated with RING finger and B-box motifs. Trends Biochem Sci 23:474-475.
    Springer TA.1998. An extracellular beta-propeller module predicted in lipoprotein and scavenger receptors, tyrosine kinases, epidermal growth factor precursor, and extracellular matrix components. JMol Biol 283:837-862.
    Spurlino JC, Lu GY & Quiocho FA.1991. The 2.3-A resolution structure of the maltose-or maltodextrin-binding protein, a primary receptor of bacterial active transport and chemotaxis. JBiol Chem 266:5202-5219.
    Stefanska AL, Fulston M, Houge-Frydrych CS, Jones JJ & Warr SR.2000. A potent seryl tRNA synthetase inhibitor SB-217452 isolated from a Streptomyces species. JAntibiot. Tokyo 53: 1346-1353.
    Stirk HJ, Woolfson DN, Hutchinson EG & Thornton JM.1992. Depicting topology and handedness in jellyroll structures. FEBS Lett 308:1-3.
    Stojiljkovic I & Perkins-Balding D.2002. Processing of heme and heme-containing proteins by bacteria. DNA Cell Biol 21:281-295.
    Stokes TM & Wilson IB.1972. A common intermediate in the hydrolysis of -galactosides by-galactosidase from Escherichia coli. Biochemistry 11:1061-1064.
    Tai SS, Lee CJ & Winter RE.1993. Hemin utilization is related to virulence of Streptococcus pneumoniae. Infect Immun 61:5401-5405.
    Tai SS, Wang TR & Lee CJ.1997. Characterization of hemin binding activity of Streptococcus pneumoniae. Infect Immun 65:1083-1087.
    Tai SS, Yu C & Lee JK.2003. A solute binding protein of Streptococcus pneumoniae iron transport. FEMSMicrobiol Lett 220:303-308.
    Tam R & Saier MH, Jr.1993. Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev 57:320-346.
    Taron CH, Benner JS, Hornstra LJ & Guthrie EP.1995. A novel beta-galactosidase gene isolated from the bacterium Xanthomonas manihotis exhibits strong homology to several eukaryotic beta-galactosidases. Glycobiology 5:603-610.
    Terra VS, Homer KA, Rao SQ Andrew PW & Yesilkaya H.2010. Characterization of novel beta-galactosidase activity that contributes to glycoprotein degradation and virulence in Streptococcus pneumoniae. Infect Immun 78:348-357.
    Tettelin H, Nelson KE, Paulsen IT, et al.2001. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293:498-506.
    Tong HH, McIver MA, Fisher LM & DeMaria TF.1999. Effect of lacto-N-neotetraose, asialoganglioside-GMl and neuraminidase on adherence of otitis media-associated serotypes of Streptococcus pneumoniae to chinchilla tracheal epithelium. Microb Pathog 26:111-119.
    Tseng HJ, McEwan AG, Paton JC & Jennings MP.2002. Virulence of Streptococcus pneumoniae: PsaA mutants are hypersensitive to oxidative stress. Infect Immun 70:1635-1639.
    Vagin A & Teplyakov A.2010. Molecular replacement with MOLREP. Acta Crystallogr D Biol Crystallogr 66:22-25.
    Varvio SL, Auranen K, Arjas E & Makela PH.2009. Evolution of the capsular regulatory genes in Streptococcus pneumoniae. JInfect Dis 200:1144-1151.
    Weinberg ED.1997. The Lactobacillus anomaly:total iron abstinence. Perspect Biol Med 40: 578-583.
    Weiser JN, Austrian R, Sreenivasan PK & Masure HR.1994. Phase variation in pneumococcal opacity:relationship between colonial morphology and nasopharyngeal colonization. Infect Immun 62:2582-2589.
    Weiser JN, Bae D, Epino H, Gordon SB, Kapoor M, Zenewicz LA & Shchepetov M.2001. Changes in availability of oxygen accentuate differences in capsular polysaccharide expression by phenotypic variants and clinical isolates of Streptococcus pneumoniae. Infect Immun 69:5430-5439.
    Whalan RH, Funnell SG, Bowler LD, Hudson MJ, Robinson A & Dowson CG.2006. Distribution and genetic diversity of the ABC transporter lipoproteins PiuA and PiaA within Streptococcus pneumoniae and related streptococci. JBacteriol 188:1031-1038.
    Yang X, Zhao Y, Wang Q, Wang H & Mei Q.2005. Analysis of the monosaccharide components in Angelica polysaccharides by high performance liquid chromatography. Anal Sci 21: 1177-1180.
    Yuan J, Martinez-Bilbao M & Huber RE.1994. Substitutions for Glu-537 of beta-galactosidase from Escherichia coli cause large decreases in catalytic activity. Biochem J 299 (Pt 2): 527-531.
    Zahner D & Hakenbeck R.2000. The Streptococcus pneumoniae beta-galactosidase is a surface protein. JBacteriol 182:5919-5921.
    Zhang JR, Mostov KE, Lamm ME, Nanno M, Shimida S, Ohwaki M & Tuomanen E.2000 The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 102:827-837.
    Zwart PH, Gross-Kunsteleve RW & Adams PD.2005 Characterization of X-ray data sets. CCP4 newsletter:42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700