用户名: 密码: 验证码:
污泥底物微生物脱盐电池性能及处理后污泥改良盐碱土效果
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市污水处理厂污泥的大量产生已成为目前亟待解决的环境问题,转变污泥处置思路,寻求合理的污泥资源化途径是当前研究的重点。微生物脱盐电池(Microbial Desalination Cells, MDC)能够在利用污泥中的有机物进行产电的同时淡化盐水,为污泥的能源化资源化利用提供了新的契机。然而,目前对于MDC系统性能的研究尚处于初步阶段,在底物研究中,直接采用城市污水处理厂常规脱水处理后产生的污泥作为阳极底物的报道还很少,而对于产电后剩余阳极污泥的后续资源化也有待进一步深入研究。
     本文提出了将脱水污泥作为MDC阳极底物进行产电、脱盐的能源化利用方式,以及利用处理后的阳极污泥改良盐碱化土壤的资源化利用方式。为了提高MDC性能和有效避免由于脱盐导致的阳极污泥盐分过量累积,对MDC构型进行了改进,构建了五室微生物脱盐电池(5c-MDC)、五室微生物电容型脱盐电池(5c-MCDC)和七室微生物双脱盐电池(7c-MDDC)三种构型的MDC,并研究它们的产电脱盐性能、阳极污泥中有机物降解、重金属形态转化和植物营养特征变化规律,进而研究了脱水污泥和阳极处理后污泥对盐碱化土壤的改良作用和重金属的潜在生态风险。
     研究结果表明:以脱水污泥为阳极底物的MDC具有启动快(5~6d),长期运行稳定的优势(200~300d)。三种构型的MDC产电效率相近,且以5c-MDC的产电效率最高,Pmax可达3.178W/m3。脱盐性能方面,5c-MDC的脱盐效率最高,且脱盐效率随着NaCl初始浓度的升高而降低,即61.48±0.10%(2g/L)>52.50±0.26%(10g/L)>48.30±0.61%(35g/L)。5c-MCDC和7c-MDDC均可以有效避免阳极污泥盐分的增加。在污泥降解方面,7c-MDDC的效果最好,运行42d阳极污泥的有机质去除率达到17.71%,200d达到32.7±0.81%,且污泥中速效氮、磷、钾含量的增加最为明显。运行42d阳极污泥浸提液种子发芽指数可达到66.63±3.02%。对5c-MDC与7c-MDDC长期运行性能的研究中发现:随运行时间的延长,阳极污泥的pH值始终维持在6.5~7.5之间,污泥溶解性有机物中腐植酸类荧光峰强度明显增加,重金属形态组成中稳定的残留态比例明显增加,重金属的生物有效性降低明显。
     以脱水污泥和阳极污泥改良盐碱化土壤的结果表明:两者均可以降低土壤的容重、pH值、碱化度,并增加土壤中有机质、总氮、总磷、速效氮、磷、钾的含量,且阳极污泥的效果要优于脱水污泥。当污泥投加比例超过30%可使土壤容重降低到1g/cm3以下,pH降低1~2个单位,碱化度降低到30%以下,并使得土壤有机质增加2.0~5.9倍,总氮增加1.5~4.6倍,总磷增加1.5~4.5倍,速效氮增加3.7~10.5倍,速效磷增加4.1~19.7倍,速效钾增加1.1~1.8倍;随孵育时间的延长,施用污泥后土壤的容重、pH值、碱化度、有机质、总氮含量持续降低;速效氮、磷、钾含量逐渐增加。种子发芽试验和作物盆栽实验均得到了污泥合理投加比例为30%~50%。经过长期孵育和植物生长后,施用污泥的盐碱化土壤中0.05~1mm微团聚体比例增加,土壤溶解性有机物中溶解性微生物产物、富里酸和腐植酸的荧光强度均有所增加,表明污泥的施用促进了团聚体的形成,增加了土壤中微生物的活性,提高了土壤的腐殖化程度。然而,两种污泥的施入均会增加土壤中重金属的生态风险,在施用初期重金属生物有效性也有所增强,但重金属含量仍明显低于土壤环境质量标准,形态上仍以残留态比例最高。经过长期的孵育,除As外,其余元素生物有效性均有所降低,并向更稳定残留态转化。5种可检测到的重金属和类重金属元素在土壤/小麦和土壤/紫花苜蓿中的富集系数依次是Ni,Zn,B,Cu,Cr,且同种元素在紫花苜蓿中的富集系数大于在小麦种的富集系数。
     本文提供了一条系统化的脱水污泥综合利用途径,可为MDC的性能优化与功能拓展,以及污泥改良盐碱化土壤的实践提供一定的理论依据。
It is imperative to solve the serious environmental problem that the sludge produced by the municipal sewage treatment plants has stacked too much. People need to change the traditional solution program imminently. Therefore, it is paid more attention for the research field that how the sludge can be treated in order to realize the rational and efficient resource utilization. Microbial desalination cells (MDC) can convert the chemical energy in organic of the sludge into the electricity power directly, and the produced electricity power can be used to desaline the seawater in-situ, it can realize the organic remove and sludge stabilization simultaneously. This technology offers a new opportunity to achieve the energy-form and the reutilization in the sludge treatment. At the monment, the studies in MDC system performance are still in preliminary stage. For the available substrate studies, there were few reports that the dewatered sludge, produced in the municipal sewage plant with the normal treatment process, was directly used as an anodic substrate. It is worthy to make further research in the reutilization with the sludge residue after the electrisity generation.
     It was suggested that the dewatered sludge as the MDC anodic substrate can generate the electricity power, desalt the salt water. And the rest anodic sludge can be continually used as a soil conditioner to improve the saline-alkali soil. In order to improve the MDC property and efficiently, and aviod the desalting-formed exceeding accumulation in the anodic sludge salinity, the MDC construction was modified. The5-Chambers Microbial Desalination Cells (5c-MDC),5-Chambers Microbial Capacitance Desalting Cell (5c-MCDC) and7-Chambers Stacked Microbial Desalination Cells (7c-MDDC) were prepared. The desalination and electricity generation property, organic matter degradation and forms transformation of heavy metal, and plant nutrition characteristic in anodic sludge were studied respectively. The improvement effects of the dewatered sludge and anodic sludge on the saline-alkali soil and the potential ecological risk of heavy metal were also analysed.
     Through the study in the MDC with the dewatered sludge as an anodic substrate, the result indicated that this system possessed the started rapidly (5~6d) and stabilized in long-term operation (200~300d) characteristics. The electricity efficiencies were almost equal in the3type MDCs, and the highest one (Pmax=3.178W/m3) was achieved by5c-MDC. In the desalination aspect: the5c-MDC was the best in desalination efficiency, and the desalination efficiency decreased with the NaCl initial concentration increased, that was61.48±0.10% (2g/L)>52.50±0.26%(10g/L)>48.30±0.61%(35g/L). Meanwhile, the5c-MCDC and the7c-MDDC both can avoid the salinity accumulation in the anodic sludge. Moreover, the7c-MDDC sludge degradation effect was the best in these three type cells. Specially, in the7c-MDDC, the organic matter removal rate was the highest; the removal rate can get17.71%at the42nd day, and32.7±0.81%at the200th day; an obviously increase can be observed in the available nitrogen, phosphorus and potassium content with time. After42days operation, the seed germination index in the sludge leach liquor can reach66.63±3.02%in7c-MDDC. Under the long-term operation in5c-MDC and7c-MDDC, the results showed that, as the operation times passed, the anodic sludge pH value can be maintained between6.5and7.5, the humic acid fluorescence peaks in sludge dissolved organic matter were enhanced, the heavy metal stable residual state proportion increased, and the heavy metal bio-availability decreased greatly.
     The results of saline-alkali soil improvement by the dewatered sludge or the anodic sludge indicated that, the dewatered sludge and the anodic sludge both can decrease the soil bulk density, pH value and exchange sodium percent, and increase the soil organic matter, total nitrogen, total phosphorus, available nitrogen, phosphorus and potassium content. Meanwhile, the anodic sludge improvement effect on the saline-alkali soil was much better than the dewatered sludge effect. When the sludge proportion exceed30%, the soil bulk density was below1g/cm3, pH was decreased by1~2, exchange sodium percent was below30%, the soil organic matter, total nitrogen, total phosphorus, available nitrogen, phosphorus and potassium content were increased by2.0~5.9,1.5~4.6,1.5~4.5,3.7~10.5,4.1~19.7,1.1~1.8times, respectively. As the incubating time extension, the sludge-treated soil properties, such as the soil bulk density, pH value, exchange sodium percent, organic matter content and total nitrogen content decreased continually, but the available nitrogen, phosphorus and potassium content gradually increased during the incubating period. Based on the seed germination and crop plants experiment results, the reasonal addition proportion of the dewatered sludge and the anodic sludge were both about30%~50%. After the long incubation and plant growth, the proportion of the0.05~1mm microaggregate could increase in the saline-alkali soil treated by sludge. Through adding sludge in the saline-alkali soil, soluble microorganism product and fulvic acid content in the soil dissolved organic matter increased, the humic acid fluorescence intensity enhanced. All these results indicated that sludge treatment can accelerate the formation of the soil aggregate, increase the microorganism amount and activity in the soil, and improve the soil humification degree. Nevertheless, two kinds of sludge addition can both increase the heavy metal total content in the soil. In the preliminary stage, the heavy metal bio-availabilities can be enhanced partly, but the total heavy metal amount was obviously lower than the soil environmental quality standards, and the residual state proportion was the highest among them. After long-term incubation, except As element, all the other element bio-availabilities decreased, and tended toward the more stable residual state. The enrichment factors of the heavy metal or similar heavy metal, which were detected between soil and wheat or soil and alfalfa, can be ordered like this: Ni, Zn, B, Cu, and Cr. The same element enrichment factor was higher in alfalfa than that in wheat.
     This study offered a system method to exploit the comprehensive utilization of the dewatered sludge. This work was made some theoretical foundation in MDC performance optimization, function expansion and saline-alkali soil improvement by the sludge.
引文
[1] Silvestre G, Illa J, Fernández B, et al. Thermophilic Anaerobic Co-Digestionof Sewage Sludge with Grease Waste: Effect of Long Chain Fatty Acids inthe Methane Yield and Its Dewatering Properties[J]. Applied Energy,2014,117:87-94.
    [2] Li X, Xing M, Yang J, et al. Organic Matter Humification in VermifiltrationProcess for Domestic Sewage Sludge Treatment by Excitation–EmissionMatrix Fluorescence and Fourier Transform Infrared Spectroscopy[J].Journal of Hazardous Materials,2013,261:491-499.
    [3] Lloret E, Pastor L, Pradas P, et al. Semi Full-Scale Thermophilic AnaerobicDigestion (TAnD) for Advanced Treatment of Sewage Sludge: StabilizationProcess and Pathogen Reduction[J]. Chemical Engineering Journal,2013,232:42-50.
    [4] Molina M J, Soriano M D, Ingelmo F, et al. Stabilisation of Sewage Sludgeand Vinasse Bio-Wastes by Vermicomposting with Rabbit Manure UsingEisenia Fetida [J]. Bioresource Technology,2013,137:88-97.
    [5] Mukherjee A, Lal R, Zimmerman A R. Effects of Biochar and OtherAmendments on the Physical Properties and Greenhouse Gas Emissions of anArtificially Degraded Soil[J]. Science of The Total Environment,2014,487:26-36.
    [6] Mahdy A M. Soil Properties and Wheat Growth and Nutrients as Affected byCompost Amendment under Saline Water Irrigation[J]. Pedosphere,2011,21(6):773-781.
    [7] Akili D K, Ibrahim K K, Jong-Mihn W. Advances in Seawater DesalinationTechnologies[J]. Desalination,2008,221:47-69.
    [8] Wang S, Li X, Liu W, et al. Degradation of Pyrene by ImmobilizedMicroorganisms in Saline-Alkaline Soil[J]. Journal of EnvironmentalSciences,2012,24(9):1662-1669.
    [9]李志杰,孙文彦,马卫萍等.盐碱土改良技术回顾与展望.山东农业科学,2010,2:73-77.
    [10] Williams K H, N'guessan A, Druhan J, et al. Electrodic VoltagesAccompanying Stimulated Bioremediation of a Uranium-ContaminatedAquifer[J]. Journal of Geophysical Research-Biogeosciences,2010,115(5):600-605.
    [11] Boghani H C, Kim J R, Dinsdale R M, et al. Control of Power Sourced from aMicrobial Fuel Cell Reduces Its Start-Up Time and IncreasesBioelectrochemical Activity[J]. Bioresource Technology,2013,140:277-285.
    [12] Lu L, Xing D, Liu B, et al. Enhanced Hydrogen Production from WasteActivated Sludge by Cascade Utilization of Organic Matter in MicrobialElectrolysis Cells[J]. Water Research,2012,46(4):1015-1026.
    [13] Chae K J, Choi M J, Lee J, et al. Biohydrogen Production via BiocatalyzedElectrolysis in Acetate-Fed Bioelectrochemical Cells and MicrobialCommunity Analysis[J]. International Journal of Hydrogen Energy,2008,33(19):5184-5192.
    [14] Rabaey K, Butzer S, Brown S, et al. High Current Generation Coupled toCaustic Production Using a Lamellar Bioelectrochemical System[J].Environmental Science&Technology,2010,44(11):4315-4321.
    [15] Kelly P T, He Z. Nutrients Removal and Recovery in BioelectrochemicalSystems: a Review[J]. Bioresource Technology,2014,153:351-360.
    [16] Zhang X, Zhu F, Chen L, et al. Removal of Ammonia Nitrogen fromWastewater Using an Aerobic Cathode Microbial Fuel Cell[J]. BioresourceTechnology,2013,146:161-168.
    [17] Huang L, Chai X, Chen G, et al. Effect of Set Potential on HexavalentChromium Reduction and Electricity Generation from Biocathode MicrobialFuel Cells[J]. Environmental Science&Technology,2011,45(11):5025-5031.
    [18] Luo H, Liu G, Zhang R, et al. Heavy Metal Recovery Combined with H2Production from Artificial Acid Mine Drainage Using the MicrobialElectrolysis Cell[J]. Journal of Hazardous Materials,2014,270:153–159.
    [19] AlMarzooqi F A, Al Ghaferi A A, Saadat I, et al. Application of CapacitiveDeionisation in water desalination: A review[J]. Desalination,2014,342:3-15.
    [20] Cohen I, Avraham E, Bouhadana Y, et al. Long Term Stability of CapacitiveDe-Ionization Processes for Water Desalination: The Challenge of PositiveElectrodes Corrosion[J]. Electrochimica Acta,2013,106:91-100.
    [21] Logan B E. Exoelectrogenic Bacteria that Power Microbial Fuel Cells[J].Nature Reviews Microbiology,2009,7(5):375-381.
    [22] Shannon M A, Bohn P W, Elimelech M, et al. Science and Technology forWater Purification in the Coming Decades[J]. Nature,2008,452(7185):301-310.
    [23] Khawaji A D, Kutubkhanah I K, Wie J-M. Advances in SeawaterDesalination Technologies[J]. Desalination,2008,221(1-3):47-69.
    [24] Elimelech M, Phillip W A. The Future of Seawater Desalination: Energy,Technology, and the Environment[J]. Science,2011,333(6043):712-717.
    [25] Subramani A, Badruzzaman M, Oppenheimer J, et al. Energy MinimizationStrategies and Renewable Energy Utilization for Desalination: a Review[J].Water Research,2011,45(5):1907-1920.
    [26] Liu C, Rainwater K, Song L. Energy Analysis and Efficiency Assessment ofReverse Osmosis Desalination Process[J]. Desalination,2011,276(1):352-358.
    [27] Semiat R. Energy Issues in Desalination Processes[J]. Environmental Science&Technology,2008,42(22):8193-8201.
    [28] Brastad K S, He Z. Water Softening Using Microbial Desalination CellTechnology[J]. Desalination,2013,309:32-37.
    [29] You S J, Ren N Q, Zhao Q L, et al. Power Generation and ElectrochemicalAnalysis of Biocathode Microbial Fuel Cell Using Graphite Fibre Brush asCathode Material[J]. Fuel Cells,2009,9(5):588-596.
    [30] Rismani-Yazdi H, Carver S M, Christy A D, et al. Cathodic Limitations inMicrobial Fuel Cells: an Overview[J]. Journal of Power Sources,2008,180(2):683-694.
    [31] Kumar G, Raja M, Parthasarathy S. High Performance Electrodes with VeryLow Platinum Loading for Polymer Electrolyte Fuel Cells[J]. ElectrochimicaActa,1995,40(3):285-290.
    [32] Tsampas M N, Pikos A, Brosda S, et al. The Effect of Membrane Thicknesson the Conductivity of Nafion[J]. Electrochimica Acta,2006,51(13):2743-2755.
    [33] Cao X, Huang X, Liang P, et al. A New Method for Water Desalination UsingMicrobial Desalination Cells[J]. Environmental Science&Technology,2009,43(18):7148-7152.
    [34] Mehanna M, Saito T, Yan J, et al. Using Microbial Desalination Cells toReduce Water Salinity prior to Reverse Osmosis[J]. Energy&EnvironmentalScience,2010,3(8):1114-1120.
    [35] Luo H, Xu P, Roane T M, et al. Microbial Desalination Cells for ImprovedPerformance in Wastewater Treatment, Electricity Production, andDesalination[J]. Bioresource Technology,2012,105:60-66.
    [36] Luo H, Xu P, Jenkins P E, et al. Ionic Composition and TransportMechanisms in Microbial Desalination Cells[J]. Journal of MembraneScience,2012,409:16-23.
    [37] Jacobson K S, Drew D M, He Z. Efficient Salt Removal in a ContinuouslyOperated Upflow Microbial Desalination Cell with an Air Cathode[J].Bioresource Technology,2011,102(1):376-380.
    [38] Kim Y, Logan B E. Series Assembly of Microbial Desalination CellsContaining Stacked Electrodialysis Cells for Partial or Complete SeawaterDesalination[J]. Environmental Science&Technology,2011,45(13):5840-5845.
    [39] Ping Q, He Z. Effects of Inter-Membrane Distance and Hydraulic RetentionTime on the Desalination Performance of Microbial Desalination Cells[J].Desalination and Water Treatment,2014,52(7-9):1324-1331.
    [40] Ge Z, Dosoretz C G, He Z. Effects of Number of Cell Pairs on thePerformance of Microbial Desalination Cells[J]. Desalination,2014,341:101-106.
    [41] Chen X, Xia X, Liang P, et al. Stacked Microbial Desalination Cells toEnhance Water Desalination Efficiency[J]. Environmental Science&Technology,2011,45(6):2465-2470.
    [42] Chen X, Liang P, Wei Z, et al. Sustainable Water Desalination and ElectricityGeneration in a Separator Coupled Stacked Microbial Desalination Cell withBuffer Free Electrolyte Circulation[J]. Bioresource Technology,2012,119:88-93.
    [43] Qu Y, Feng Y, Liu J, et al. Salt Removal Using Multiple MicrobialDesalination Cells under Continuous Flow Conditions[J]. Desalination,2013,317:17-22.
    [44] Morel A, Zuo K, Xia X, et al. Microbial Desalination Cells Packed withIon-Exchange Resin to Enhance Water Desalination Rate[J]. BioresourceTechnology,2012,118:43-48.
    [45] Zhang F, Chen M, Zhang Y, et al. Microbial Desalination Cells with IonExchange Resin Packed to Enhance Desalination at Low SaltConcentration[J]. Journal of Membrane Science,2012,417:28-33.
    [46] Zuo K, Yuan L, Wei J, et al. Competitive Migration Behaviors of MultipleIons and Their Impacts on Ion-Exchange Resin Packed MicrobialDesalination Cell[J]. Bioresource Technology,2013,146:637-642.
    [47] Werner C M, Logan B E, Saikaly P E, et al. Wastewater Treatment, EnergyRecovery and Desalination Using a Forward Osmosis Membrane in anAir-Cathode Microbial Osmotic Fuel Cell[J]. Journal of Membrane Science,2013,428:116-122.
    [48] Zhang B, He Z. Improving Water Desalination by Hydraulically Coupling anOsmotic Microbial Fuel Cell with a Microbial Desalination Cell[J]. Journalof Membrane Science,2013,441:18-24.
    [49] Forrestal C, Xu P, Ren Z. Sustainable Desalination Using a MicrobialCapacitive Desalination Cell[J]. Energy&Environmental Science,2012,5(5):7161-7167.
    [50] Yuan L, Yang X, Liang P, et al. Capacitive Deionization Coupled withMicrobial Fuel Cells to Desalinate Low-Concentration Salt Water[J].Bioresource Technology,2012,110:735-738.
    [51] Feng C, Hou C H, Chen S, et al. A Microbial Fuel Cell Driven CapacitiveDeionization Technology for Removal of Low Level Dissolved Ions[J].Chemosphere,2013,91(5):623-628.
    [52] Mehanna M, Kiely P D, Call D F, et al. Microbial Electrodialysis Cell forSimultaneous Water Desalination and Hydrogen Gas Production[J].Environmental Science&Technology,2010,44(24):9578-9583.
    [53] Luo H, Jenkins P E, Ren Z. Concurrent Desalination and HydrogenGeneration Using Microbial Electrolysis and Desalination Cells[J].Environmental Science&Technology,2010,45(1):340-344.
    [54] Chen S, Liu G, Zhang R, et al. Development of the Microbial ElectrolysisDesalination and Chemical-Production Cell for Desalination as Well as Acidand Alkali Productions[J]. Environmental Science&Technology,2012,46(4):2467-2472.
    [55] Chen S, Liu G, Zhang R, et al. Improved Performance of the MicrobialElectrolysis Desalination and Chemical-Production Cell Using the StackStructure[J]. Bioresource Technology,2012,116:507-511.
    [56] Zhu X, Logan B E. Microbial Electrolysis Desalination andChemical-Production Cell for CO2Sequestration[J]. BioresourceTechnology,2014,159:24-29.
    [57]陈衬,汪家权,陈少华,等.新型微生物脱盐电池处理重金属铬废水[J].环境工程学报,2013,7(5):1843-1848.
    [58] An Z, Zhang H, Wen Q, et al. Desalination Combined with Copper (II)Removal in a Novel Microbial Desalination Cell[J]. Desalination,2014,346:115-121.
    [59] Zhang Y, Angelidaki I. A New Method for in Situ Nitrate Removal fromGroundwater Using Submerged Microbial Desalination-Denitrification Cell(SMDDC)[J]. Water Research,2013,47(5):1827-1836.
    [60] Kim Y, Logan B E. Microbial Desalination Cells for Energy Production andDesalination[J]. Desalination,2013,308:122-130.
    [61] Ping Q, He Z. Improving the Flexibility of Microbial Desalination Cellsthrough Spatially Decoupling Anode and Cathode[J]. BioresourceTechnology,2013,144:304-310.
    [62] Rabaey K, Van de Sompel K, Maignien L, et al. Microbial Fuel Cells forSulfide Removal[J]. Environmental Science&Technology,2006,40(17):5218-5224.
    [63] Zhao F, Rahunen N, Varcoe J R, et al. Factors Affecting the Performance ofMicrobial Fuel Cells for Sulfur Pollutants Removal[J]. Biosensors andBioelectronics,2009,24(7):1931-1936.
    [64] Mohanakrishna G, Venkata Mohan S, Sarma P N. Bio-ElectrochemicalTreatment of Distillery Wastewater in Microbial Fuel Cell FacilitatingDecolorization and Desalination along with Power Generation[J]. Journal ofHazardous Materials,2010,177(1):487-494.
    [65] Patil S A, Surakasi V P, Koul S, et al. Electricity Generation Using ChocolateIndustry Wastewater and Its Treatment in Activated Sludge Based MicrobialFuel Cell and Analysis of Developed Microbial Community in the AnodeChamber[J]. Bioresource Technology,2009,100(21):5132-5139.
    [66] Oh S E, Logan B E. Hydrogen and Electricity Production from a FoodProcessing Wastewater Using Fermentation and Microbial Fuel CellTechnologies[J]. Water Research,2005,39(19):4673-4682.
    [67] Venkata Mohan S, Mohanakrishna G, Reddy B P, et al. BioelectricityGeneration from Chemical Wastewater Treatment in Mediatorless (Anode)Microbial Fuel Cell (MFC) Using Selectively Enriched Hydrogen ProducingMixed Culture under Acidophilic Microenvironment[J]. BiochemicalEngineering Journal,2008,39(1):121-130.
    [68] Kalleary S, Mohammed Abbas F, Ganesan A, et al. Biodegradation andBioelectricity Generation by Microbial Desalination Cell[J]. InternationalBiodeterioration&Biodegradation,2014,92:20-25.
    [69] Suor D, Ma J, Wang Z, et al. Enhanced Power Production from WasteActivated Sludge in Rotating-Cathode Microbial Fuel Cells: The Effects ofAquatic Worm Predation[J]. Chemical Engineering Journal,2014,248:415-421.
    [70] Jiang J, Zhao Q, Wei L, et al. Extracellular Biological Organic Matters inMicrobial Fuel Cell Using Sewage Sludge as Fuel[J]. Water Research,2010,44(7):2163-2170.
    [71] Jiang J, Zhao Q, Zhang J, et al. Electricity Generation from Bio-Treatment ofSewage Sludge with Microbial Fuel Cell[J]. Bioresource Technology,2009,100(23):5808-5812.
    [72] Zhang G, Zhao Q, Jiao Y, et al. Efficient Electricity Generation from SewageSludge Using Biocathode Microbial Fuel Cell[J]. Water Research,2012,46(1):43-52.
    [73] Scott K, Murano C. A Study of a Microbial Fuel Cell Battery Using ManureSludge Waste[J]. Journal of Chemical Technology and Biotechnology,2007,82(9):809-817.
    [74]黄更,姜珺秋,赵庆良,等.生物产电加速厌氧堆肥污泥降解及产电性能[J].浙江大学学报(工学版),2013,47(5):883-888.
    [75]于航,姜珺秋,赵庆良,等.微生物燃料电池型厌氧堆肥系统处理脱水污泥[J],哈尔滨工程大学学报,2013,8:018.
    [76] Wang X, Feng Y, Wang H, et al. Bioaugmentation for Electricity Generationfrom Corn Stover Biomass Using Microbial Fuel Cells[J]. EnvironmentalScience&Technology,2009,43(15):6088-6093.
    [77] Xiao L, He Z. Applications and Perspectives of Phototrophic Microorganismsfor Electricity Generation from Organic Compounds in Microbial FuelCells[J]. Renewable and Sustainable Energy Reviews,2014,37:550-559.
    [78]李宇斐,温沁雪,张慧超,等.不同阴极电极类型对微生物脱盐燃料电池的影响[J].化工进展,2012,31:64-67.
    [79] You S, Zhao Q, Zhang J, et al. A Microbial Fuel Cell Using Permanganate asthe Cathodic Electron Acceptor[J]. Journal of Power Sources,2006,162(2):1409-1415.
    [80] Li Y, Lu A, Ding H, et al. Cr (VI) Reduction at Rutile-Catalyzed Cathode inMicrobial Fuel Cells[J]. Electrochemistry Communications,2009,11(7):1496-1499.
    [81] Butler C S, Clauwaert P, Green S J, et al. Bioelectrochemical PerchlorateReduction in a Microbial Fuel Cell[J]. Environmental Science&Technology,2010,44(12):4685-4691.
    [82] Logan B E, Murano C, Scott K, et al. Electricity Generation from Cysteine ina Microbial Fuel Cell[J]. Water Research,2005,39(5):942-952.
    [83] Jacobson K S, Drew D M, He Z. Use of a Liter-Scale Microbial DesalinationCell as a Platform to Study Bioelectrochemical Desalination with SaltSolution or Artificial Seawater[J]. Environmental Science&Technology,2011,45(10):4652-4657.
    [84] Schmidt T J, Paulus U A, Gasteiger H A, et al. The Oxygen ReductionReaction on a Pt/carbon Fuel Cell Catalyst in the Presence of ChlorideAnions[J]. Journal of Electroanalytical Chemistry,2001,508(1):41-47.
    [85] Malaeb L, Katuri K P, Logan B E, et al. A Hybrid Microbial Fuel CellMembrane Bioreactor with a Conductive Ultrafiltration MembraneBiocathode for Wastewater Treatment[J]. Environmental science&technology,2013,47(20):11821-11828.
    [86] Liang P, Wei J, Li M, et al. Scaling up a Novel Denitrifying Microbial FuelCell with an Oxic-Anoxic Two Stage Biocathode[J]. Frontiers ofEnvironmental Science&Engineering,2013,7(6):913-919.
    [87] Zhang G, Zhao Q, Jiao Y, et al. Improved Performance of Microbial Fuel CellUsing Combination Biocathode of Graphite Fiber Brush and GraphiteGranules[J]. Journal of Power Sources,2011,196(15):6036-6041.
    [88] Liang P, Yuan L, Wu W, et al. Enhanced Performance of Bio-CathodeMicrobial Fuel Cells with the Applying of Transient-State OperationModes[J]. Bioresource Technology,2013,147:228-233.
    [89] Venkata Mohan S, Srikanth S. Enhanced Wastewater Treatment Efficiencythrough Microbially Catalyzed Oxidation and Reduction: Synergistic Effectof Biocathode Microenvironment[J]. Bioresource Technology,2011,102(22):10210-10220.
    [90] Kokabian B, Gude V G. Photosynthetic Microbial Desalination Cells(PMDCs) for Clean Energy, Water and Biomass Production[J].Environmental Science: Processes&Impacts,2013,15(12):2178-2185.
    [91] Barret M, Delgadillo-Mirquez L, Trably E, et al. Anaerobic Removal of TraceOrganic Contaminants in Sewage Sludge:15years of Experience[J].Pedosphere,2012,22(4):508-517.
    [92] Valderrama C, Granados R, Cortina J L. Stabilisation of Dewatered DomesticSewage Sludge by Lime Addition as Raw Material for the Cement Industry:Understanding Process and Reactor Performance[J]. Chemical EngineeringJournal,2013,232:458-467.
    [93] Zhen G, Yan X, Zhou H, et al. Effects of Calcined Aluminum Salts on theAdvanced Dewatering and Solidification/Stabilization of Sewage Sludge[J].Journal of Environmental Sciences,2011,23(7):1225-1232.
    [94] Zhen G, Lu X, Cheng X, et al. Hydration Process of the Aluminate12CaO·7Al2O3Assisted Portland Cement-Based Solidification/Stabilizationof Sewage Sludge[J]. Construction and Building Materials,2012,30:675-681.
    [95] Cao Y, Paw owski A. Sewage Sludge-to-Energy Approaches Based onAnaerobic Digestion and Pyrolysis: Brief Overview and Energy EfficiencyAssessment[J]. Renewable and Sustainable Energy Reviews,2012,16(3):1657-1665.
    [96] Samolada M C, Zabaniotou A A. Comparative Assessment of MunicipalSewage Sludge Incineration, Gasification and Pyrolysis for a SustainableSludge-to-Energy Management in Greece[J]. Waste Management,2014,34(2):411-420.
    [97] Pudasainee D, Seo Y C, Kim J H, et al. Fate and Behavior of Selected HeavyMetals with Mercury Mass Distribution in a Fluidized Bed Sewage SludgeIncinerator[J]. Journal of Material Cycles and Waste Management,2013,15(2):202-209.
    [98] Astals S, Venegas C, Peces M, et al. Balancing Hygienization and AnaerobicDigestion of Raw Sewage Sludge[J]. Water Research,2012,46(19):6218-6227.
    [99] Himanen M, H nninen K. Composting of Bio-Waste, Aerobic and AnaerobicSludges-Effect of Feedstock on the Process and Quality of Compost[J].Bioresource Technology,2011,102(3):2842-2852.
    [100] Ingelmo F, Molina M J, Soriano M D, et al. Influence of Organic MatterTransformations on the Bioavailability of Heavy Metals in a Sludge BasedCompost[J]. Journal of Environmental Management,2012,95:104-109.
    [101] Zhang W, Wei Q, Wu S, et al. Batch Anaerobic Co-Digestion of Pig Manurewith Dewatered Sewage Sludge under Mesophilic Conditions[J]. AppliedEnergy,2014,128:175-183.
    [102] Cukjati N, Zupan i G D, Ro M, et al. Composting of Anaerobic Sludge: AnEconomically Feasible Element of a Sustainable Sewage SludgeManagement[J]. Journal of Environmental Management,2012,106:48-55.
    [103] Wang H, Wan Z, Yu S, et al. Catastrophic Eco-Environmental Change in theSongnen Plain, Northeastern China since1900s[J]. Chinese GeographicalScience,2004,14(2):179-185.
    [104] Zhang G, Deng W, Yang Y S, et al. Evolution Study of a RegionalGroundwater System Using Hydrochemistry and Stable Isotopes in SongnenPlain, Northeast China[J]. Hydrological Processes,2007,21(8):1055-1065.
    [105]李秀军,李取生.松嫩平原西部盐碱地特点及合理利用研究[J].农业现代化研究,2002,23(5):361-364.
    [106] Raychev T, Popandova S, Józefaciuk G, et al. Physicochemical Reclamationof Saline Soils Using Coal Powder[J]. International Agrophysics,2001,15(1):51-54.
    [107] Han L, Liu H, Yu S, et al. Potential Application of Oat for Phytoremediationof Salt Ions in Coastal Saline-Alkali Soil[J]. Ecological Engineering,2013,61:274-281.
    [108] Jha D, Shirley N, Tester M, et al. Variation in Salinity Tolerance and ShootSodium Accumulation in Arabidopsis Ecotypes Linked to Differences in theNatural Expression Levels of Transporters Involved in Sodium Transport[J].Plant, Cell&Environment,2010,33(5):793-804.
    [109] Hajiboland R, Aliasgharzadeh N, Laiegh S F, et al. Colonization withArbuscular Mycorrhizal Fungi Improves Salinity Tolerance of Tomato(Solanum Lycopersicum L.) Plants[J]. Plant and Soil,2010,331(1-2):313-327.
    [110] Raya S, Gómez I, García F, et al. Effect of Biosolid Waste Compost on SoilRespiration in Salt-Affected Soils[C]. EGU General Assembly ConferenceAbstracts,2013,15:7720.
    [111] Lag-Brotons A, Gómez I, Navarro-Pedre o J, et al. Effects of Sewage SludgeCompost on Cynara cardunculus L. Cultivation in a Mediterranean Soil[J].Compost Science&Utilization,2014,22(1):33-39.
    [112]尹军,谭学军,廖国盘,等.我国城市污水污泥的特性与处置现状[J].中国给水排水,2003,1:21-24.
    [113] Fernández J M, Plaza C, Hernández D, et al. Carbon Mineralization in anArid Soil Amended with Thermally-Dried and Composted Sewage Sludges[J].Geoderma,2007,137(3):497-503.
    [114] Dendooven L, Alcántara-Hernández R J, Valenzuela-Encinas C, et al.Dynamics of Carbon and Nitrogen in an Extreme Alkaline Saline Soil: aReview[J]. Soil Biology and Biochemistry,2010,42(6):865-877.
    [115]林代炎,杨菁,叶美锋,等.不同污泥肥料对水稻和大豆的肥效实验研究[J].安全与环境学报,2007,7(1):111-114.
    [116] Mahapatra K, Ramteke D S, Paliwal L J, et al. Agronomic Application ofFood Processing Industrial Sludge to Improve Soil Quality and CropProductivity[J]. Geoderma,2013,207:205-211.
    [117]周学武.粉煤灰与污泥配施改良山东郑路,华丰盐碱地的实验研究[D].北京:中国地质大学,2006.42-70.
    [118] Sahin U, Angin I, Kiziloglu F M. Effect of Freezing and Thawing Processeson Some Physical Properties of Saline-Sodic Soils Mixed with SewageSludge or Fly Ash[J]. Soil and Tillage Research,2008,99(2):254-260.
    [119] García-Orenes F, Guerrero C, Mataix-Solera J, et al. Factors Controlling theAggregate Stability and Bulk Density in two Different Degraded SoilsAmended with Biosolids[J]. Soil and Tillage Research,2005,82(1):65-76.
    [120] Aggelides S M, Londra P A. Effects of Compost Produced from Town Wastesand Sewage Sludge on the Physical Properties of a Loamy and a Clay Soil[J].Bioresource Technology,2000,71(3):253-259.
    [121]陈凌霞,黄杰,魏峰,等.生活污泥长期施用对土壤理化性状的影响[J].上海农业科技,2005,2:27-28.
    [122] Navas A, Bermúdez F, Mach n J. Influence of Sewage Sludge Application onPhysical and Chemical Properties of Gypsisols[J]. Geoderma,1998,87(1):123-135.
    [123] Tazeh E S, Pazira E, Neyshabouri M R, et al. Effects of Two OrganicAmendments on EC, SAR and Soluble Ions Concentration in a SalinesodicSoil[J]. International Journal of Biosciences,2013,3(9):55-68.
    [124]唐银健,陈玲,程五良,等.施用污泥堆肥对滩涂土壤理化性质的影响[J].四川环境,2007,25(6):13-16.
    [125] Pascual J A, Garcia C, Hernandez T. Comparison of Fresh and CompostedOrganic Waste in Their Efficacy for the Improvement of Arid Soil Quality[J].Bioresource Technology,1999,68(3):255-264.
    [126] Wu Y, Li Y, Zheng C, et al. Organic Amendment Application Influence SoilOrganism Abundance in Saline Alkali Soil[J]. European Journal of SoilBiology,2013,54:32-40.
    [127] Bastida F, Kandeler E, Moreno J L, et al. Application of Fresh andComposted Organic Wastes Modifies Structure, Size and Activity of SoilMicrobial Community under Semiarid Climate[J]. Applied Soil Ecology,2008,40(2):318-329.
    [128]孙玉焕,骆永明,滕应,等.长江三角洲地区污水污泥与健康安全风险研究V.污泥施用对土壤微生物群落功能多样性的影响[J].土壤学报,2009,3:406-411.
    [129] Seleiman M F, Santanen A, Jaakkola S, et al. Biomass Yield and Quality ofBioenergy Crops Grown with Synthetic and Organic Fertilizers[J]. Biomassand Bioenergy,2013,59:477-485.
    [130] Tomei M C, Rita S, Mininni G. Performance of Sequential Anaerobic/AerobicDigestion Applied to Municipal Sewage Sludge[J]. Journal of EnvironmentalManagement,2011,92(7):1867-1873.
    [131] Park J H, Lamb D, Paneerselvam P, et al. Role of Organic Amendments onEnhanced Bioremediation of Heavy Metal (Loid) Contaminated Soils[J].Journal of Hazardous Materials,2011,185(2):549-574.
    [132]陈同斌,黄启飞,高定,等.中国城市污泥的重金属含量及其变化趋势[J].环境科学学报,2003,23(5):561-569.
    [133] Madyiwa S, Chimbari M, Nyamangara J, et al. Cumulative Effects of SewageSludge and Effluent Mixture Application on Soil Properties of a Sandy Soilunder a Mixture of Star and Kikuyu Grasses in Zimbabwe[J]. Physics andChemistry of the Earth, Parts A/B/C,2002,27(11):747-753.
    [134] Zhu N, Guo X. Sequential Extraction of Anaerobic Digestate Sludge for theDetermination of Partitioning of Heavy Metals[J]. Ecotoxicology andEnvironmental Safety,2014,102:18-24.
    [135] Huang Z Y, Xie H, Cao Y L, et al. Assessing of Distribution, Mobility andBioavailability of Exogenous Pb in Agricultural Soils Using IsotopicLabeling Method Coupled with BCR Approach[J]. Journal of HazardousMaterials,2014,266:182-188.
    [136] Maiz I, Arambarri I, Garcia R, et al. Evaluation of Heavy Metal Availabilityin Polluted Soils by Two Sequential Extraction Procedures Using FactorAnalysis[J]. Environmental Pollution,2000,110(1):3-9.
    [137]胡文.土壤-植物系统中重金属的生物有效性及其影响因素的研究[D].北京:北京林业大学林学院,2008.110-111.
    [138]刘春阳,张宇峰,滕洁.土壤中重金属污染的研究进展[J].污染防治技术,2006,19(4):42-45.
    [139]冯素萍,刘慎坦,杜伟,等.利用BCR改进法和Tessier修正法提取不同类型土壤中Cu, Zn, Fe, Mn的对比研究[J].分析测试学报,2009,28(3):297-300.
    [140]温琰茂,鲁艳兵.施有城市污泥的土壤重金属生物有效性[J].中山大学学报:自然科学版,1999,38(4):97-101.
    [141]林云琴,周少奇,王德汉.施加堆肥后土壤中重金属形态变化研究-造纸污泥堆肥农用的重金属污染研究之二[J].中国造纸学报,2008,22(4):51-55.
    [142] Sánchez-Martín M J, García-Delgado M, Lorenzo L F, et al. Heavy Metals inSewage Sludge Amended Soils Determined by Sequential Extractions as aFunction of Incubation Time of Soils[J]. Geoderma,2007,142(3):262-273.
    [143]李淑更.脱水污泥的土地资源化利用及其环境效应的试验研究[D].广州:华南理工大学,2009.108-109.
    [144] Khan S, Wang N, Reid B J, et al. Reduced Bioaccumulation of PAHs byLactuca Satuva L. Grown in Contaminated Soil Amended with SewageSludge and Sewage Sludge Derived Biochar[J]. Environmental Pollution,2013,175:64-68.
    [145] Oleszczuk P, Zielińska A, Cornelissen G. Stabilization of Sewage Sludge byDifferent Biochars towards Reducing Freely Dissolved Polycyclic AromaticHydrocarbons (Pahs) Content[J]. Bioresource Technology,2014,156:139-145.
    [146]蔡全英,王伯光.城市污泥堆肥过程中有机污染物的变化[J].农业环境保护,2001,20(3):186-189.
    [147] Cea-Barcia G, Carrère H, Steyer J P, et al. Evidence for PAH RemovalCoupled to the First Steps of Anaerobic Digestion in Sewage Sludge[J].International Journal of Chemical Engineering,2013,2013:1-6.
    [148]孙玉焕,骆永明,吴龙华,等.长江三角洲地区城市污水污泥重金属含量研究[J].环境保护科学,2009,35(4):26-29.
    [149] Gaspard P, Ambolet Y, Schwartzbrod J. Urban Sludge Reused forAgricultural Purposes: Soils Contamination and Model Development for theParasitological Risk Assessment[J]. Bulletin De L Academie Nationale DeMedecine,1997,181(1):43-57.
    [150] Gibbs R A, Hu C J, Ho G E, et al. Regrowth of Faecal Coliforms andSalmonellae in Stored Biosolids and Soil Amended with Biosolids[J]. WaterScience and Technology,1997,35(11):269-275.
    [151]孙玉焕,杨志海.施污泥土壤中粪大肠菌群的动态变化及其环境卫生风险[J].青岛科技大学学报:自然科学版,2008,29(4):310-313.
    [152] Rigane M K, Medhioub K. Assessment of Properties of Tunisian AgriculturalWaste Composts: Application as Components in Reconstituted AnthropicSoils and Their Effects on Tomato Yield and Quality[J]. Resources,Conservation and Recycling,2011,55(8):785-792.
    [153] Carneiro J P, Coutinho J, Trindade H. Nitrate Leaching from a Maize OatsDouble-Cropping Forage System Fertilized with Organic Residues underMediterranean Conditions[J]. Agriculture, Ecosystems&Environment,2012,160:29-39.
    [154] Fumagalli M, Perego A, Acutis M. Modelling Nitrogen Leaching fromSewage Sludge Application to Arable Land in the Lombardy Region(Northern Italy)[J]. Science of the Total Environment,2013,461:509-518.
    [155]黄游,陈玲,赵建夫.园林施用堆肥污泥后土壤中氮的淋滤和迁移行为研究[J].广东农业科学,2012,39(14):172-175.
    [156] Ke Y, Chai L Y, Min X B, et al. Sulfidation of Heavy-Metal-ContainingNeutralization Sludge Using Zinc Leaching Residue as the Sulfur Source forMetal Recovery and Stabilization[J]. Minerals Engineering,2014,61:105-112.
    [157] Page K, Harbottle M J, Cleall P J, et al. Heavy Metal Leaching andEnvironmental Risk from the Use of Compost-Like Output as an EnergyCrop Growth Substrate[J]. Science of the Total Environment,2014,487:260-271.
    [158] Min X, Xie X, Chai L, et al. Environmental Availability and Ecological RiskAssessment of Heavy Metals in Zinc Leaching Residue[J]. Transactions ofNonferrous Metals Society of China,2013,23(1):208-218.
    [159] Zhao S, Jia L, Duo L. The Use of a Biodegradable Chelator for EnhancedPhytoextraction of Heavy Metals by Festuca arundinacea from MunicipalSolid Waste Compost and Associated Heavy Metal Leaching[J]. BioresourceTechnology,2013,129:249-255.
    [160]刘凤侠.林地处理城市污水污泥-硝态氮在土壤中的迁移及对地下水的影响[J].城市环境与城市生态,1998,11:36-38.
    [161]王新,贾永锋.沈阳北部污水处理厂污泥土地利用可行性研究[J].农业环境科学学报,2007,26(4):1543-1546.
    [162]马可婧,张明泉,蔡圃.堆肥污泥重金属在黄土中的淋滤特征[J].环境工程学报,2013,7(4):1557-1562.
    [163]杜莉丽.粉煤灰污泥配施改良石灰岩质土对地下水影响实验研究[D].北京:中国地质大学,2007.35-41
    [164]王维思,王琨,孟繁宇,等.污泥改良盐碱土混配比及其臭味影响研究[C]. Proceedings of Conference on Environmental Pollution and PublicHealth (CEPPH2012),2012:93-96.
    [165] Rabaey K, Ossieur W, Verhaege M, et al. Continuous Microbial Fuel CellsConvert Carbohydrates to Electricity[J]. Water Science&Technology,2005,52(1):515-523.
    [166]中华人民共和国城镇建设行业标准(CJ/T221-2005)城市污水处理厂污泥检验方法.中华人民共和国建设部,2005.
    [167]王心芳,魏复盛,齐文启.水和废水监测分析方法[M].北京:中国环境出版社,2002:216-219.
    [168]鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2008.25-108.
    [169]中华人民共和国农业行业标准(NY/T1121-2006)土壤检测系列标准.中华人民共和国农业部,2006.
    [170]徐争启,倪师军,庹先国,等.潜在生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术,2008,31(2):112-115.
    [171] Zhang J N, Zhao Q L, Aelterman P, et al. Electricity Generation in aMicrobial Fuel Cell with a Microbially Catalyzed Cathode[J]. BiotechnologyLetters,2008,30(10):1771-1776.
    [172] Logan B E, Regan J M. Electricity-Producing Bacterial Communities inMicrobial Fuel Cells[J]. Trends in Microbiology,2006,14(12):512-518.
    [173] Lovley D R. Microbial Fuel Cells: Novel Microbial Physiologies andEngineering Approaches[J]. Current Opinion in Biotechnology,2006,17(3):327-332.
    [174] Rabaey K, Read S T, Clauwaert P, et al. Cathodic Oxygen ReductionCatalyzed by Bacteria in Microbial Fuel Cells[J]. The ISME journal,2008,2(5):519-527.
    [175] Wen Q, Zhang H, Chen Z, et al. Using Bacterial Catalyst in the Cathode ofMicrobial Desalination Cell to Improve Wastewater Treatment andDesalination[J]. Bioresource Technology,2012,125:108-113.
    [176] Jong B C, Kim B H, Chang I S, et al. Enrichment, Performance, andMicrobial Diversity of a Thermophilic Mediatorless Microbial Fuel Cell[J].Environmental Science&Technology,2006,40(20):6449-6454.
    [177] Forrestal C, Xu P, Jenkins P E, et al. Microbial Desalination Cell withCapacitive Adsorption for Ion Migration Control[J]. BioresourceTechnology,2012,120:332-336.
    [178] Logan B E, Hamelers B, Rozendal R, et al. Microbial Fuel Cells:Methodology and Technology[J]. Environmental Science&Technology,2006,40(17):5181-5192.
    [179] Fan Y, Sharbrough E, Liu H. Quantification of the Internal ResistanceDistribution of Microbial Fuel Cells[J]. Environmental Science&Technology,2008,42(21):8101-8107.
    [180] Ping Q, Cohen B, Dosoretz C, et al. Long-Term Investigation of Fouling ofCation and Anion Exchange Membranes in Microbial Desalination Cells[J].Desalination,2013,325:48-55.
    [181] Zhang B, He Z. Integrated Salinity Reduction and Water Recovery in anOsmotic Microbial Desalination Cell[J]. RSC Advances,2012,2(8):3265-3269.
    [182] Post J W, Hamelers H V M, Buisman C J N. Influence of Multivalent Ions onPower Production from Mixing Salt and Fresh Water with a ReverseElectrodialysis System[J]. Journal of Membrane Science,2009,330(1):65-72.
    [183] Luo H, Xu P, Ren Z. Long-Term Performance and Characterization ofMicrobial Desalination Cells in Treating Domestic Wastewater[J].Bioresource Technology,2012,120:187-193.
    [184] Lefebvre O, Tan Z, Kharkwal S, et al. Effect of Increasing Anodic NaClConcentration on Microbial Fuel Cell Performance[J]. BioresourceTechnology,2012,112:336-340.
    [185] Martin E, Savadogo O, Guiot S R, et al. The Influence of OperationalConditions on the Performance of a Microbial Fuel Cell Seeded withMesophilic Anaerobic Sludge[J]. Biochemical Engineering journal,2010,51(3):132-139.
    [186] Raghavulu S V, Mohan S V, Goud R K, et al. Effect of Anodic pHMicroenvironment on Microbial Fuel Cell (MFC) Performance inConcurrence with Aerated and Ferricyanide Catholytes[J]. ElectrochemistryCommunications,2009,11(2):371-375.
    [187] Zeng G, Yu Z, Chen Y, et al. Response of Compost Maturity and MicrobialCommunity Composition to Pentachlorophenol (PCP)-Contaminated Soilduring Composting[J]. Bioresource Technology,2011,102(10):5905-5911.
    [188] Barrington S, Choinière D, Trigui M, et al. Effect of Carbon Source onCompost Nitrogen and Carbon Losses[J]. Bioresource Technology,2002,83(3):189-194.
    [189] Domene X, Solà L, Ramírez W, et al. Soil Bioassays as Tools for SludgeCompost Quality Assessment[J]. Waste Management,2011,31(3):512-522.
    [190] Zucconi F, Monaco A, Debertoldi M. Biological Evaluation of CompostMaturity[J]. Biocycle,1981,22(4):27-29.
    [191] Wong M H. Phytotoxicity of Refuse Compost during the Process ofMaturation[J]. Environmental Pollution Series A, Ecological and Biological,1985,37(2):159-174.
    [192]莫测辉,吴启堂,周友平,等.城市污泥对作物种子发芽及幼苗生长影响的初步研究[J].应用生态学报,1997,8(6):645-649.
    [193] Liu S, Zhu N, Li L Y. The One-Stage Autothermal Thermophilic AerobicDigestion for Sewage Sludge Treatment: Stabilization Process andMechanism[J]. Bioresource Technology,2012,104:266-273.
    [194] Xu H, He P, Wang G, et al. Anaerobic Storage as a Pretreatment for EnhancedBiodegradability of Dewatered Sewage Sludge[J]. Bioresource Technology,2011,102(2):667-671.
    [195] Li X, Dai X, Takahashi J, et al. New Insight into Chemical Changes ofDissolved Organic Matter during Anaerobic Digestion of Dewatered SewageSludge Using EEM-PARAFAC and Two-Dimensional FTIR CorrelationSpectroscopy[J]. Bioresource Technology,2014,159:412-420.
    [196] Dong B, Liu X, Dai L, et al. Changes of Heavy Metal Speciation duringHigh-Solid Anaerobic Digestion of Sewage Sludge[J]. BioresourceTechnology,2013,131:152-158.
    [197] D browska L, Rosińska A. Change of PCBs and Forms of Heavy Metals inSewage Sludge during Thermophilic Anaerobic Digestion[J]. Chemosphere,2012,88(2):168-173.
    [198]常玉海.城市污泥对土壤物理化学性质的影响[J].农业环境与发展,1995,12(3):25-27.
    [199] Zhou S, Lu W, Zhou X. Effects of Heavy Metals on Planting Watercress inKailyard Soil Amended by Adding Compost of Sewage Sludge[J]. ProcessSafety and Environmental Protection,2010,88(4):263-268.
    [200]邵海林,王晓红,李娜,等.生活垃圾和污泥对作物种子发芽及土壤养分状况的影响[J].太原科技,2006(2):29-32.
    [201] Guo X, Yuan D, Jiang J, et al. Detection of Dissolved Organic Matter inSaline–Alkali Soils Using Synchronous Fluorescence Spectroscopy andPrincipal Component Analysis[J]. Spectrochimica Acta Part A: Molecularand Biomolecular Spectroscopy,2013,104:280-286.
    [202] Lu K, Yang X, Shen J, et al. Effect of Bamboo and Rice Straw Biochars onthe Bioavailability of Cd, Cu, Pb and Zn to Sedum Plumbizincicola [J].Agriculture,Ecosystems&Environment,2014,191:124-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700