用户名: 密码: 验证码:
克拉维酸产生菌的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对克拉维酸(clavulanic acid,CA)产生菌-棒状链霉菌NR3585(Streptomyces clavuligerus NR3585)进行了深入的研究,目的是提高其生物合成克拉维酸的能力,以适用于工业化生产的需要。
     为了能够对棒状链霉菌的代谢产物克拉维酸进行定量和定性测定,本论文首先建立了检测发酵样品中克拉维酸含量的生物效价测定法,薄层层析-生物显影法和高效液相色谱法(HPLC)。在对棒状链霉菌的培养条件、菌落特征、及对各种诱变剂的敏感性进行了研究的基础上,利用UV、X—ray、DES、HNO_2及NTG等物理和化学诱变剂对棒状链霉菌进行了诱变处理。为了提高菌种选育的效率、加快菌种选育的进程,本研究建立了耐受高浓度甘油的菌种筛选模型和琼脂块固体发酵的筛选方法,经过考察确定了适宜的固体发酵培养基。经过多代的诱变处理结合筛选模型的应用,本研究选育出了克拉维酸高产菌株-棒状链霉菌U_7D_5XH-45(S.clauligerus U_7D_5XH-45),经摇瓶发酵,其克拉维酸生产能力达1139.4μ/ml,大约是原始出发菌株发酵单位的20倍;以HPLC法测定,克拉维酸含量从大约70%提高到接近100%。
     本论文还对克拉维酸产生菌的发酵培养基进行了考察,通过对碳、氮源的考察确定了发酵培养基最适碳源为麦芽糖,最适氮源为黄豆粉;通过试验发现添加5,10,15 mM的各种氨基酸对克拉维酸的生物合成都没有明显的促进作用;但添加同样量的赖氨酸、缬氨酸、酪氨酸、苯丙氨酸、半胱氨酸或色氨酸则对克拉维酸的生物合成有显著的抑制作用。当培养基中加入5~15mM的半胱氨酸后,克拉维酸的生物合成被完全抑制,与此同时在发酵液中积累了一个浓度较高的未知组分。通过考察无机盐、微量元素对克拉维酸生物合成的影响,发现KNO_3、Mn~(2+)以及低浓度的Mg~(2+)对克拉维酸的生物合成有一定的促进作用。试验还发现氧化还原剂吩嗪甲酯硫酸盐(PMS)在极低的浓度下(1.0μM)就能促进克拉维酸的生物合成。
     通过对发酵培养基的考察,利用均匀设计试验方法对克拉维酸的
    
    沈阳药科大学硕士学位论文 中文摘要
    发酵培养基组成进行了忧化,用优化后的培养基进行克拉维酸发酵,
    发酵单位提高了25.2%。
     通过对克拉维酸发酵条件的考察确定了最适的克拉维酸发酵工
    艺条件:种子及发酵摇瓶的培养温度为 26 C;发酵周期控制在 80~
    84h:接种量控制在 10%;装瓶量为 40ml/250 ml摇瓶;发酵培养基消
    前PH为6.5。
     采用优化后的发酵培养基和发酵工艺条件,本文还对克拉维酸发
    酵过程中的各种参数进行了检测,并通过绘制代谢曲线对发酵过程中
    各种参数之间的相互关系进行了分析。
     通过研究发现磷酸盐对克拉维酸的生物合成有显著的调节作用,
    适合克拉维酸生物合成的磷酸盐浓度在5~10nunol几范围内,高于
    10nunol/L的磷酸盐强烈抑制克拉维酸的生物合成;糖的代谢途径对克
    拉维酸的生物合成也有显著的影响,当添加低浓度(0.1。g/100ml)的
    碘乙酸改变糖的代谢途径时,明显促进了克拉维酸的生物合成。
In order to improve the production of clavulanic acid for the industrial need, the organism Streptomyces clavuligerus NR3585 was studied in this paper.
    Firstly, the bioassay method, TLC-Bio-autograph method and HPLC method of clavulanic acid were developed, so that clavulanic acid in the fermentation samples can be measured qualitatively and quantitatively. On the basis of studies on S. clavuligerus culture characteristic, colonies characteristic and sensitivity to various mutagens, physical and chemical mutagens including UV, X-ray, DES, HNO_(2) and NTG were used in the mutagenesis of Streptomyces clavuligerus. Then, in order to accelerate the process of strain improvement, a glycerol-resistant screening model and an agar column solid fermentation screening method was established.
    A clavulanic acid high-yield strain Streptomyces clavuligerus U7D5XH-45 was obtained after several circles of mutagenesis, which produced 1139.4#/ml clavulanic acid in shaking flask fermentation, about 20 times higher than the productivity of initial strain. At the same time the content of clavulanic acid increased from about 70% to almost 100% measured by HPLC.
    The fermentation media for clavulanic acid production were also inspected and optimized in this paper. The optimal carbon source and nitrogen source was maltose and soybean powder respectively through the study. Feeding amino acids to fermentation medium from 5 mM to 15 mM at the beginning of fermentation showed no promoting effect on the biosynthesis of clavulanic acid. However Lys, Val, Tyr, Phe, Cyc and Trp showed strong inhibition effect on the biosynthesis of clavulanic acid. An unknown product but no clavulanic acid accumulated when Cys was added into the fermentation medium. The investigation of the effects of
    
    
    
    
    inorganic salts and trace elements showed that KNO_(3), Mn2+ and Mg2+ promoted the production of clavulanic acid. Experiment results also showed that feeding of 1.0#M PMS (a redox agent) to fermentation medium stimulated the biosynthesis of clavulanic acid. Fermentation medium of clavulanic acid was optimized through uniform design. The clavulanic acid titer increased obviously with the optimized fermentation medium.
    The optimized fermentation techniques of clavulanic acid production by Streptomyces clavuligerus were as follows: fermentation temperature, 26 癈 ; fermentation period, 80-84h; inoculation volume, 10% (v/v); fermentation volume, 40ml in 250ml shaking flask; pH, 6.5 before sterilization.
    Results showed that phosphate exerted obvious regulative effects on the biosynthesis of clavulanic acid. The optimal concentration of phosphate for the biosynthesis of clavulanic acid was 5-10mmol/L. Higher phosphate concentration depressed clavulanic acid production greatly. The catabolism pathway of saccharide also exerted regulative effects on clavulanic acid biosynthesis.When low concentration (0. lmg/100ml)iodoacetic acid was added to fermentation media in the beginning of fermentation to alter the catabolism pathway of saccharide, the biosynthesis of clavulanic acid was promoted obviously.
引文
[1] Reeves,D.S.Bywater, M J, et al, Antibacterial synergism between beta-lactam antibiotics: results using clavulanic acid(BRL. 14151) with amoxycillin,carbenicillin or cephalori- dinge, Infectiont(suppl) S9,1978
    [2] Brown,A.G, Butterworth D, Cole M, et al. Naturally occurring -lactamase inhibiotors with antibacterial actibity [J]. J. Antibiotics, 1976,29:668
    [3] Pitlik J,Townsend C A. The fate of [2,3,3-2h3,1,2-13C2]-D,L- glycerate in clavulanic acid biosynthesis [J]. J Chem Soc Chem Commun, 1997,32(2):225
    [4] Higgers C E, Kastner R E.Streptomyces clavuligerus sp.Nov, a-lactam antibiotic producer[J].Int J Syst Bacteriol, 1971, 21:326
    [5] Chen C F. Wang Y S,Xu L Y.A new subspecies of Streptomyces clavuligerus, S.clavuligerus subsp. Jinyu- nensis subsp nov[J]. Chin J Antibiot (抗生素杂志), 1998, 23(1): 6
    [6] 黄喜桂,谢炜炜,林文良,等.棒酸的生物检定,福建药学杂志,1990,2(4):11
    [7] 张汝则,克拉维酸—β—内酰胺酶高效抑制剂,国外药学 抗生素分册,1986,(6):424-432
    [8] 郑卫(2001)β—内酰胺及其抑制剂研究进展,国外医药抗生素分册2001,22(2):49~56
    [9] Chen D J. The action mechanism and drug resistance of antibiotics[A]. In:Microbiology pharmacy [M]. Shanghai: Science and Technology University of East China Press, 1999:377
    [10] Chen X Q,Hang Y Y, Chen C X, et al.β-lactam antibiotic [M]. Shanghai: Shanghai Science and Technology Press, 1989:110
    [11] Chen X Q,Hang Y Y, Chen C X, et al.β-lactam antibiotic [M]. Shanghai: Shanghai Science and Technology Press, 1989:110
    [12] De la Fuente J L,Martin J F, Liras P. Nww type of hexameric ornithine carbamoyltransferase with with arginase activity in the cephamycin producers
    
    Streptomyces clavuligerus and Nocardia lactamdurans [J].Biochem J, 1996,320:173
    [13] Valentine B P, Bailey C R,Doberty A,et al .Evidence that arginine is a of clavulanic acid by Streptomyces clavuligerus [J].J Chem Soc Chem Commun, 1993, 28 (6): 1210
    [14] Townsend, C.A. and Ho, M.-F.(1985a). Biosynthesis of clavulanic acid:origin of the C3 unit. J. Amer. Chen. Soc. 107, 1065-1066
    [15] Townsend, C.A. and Ho, M.-F.(1985a). Biosynthesis of clavulanic acid:origin of the C3 unit. J. Amer. Chen. Soc. 107, 1065-I066
    [16] Pitlik, J., and Townsend C A , The fate of [2,3,3-~2H-3, 1,2- ~(13)C_2]-D,L-Glycerate in clavlanic acid biosyntheis. J Chem. Soc. Chem. Comm. 1997:225-226
    [17] Thirkettle, J.E., Baldwin,J. Edwards, J.p. Griffin, et al, 1997. The origin of the carbons of clavulanic acid. J. Chem. Soc. Chem .Comm. 1997:1025-1026
    [18] Khaleeli N, Li R,Townsend CA, Origin of the-lactam carbons in clavulanic acid from an unusuall thiamine pyrophosphate-mediated reaction, J Am Chem Soc, 1999, 121: 9223-9224
    [19] Liras P, Rodriguez-Gracia A. Clavulanic acid, a β-lactamase inhibitor: biosynthesis and molecular genetics [J]. Appl Microbiol Biotechnol, 2000,54:467
    [20] Elson S W, Baggaley K H, Gillett J, et al. Isolation of Two Novel Intracellular β—Lactams and a Novel Dioxygenase Cyclising Enzyme from Streptornyces clavuligerus [J].J. CHEM. SOC. CHEM. COMMUN, 1987,22(6):1736-1738
    [21] Elson S W, Baggaley K H, Gillett J, et al. The roles of clavaminic acid proclavaminic acid in clavulanic acid biosynthesis[J]. J. CHEM. SOC., CHEM. COMMUN, 1987, 22(6):1739-1740
    [22] Baldwin J E, Adlington R M, te al. Isolation of dihydro- clavaminic acid, an intermediate in the biosynthesis of clavulanic acid, Tetrahedron, 1991, 47(24): 4089-4100
    [23] Townsend CA , Krol WJ, The role of molecular oxygen in clavulanic acid biosynthesis: evidence for a bacterial oxidative deamination, J Chem Soc Chem
    
    Commun ,1988, 1234-1236
    [24] Perez-Redondo R, Rodriguea-Garcia A,et al. Deletion of the pyc gene blocks clavulanic acid biosynthesis except in glycerol- contanining medium: evidence for two different genes in formation of the C3 unit [J]. J Bacteriol, 1999, 181:6922
    [25] Aradkar A S,Jense S E. Functional analysis of the gene encoding the clavaminate synthase two isoenzyme involved in clavulanic acid biosynthesis in Streptomyces clavuligerus [J]. J Bacteriol, 1995, 177:1307
    [26] Bachmann, B.O., R. Li, and C.A. Townsend.β—lactam synthetase: a new biosynthetic enzyme. Proc. Natl. Acad. Sci. USA 1998.95:9082-9086
    [27] Hodgson J E, Fosberry A P, et al. Clavulanic acid biosynthesis in Streptomyces clavuligerus: gene cloning and characterization. Gene 1995,166:49-55
    [28] Aiddo K A, Wong A, Alexander D C, et al. Cloning, sequencing and disruption of a gene from Streptomyces clavuligerus involved in clavulanic acid biosynthesis [J]. Gene, 1994,147:41
    [29] Rongfeng Li , Nusrat Khaleeli, and Craig A. Townsend . Expansion of the clavulanic acid gene cluster: indentification and in vivo functional analysis of three new genes required for biosynthesis of clavulanic acid by Streptomyces clavuligerus . Journal of Bacteriology, 2000, 182(14): 4087-4095
    [30] Mosher R H, Paradkar A S, et al .Genes specific for the biosynthesis of clavam metabolites antipodal to clavulanic acid are clustered with the gene for clavaminate synthase 1 in Streptomyces clavuligerus[J] . Antimicrobial Agents and Chemotherapy, 1999,43(5): 1215-1224
    [31] Bibb, M.J.The regulation of antibiotic prodction in Streptomyces coelicolor A3 (2). Microbiology 1996, 142:1335-1344
    [32] Sanchez L and Brana A.F, Cell density influences antibiotic biosynthesis in Streptomyces clavuligerus , Microbiology, 1996, 142:1209-1220
    [33] Wietzorrek A, BIBB M, A novel family of proteins that regulate antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. Mol Microbiol, 1997, 25:1177-1184
    
    
    [34] Leskiw B K,Lawlor E J, Fernandez-Ablos J M, te al.TTA codons in some genes prevent their expression in a class of developmental antibiotical-negative Streptomyces mutants [J].Proc Natl Acad Sci, USA, 1991, 88:2461
    [35] Perez-Redondo R A, Rodriguez-Garcia J F, et ac, The claR gene of Streptomyces clavuligerus, encoding a LysR-type regulatory protein controlling clavlanic acid biosynthesis, is linked to the clavulanate-9-aldehyde reductase(car) gene. Gene 1998,211:311-321
    [36] Paradkar HS, Aidoo K Aand Jensen S E. A pathway-specific transcriptional activator regulates late steps of clavulanic acid biosynthesis in Streptomyced clavuligerus . Molecular Mirobiology 1998,27(4),831—843
    [37] Rodriguez-Garcia A, Fudovice M, et al, Arginine boxes and the argR gene in Streptomyces clavuligerus: evidence for a clear regulation of the arginine pathway. Mol Microbiol, 1997, 25:219-228
    [38] Romero J,Liras P, et al, Dissociation of cephamycin and clavulanic acid biosynthesis in Streptomyces clavuligerus, Appl Microbiol Biotechnol ,1984, 20:318-325
    [39] Butterworth, D., Clavulanic acid: properties, biosynthesis and fermentation. In: Vamdamme, E.J.(Ed.), Biotechnology of Industrial antibiotics. New York, Marcel Dekker, Ch. 1984, 6, pp.226-234
    [40] Mayer, A.F.&Deckwer, W.D. Simultaneous production and decomposition of clavulanic acid during Streptomyces clavuligerus cultivation. Applied Microbiology and Biotechnology, 1996,45,41-46
    [41] Gouveia E R, Alvaro Baptista-Neto,et al, Improvement of clavulanic acid production by Streptomyces clavuligerus in medium containing soybean derivatives , World Journal of Microbiology & Biotechnology, 1999, 15:623-627
    [42] Weinberg ED, Secondary metabolism:control by temperature and inorganic phosphate. Dev Ind Microbil, 1974,15:70-81
    [43] Martin JF, Control of antibiotic aynthesis by phosphate. Adv Biochem Eng ,1977,6:105-127
    
    
    [44] Ahmde L ,Pierre G et al, Phosphate repression of cephamycin and clavulanic acid production by Streptomyces clavuligerus, Appl Microbiol Biotechnol , 1987,26:130-135
    [45] Kwon H J, Kim S U, Enhanced biosynthesis of clavulanic acid in Streptomyces clavuligerus due to oxidative by redox- cycling agents, Appl Microbiol Biotechnol ,1998,49:77—83
    [46] Kwon H J, Kim S U, Molecular basis for enhanced biosynthesis of clavulanic acid by a redox-cycling agent, phenazine methosulfate, in Streptomyces clavuligerus, Appl Microbiol Biotechnol,1999,53: 57—62
    [47] 陈春福、柯永忠等,棒状链霉菌原生质体再生和克拉维酸产量变化的研究,中国抗生素杂志,1996,21(2):94—96
    [48] Kwang-Pil C, Kyung-Hwan K, Jung-Woo K. Strain improvement of clavulanic acid producing Streptomyces clavuligerus [A]. Xth International Symposium on Biology of Actinomycetes [C]. Beijing, 1997
    [49] 李丹丹等,棒状链霉菌甘油耐受量与克拉维酸合成的关系,中国抗生素杂志,1999,24(1),14-15
    [50] Marst E N,Margaret Dah-Tsyr Chang and Townsend C A,Two Isozymes of Clavaminate Synthase Central to Clavulanic Acid Formation: Cloning and Sequencing of Both Genes from Streptomyces clavuligerus, Biochemistry, 1992,31:12648
    [51] Aidoo ,K A.,Wong,S., Alexander, D C., et al .Cloning, sequencing and disruption of a gene involved in clavulanic acid biosynthesis Gene, 1994,147:41-46
    [52] Guan J F, Fan C Y, Liao L H.Protein secretion from drug resistant bacteria-a suitable target for new anti- biotics [J]. Chin J Appl Ecol(应用生态学报), 2000,11 (6):947
    [53] 陈向东、肖灿鹏等,关联度分析法优化克拉维酸发酵培养基,药物生物技术,2001,8(1):39—41
    [54] Gouveia E R, Baptista N A, Badino A C. Optimisation of medium composition for clavulanic acid production by Streptomyces clavuligerus [J]. Biotechnol Lett,
    
    2001,23(2):157-160
    [55] Cole et aL:British Patent Specification 1979,№1503977,12-17
    [56] 熊宗贵,抗生素生物合成及其调节机制,沈阳药科大学,chapter 5,pp45~50
    [57] 俞文和,杨纪根,抗生素工艺学,辽宁科技出版社,chapter 19,pp255~286
    [58] Miuambres B, Reglero A, Luengo J M, et al. Characterization of an inducible transport system for glycerol in Streptomyces clavuligerus. J Antibior, 1992,45(2): 269
    [59] 吴梧桐 生物化学 第四版人民卫生出版社2001,217
    [60] 陈肖庆,黄乐毅,等,β—内酰胺抗生素,上海科学技术文献出版社,chapter3,38-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700