用户名: 密码: 验证码:
煤炭开采对地表植物生长影响及菌根修复生态效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了现代煤炭开采对植物根系损伤机制以及丛枝菌根真菌在神东矿区环境治理中的生态效应。首次通过CI-600根系原位监测系统对补连塔矿区先锋植物杨树、沙柳和沙蒿根系进行连续监测,掌握了煤炭开采沉陷对三种植物根系损伤状况及其自修复能力,并指出干旱缺水和煤炭开采导致的伤根是神东矿区生态环境治理的瓶颈所在。在此基础上,通过室内模拟神东矿区干旱缺水和人为机械伤根环境,以玉米为宿主植物,矿区退化土壤为基质,研究丛枝菌根真菌和外源钙对逆境胁迫下玉米生长的影响,以及菌根对矿区退化土壤的改良效应。结果表明接种丛枝菌根真菌和添加外源钙提高了玉米的生物量,促进了玉米对土壤中矿质养分的吸收,丛枝菌根真菌分泌的球囊霉素蛋白对玉米根际土壤具有改良作用。本研究以室内试验取得的结果为理论支撑,将丛枝菌根真菌应用到矿区采煤塌陷区土地复垦中,获得较好的生态效益,接种菌根增加了塌陷区微生物量,有利于复垦区生态系统稳定和可持续利用。
This paper studied the mechanism of plant roots damage from modern coal miningand the ecological effect of arbuscular mycorrhizal fungi (AMF) on environmentalmanagement in Shendong coal mining area. This is the first time to continuous observe theroots of pioneer plants Populus、Salix psammophila and Artemisia sphaerocephala in BuLianta coal mining, with CI-600root growth monitoring system. And the damage ofmodern coal mining to roots of three types of plants was mastered and it is pointed out thatthe roots harm caused by shortage of water and coal mining is the bottle-neck forecological and environmental management in Shendong coal mining. On this basis, theenvironment of shortage of water and artificial roots harm was simulated indoor, the effectof AMF and exogenous calcium on the growth of corn and the improvement effect ofMycorrhiza on degraded soil in mining area were studied in adverse circumstances withcorn as the host plant and soil in coal mining as matrix. The results show that AMF andexogenous calcium applied can improve the biomass of corn and promote the cornabsorption of the mineral elements in soil and GRSP secreted by AMF can improve therhizosphere soil of corn. This study applied AMF to reclamation of subsided area inShendong coal mining with the results obtained from indoor experiments as theory support,and achieved good ecological effect. Application of Mycorrhiza increases biologicalcomponents in subsided area, and helps the stability and sustainable utilization ofecological system.
引文
1.王显政.中国煤炭工业面临的机遇与挑战[J].山西能源与节能,2010,(5):4-6.
    2.胡振琪,魏忠义.煤矿区采动与复垦土壤存在的问题与对策[J].能源环境保护,2003,17(3):3-10.
    3.钱鸣高.对中国煤炭工业发展的思考[J].中国煤炭,2005,(6):5-10.
    4.王双明,黄庆享,范立民,等.生态脆弱矿区含(隔)水层特征及保水开采分区研究[J].煤炭学报,2010,35(1):7-14.
    5.毕银丽,吴福勇,武玉坤.丛枝菌根在煤矿区生态重建中的应用[J].生态学报,2005,25(8):2068-2071.
    6.杜善周,毕银丽,吴王燕,等.丛枝菌根对矿区环境修复的生态效应[J].农业工程学报,2008,24(4):113-116
    7. Singh J.S,Jha A K.Restoration of degraded land:An overview.In:Singh J.S.(ed.)Restoration of Degraded Land: Concepts and Strategies[M]. Rastogi PublicationsMeerut,1993:1–9.
    8. Parrotta J A,Knowles O H.Restoring tropical forests on lands mined for bauxite:Examples from the Brazilian Amazon[J].Ecological engineering,2001,17(2):219-239.
    9. Singh A N,Singh J S.Experiments on ecological restoration of coal mine spoil usingnative trees in a dry tropical environment,India:a synthesis.New Forests,2006,31(1):25-39.
    10.张发旺,赵红梅,宋亚新,等.神府东胜矿区采煤塌陷对水环境影响效应研究[J].地球学报,2007,28(6):521-527.
    11.宋亚新.神府-东胜采煤塌陷区包气带水分运移及生态环境效益研究.北京:中国地质科学院,2007.
    12.程国栋,王根绪.中国西北地区的干旱与旱灾-变化趋势与对策[D].地学前缘,2006,13(1):3-14.
    13.钱正安.干旱灾害和西北干旱气候的研究进展[J].地球科学进展,2001,16(1):28-35.
    14.董东林,余小燕,武强,等.晋陕蒙能源基地矿区水环境评价系统的研究[J].中国矿业大学学报,32(3):247-250.
    15.邱立新,杜铭华,周田君.西北煤炭开发对水环境影响的评价模型与方法[J].干旱区资源与环境,2008,22(2):20-25.
    16.孙海运,李新举,胡振琪,等.马家塔露天矿区复垦土壤质量变化[J].农业工程学报,2008,24(2):205-209.
    17.范钢伟,张东升,马立强.神东矿区浅埋煤层开采覆岩移动与裂隙分布特征[J].中国矿业大学学报,2011,40(2):196-201.
    18.毕银丽,胡振琪,司继涛.接种菌根对复垦土壤营养吸收的影响[J].中国矿业大学学报,2003,31(3):252-257.
    19.张平仓,王文龙,唐克丽,等.神府东胜矿区采煤采煤塌陷及其对环境的影响初探[J].水土保持研究,1994,1(4):35-44.
    20.王文龙,李占斌,张平仓.神府东胜煤田开发中诱发的环境灾害问题研究[J].生态学杂志,2004,23(1):34-38.
    21.周莹,贺晓,徐军,等.半干旱区采煤沉陷对地表植被组成及多样性的影响[J].生态学报,2009,29(8):4517-4523.
    22. Nesmith D S,Ritchie J T.Maize (Zeamays L.) response to a severe soil water deficit duringgrain filling [J].Field Crops Research,1992,29(1):23-25.
    23.王可玲,许春辉,赵福洪,等.水分胁迫对小麦旗叶某些体内叶绿素a荧光参数的影响[J].生物生理学报,1997,13(2):273-278.
    24.山仑,陈培元.旱地农业生理生态基础[M].北京:科学出版社,1999.159-173.
    25.王双,陈家宙,罗勇.施氮水平对不同干旱程度夏玉米生长的影响[J].植物营养与肥料学报,2008,14(4):646-651.
    26.杜善周,毕银丽,王义等.丛枝菌根对神东煤矿区塌陷地的修复作用与生态效应[J].科技导报,2010,28(7):41-44.
    27.王安.神东矿区生态环境综合防治体系构建及其效果[J].中国水土保持科学,2007,5(5):83-87.
    28.李智佩,徐友宁,郭莉,等.陕北现代化煤炭开采区土地沙漠化影响及原因[J].地球科学与环境学报,2010,32(4):398-403.
    29.胡振琪.中国土地复垦与生态重建20年:回顾与展望[J].科技导报,2009,27(17):25-29.
    30. Efrosyni D,Karanika,Andreas P,et al.Arbuscular mycorrhizas contribution to nutrition,productivity,structure and diversity of plant community in mountainous herbaceous grassland ofnorthern Greece[J].Plant Ecology,2008,199(2):225-234.
    31. Eissenstat DM,Wells CE,Yanai RD.Building roots in a changing environment: implicationsfor root longevity[J].New Phytologist,2000,147(1):3-42.
    32. Auge RM. Water relations, drought and vesicular arbuscular mycorrhizal symbiosis[J].Mycorrhiza,2001,11(1):3-42.
    33.毕银丽,吴福勇.菌根对煤矿废弃物生态恢复的营养动力学影响[J].农业工程学报,2006,22(5):147-152.
    34.范英宏,陆兆华,程建龙,等.中国煤矿区主要生态环境问题及生态重建技术[J].生态学报,2003,23(10):2146-2156.
    35. Wong M H.Reclamation of wastes contaminated by copper,lead and zinc[J].EnvironmentalManagement,1986,10(6):707-713.
    36. Ritcey G M. Tailings Management: Problems and Solutions in the Mining Industry[M].Amsterdam: Elsevier,1989.
    37. Johnson M S,Cooke J A,Stevenson J K W.Revegetation of metalliferous wastes and land aftermetal mining. In: Hester and Harrison R M et al. Mining and Its Environmental Impact.Cambridge: Royal Society of Chemistry,1994,31-48.
    38.夏既胜,刘晓芳,谈树成,等.露天矿区生态问题及生态重建方法探讨[J].金属矿山,2009,(6):163-166.
    39.周连碧.开创我国生产矿山土地复垦新局面.中国第30界矿上地质学会议-中国矿山地质60年发展成就论坛文集(北京),2009,72-83.
    40.王文英,李晋川,卢宗恩.矿区生态重建基础理论与方法研究[J].能源环境保护,1999,13(1):10-14.
    41.王改玲,白中科,赵景逵,等.矿区生态重建中生物多样性与可持续发展[J].能源环境保护,2002,16(4):7-10.
    42.左其亭,周可法,吴泽宁.西部干旱区生态环境调控模式综合研究[J].水土保持学报,2003,17(5):23-27.
    43.陈建平.阜新矿区矸石山植被技术影响因素[J].辽宁工程技术大学学报(自然科学版),2009,28(S Ⅱ):157-159.
    44.段海侠.矿区废弃地水土流失的成因及防治对策[J].辽宁工程技术大学学报(自然科学版),2010,29(SⅡ):138-140.
    45.於方,过孝民,张强.中国矿产业的废水污染现状分析与防治对策[J].资源科学,2004,26(2):46-52.
    46.李凌宜,李卓,宁平,等.矿业废弃地生态植被恢复的研究[J].矿业快报,2006,(447):25-27.
    47.冯颖,康勇,范福洲,等.酸性矿山废水形成与处理中的微生物作用[J].有色金属,2005,57(8):103-108.
    48.邵剑,曹国英.煤矿矿区环境污染现状及控制对策[J].工业安全与环保,2002,28(10):26-27.
    49.毕银丽,全文智,柳博会.煤矸石堆放的环境问题及其生物综合治理对策[J].金属矿山,2005,(12):61-64.
    50.吴飞华,刘廷武,裴真明.酸雨引起森林生态系统钙流失研究进展[J].生态学报,2010,30(4):1081-1088.
    51.毛艳丽,任伟松,鲁志鹏,等.大气中氮化物的污染现状及危害[J].煤炭技术,2007,26(5):5-6.
    52.吕波,高伟.新疆矿业发展展望[J].有色矿冶,2006,22(1):57-59.
    53. Quintanilla VB,Hoover D,Bal W,et al.Lead effects on protamine-DNA binding[J].AmericanJournal of Industrial Medicine,2000,38(3):324-329.
    54.钟格梅,唐振柱.我国环境中镉、铅、砷污染及其对暴露人群健康影响的研究进展[J].环境与健康杂志,23(6):562-564.
    55.杨本志,卞正富.浅议我国东部矿区的生态重建技术[J].煤矿环境保护,2000,14(3):7-10.
    56.胡振琪,魏忠义,秦萍.矿山复垦土壤重构的概念与方法[J].土壤,2005,37(1):8-
    12.
    57.胡振琪.采煤沉陷地的土地资源管理与复垦[M].北京:煤炭工业出版社,1996.
    58.滕冲,程峰,王杰光,等.植物修复在治理矿区重金属污染土壤中的应用[J].矿产与地质,2008,22(2):179-181.
    59.陈同斌,韦朝阳,黄泽春,等.砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,2002,47(3):207-210.
    60.胡鹏杰,周小勇,仇荣亮.Zn超富集植物长柔毛委陵菜对Cd的耐性与富集特征[J].农业环境科学学报,2007,26(6):2221-2224.
    61.邓华,李明顺,陈英旭.超富集植物短毛蓼对锰的富集特征[J].生态学报,2009,29(10):5450-5454.
    62. Freer-Smith P H,Elkhatib A A,Taylor G.Capture of particulate,pollution by trees:a comparisonof species typical of semi-arid areas(ficus nitida and eucalyptus globulus)with European andnorth american species[J].Water Air and Soil Pollution,2004,155(1-4):173-187.
    63. Morikawa H,Takahashi M,Irifune K.Molecular mechanism of the metabolism of nitrogendioxide as an alternative fertilizer in plants. In:Satoh K,Murata N. Stress responses ofphotosynthetic organisms. Amsterdam:Elsevier,1998,227-237.
    64. Omasa K,Saji H,Oussefina,et al.Air pollution and plant biotechnology prospects forPhytomonitoring and phytoremediation [M].Tokyo: Springer-Verlag,2002,383-401.
    65.叶镜中.城市林业的生态作用与规划原则[J].南京林业大学学报,2000,24(增刊):13-16.
    66.杜善周,毕银丽,王义等.丛枝菌根对神东煤矿区塌陷地的修复作用与生态效应[J].科技导报,2010,28(7):41-44.
    67.毕银丽,吴王燕,刘银平.丛枝菌根在煤矸石山土地复垦中的应用[J].生态学报,2007,27(9):3738-3742.
    68.胡瑜,毕银丽,赵斌.硫杆菌的分离鉴定及其对煤矿废弃物的氧化脱硫特性[J].应用与环境生物学报,2007,13(1):116-120.
    69. Patterson J W,Passino R.Metal speciation, separation and recovery.Chelsea,MI:LewisPublishers,1987:77-94.
    70.杨卓,王占利,李博文,等.微生物对植物修复重金属污染土壤的促进效果[J].应用生态学报,2009,20(8):2025-2031.
    71. Woods L E,Cole C V,Elliott E T,et al.Nitrogen transformations in soil as affected by bacterial-microfauna interactions.Soil Biology and Biochemistry,1982,14(2):93-98.
    72. Sundin P,Valeur A,Olsson S, et al.Interactions between bacteria-feeding nematodes andBacteria in the rape rhizosphere:effects on root exudation and distribution of bacteria[J].Microbiology Ecology,1990,73(1):13-22.
    73.陈小云,刘满强,胡锋,等.根际微型土壤动物-原生动物和线虫的生态功能[J].生态学报,2007,27(8):3132-3140.
    74. Bonkowski M.Protozoa and plant growth: the microbial loop in soil revisited[J]. NewPhytologist,2004,162(3):617-631.
    75. Bonkowski M,Brandt F.Do soil protozoa enhance plant growth by hormonal effects.SoilBiology and Biochemistry,2002,34(11):1709-1715.
    76.潘声旺,袁馨,魏世强.蚯蚓活动对高羊茅修复土壤芘污染的强化作用[J].云南大学学报(自然科学版),2010,32(5):587-593.
    77.李扬,乔玉辉,莫晓辉,等.蚯蚓粪作为土壤重金属污染修复剂的潜力分析[J].农业环境科学学报,2010,29(增刊):250-255.
    78.李凌宜,李卓,宁平,等.矿业废弃地生态植被恢复的研究[J].矿业快报,2006,(8):25-28.
    79. Smith S E,Read D J,Mycorrhizal symbiosis (academic,san Diego)[M],Academic Press,
    1997.
    80.刘润进,李晓林.丛枝菌根及其应用[M],科学出版社,2000.
    81. Streitwolf Engel R,Vander Heijden M G A,Wiemken A,et al.The ecological significance ofarbuscular mycorrhizal fungal effects on clonal reproduction in plants[J].Ecology,2001,82(10):2846-2859.
    82. Vander Heijden M G A,Boller T,Wiemken A,et al.Different arbuscular mycorrhizal fungalspecies are potential determinants of plant community structure[J].Ecology,1998,79:2082-2091.
    83. Koch A M,Kuhn G,Fontanillas P,et al.High genetic variability and low local diversity in apopulation of arbuscular mycorrhizal fungi[M].Proceedings of the National Academy of Sciencesof the United States of America,2004,101(8):2369-2374.
    84.刘文科.丛枝菌根真菌的土壤生态适应性及其功能差异研究[D].北京:中国农业大学,2004
    85. George E,Marschner H,Jakobsen I.Role of arbuscular myeorrhizal fungi in uptake ofPhosphorus and nitrogen from soil[J].Critical Review of Biotechnology,1995,15(3-4):257-270.
    86. Frey B,Schupp H.Acquisition of nitrogen by external hyphae of arbuscular myeorrhizal fungiassociated with Zeamays L.[J].New Phytologist,1993,124(2):221-230.
    87. Mohammad R A,Daryush M,Saeed M,et al.Absorption efficiency of N, P, K through tripleinoculation of wheat (Triticum aestivum L.) by Azospirillum brasilense, Streptomyces sp.,Glomus intraradices and manure application,Physiology Molecular Biology Plants,2011,17(2):181-192.
    88. Chen X,Tang J J,Zhi G Y,et al.Arbuscular mycorrhizal colonization and phosphorusacquisition of plants:effects of coexisting plant species[J].Applied Soil Ecology,2005,28(3):359-369.
    89. Jakoben I,Gazey C,Abbott LK.Phosphate transport by communities of arbuscular mycorrhizalfungi in intact soil cores[J].New Phytologist,2001,149(1):95-103.
    90. Karanika ED,Mamolos AP,Alifragis DA,et al.Arbuscular mycorrhizas contribution to nutrition,productivity, structure and diversity of plant community in mountainous herbaceous grassland ofnorthern Greece[J].Plant Ecology,2008,199(2):225-234.
    91.李晓林,冯固.丛枝菌根生态生理[M].北京:华文出版社,2001,1-358.
    92. He C P,Cong Q L.Variations in nitrogen, zinc, and sugar concentrations In Chinese fir seedlingsgrown on shrub land and plowed soils In response to arbuscular mycorrhizae mediated process[J].Biology Fertility Soils,2011,47(6):721-727.
    93. Rosa P,Ricardo A,Juan Manuel R L.Salinity stress alleviation using arbuscular mycorrhizalfungi. A review. Agronomy for Sustainable Development,2012,32(1):181-200.
    94. Kumar A,Sharma S,Mishra S.Influence of Arbuscular Mycorrhizal(AM) Fungi and Salinity onSeedling Growth,Solute Accumulation,and Mycorrhizal Dependency of Jatropha curcas L[J].Journal of Plant Growth Regulation,2010,29(3):297-306.
    95. Hajiboland R,Aliasgharzadeh N,Laiegh S F,et al.Colonization with arbuscular mycorrhizalfungi improves Salinity tolerance of tomato(Solanum lycopersicum L.) plants[J].Plant Soil,2010,331(1):313-327.
    96. Asghari H R,Marschner P,Smith S E,et al.Growth response of Atriplex nummularia toinoculation with arbuscular mycorrhizal fungi at different salinity levels[J].Plant Soil,2005,273(1):245-256.
    97. Giri B,Kapoor R.Mukerji KG.Improved tolerance of Acacia nilotica to salts tress by arbuscularmycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoottissues[J].Microbiol Ecology,2007,54(4):753-760.
    98. Porcel R,Barea J M,Ruiz L J M.Antioxidant activities in mycorrhizal soybean plants underdrought stress and their possible relationship to the process of nodule senescence[J].NewPhytologist,2003,157(1):135-143.
    99. Barea J M,Azcón R,Azcón Aguilar C.Mycorrhizosphere interactions to improve plant fitnessand soil quality[J].Antonie van Leeuwenkoek,2002,81(1-4):343-351.
    100.吴强盛,夏仁学.丛枝菌根真菌对柑橘嫁接苗枳/红肉脐橙抗旱性的影响[J].应用生态学报,2005,16(5):865-869.
    101. ChaoY,Chantal H,Michael P,et al.Diversity and Functionality of Arbuscular MycorrhizalFungi in Three Plant Communities in Semiarid Grass lands National Park,Canada[J].MicrobiolEcology,2010,59(4):724-733.
    102. Alfonso N R,M.Cecilia L C,Manuela P G,et al.Effect of water stress on in vitro myceliumcultures of two mycorrhizal desert truffles[J].Mycorrhiza,2011,21(4):247-253.
    103. Juan Manuel R L,Maríadel C P,Ricardo A.The application of a treated sugar beet waste residueto soil Modifies the responses of mycorrhizal and non mycorrhizal lettuce plants to drought stress[J].Plant Soil,2011,346(1-2):153-166.
    104. Ruiz Lozano J M,Porcel R,Aroca R.Evaluation of the possible participation of drought-inducedgenes in the enhanced tolerance of arbuscular mycorrhizal plants to water deficit[M].Mycorrhiza,2008.185-205.
    105. Kubikova E,Moore J L,Ownlew B H,et al.Mycorrhizal impact on osmotic adjustment inOcimum basilicum during a lethal drying episode[J].Journal of Plant Physioloy,2001,158(9):1227-1230.
    106. Alejandra N G,Sebastiándel P B,Asunción M,et al.Effects of nursery preconditioning throughmycorrhizal Inoculation and drought in Arbutusunedo L. plants[J].Mycorrhiza,2011,21(1):53-64.
    107. Augé R M,Foster J G,Loescher W H,et al.Symplastic sugar and free amino acid molality ofRosa roots with regard to mycorrhizal colonization and drought[J].Symbiosis,1992,12(1):1-17.
    108. Porcel R,Ruiz-Lozano J M.Arbuscular mycorrhizal influence on leaf water potential, soluteaccumulation and oxidative stress in soybean plants subjected to drought stress[J].JournalExperimental Botany,2004,55(403):1743-1750.
    109. Azcón R,Medina A,Roldán A,et al.Significance of treated agrowaste residue andautochthonous inoculates (arbuscular mycorrhizal fungi and Bacilluscereus) on bacterialcommunity structure and phytoextraction to remediate heavy metals contaminated soils[J].Chemosphere,2009,75(3):327-334.
    110. Azcón R,Perálvarez Mdel C,Roldán A,et al.Arbuscular Mycorrhizal Fungi,Bacilluscereus,andCandidaparapsilosis from a Multicontaminated Soil Alleviate Metal Toxicity in Plants[J].Microbial Ecology,2010,59(4):668-677.
    111. Aggangan N S,Dell B,Malajczuk N.Effect of chromium and nickel on the growth ofectomyeorrhizal fungus Pisolithus and formation of ectomycorrhizas on Eucalyptus urophylla S.T.Blake[J].Geoderma,1998,84(l-3):15-27.
    112.彭剑涛.外生菌根真菌氮、钾营养特性及其对汞胁迫的反应[D].重庆:西南大学,2010.
    113.闰明,钟章成.铝胁迫和丛枝菌根真菌对樟树幼苗的影响[J].北京林业大学学报,2007,4:31-39.
    114. Jenisehke G,Godbold D.L.Metal toxicity and ectomycorrhizas[J].Physiologia Plantarum,2000,109(2):107-116.
    115.黄艺,王东伟,蔡佳亮,等.球囊霉素相关土壤蛋白根际环境功能研究进展[J].植物生态学报,2011,35(2):232-236.
    116. María J. Pozo,Adriaa V,Javier G A,et al.Priming Plant Defence Against Pathogens byArbuscular Mycorrhizal Fungi[J].Mycorrhizas,2009,123-135.
    117. Fritz M,Jakobsen I,Lyngkjaer M F,et al.Arbuscular mycorrhiza reduces susceptibility oftomato to Alternaria solani[J].Mycorrhiza,2006,16(6):413-419
    118. Liu J,Maldonado Mendoza I,Lopez-Meyer M,et al.Arbuscular mycorrhizal symbiosis isaccompanied by local and systemic alterations in gene expression and an increase in diseaseresistance in the shoots[J].The Plant Journal,2007,50(3):529-544.
    119.李海燕,刘润进,束怀瑞.丛枝菌根真菌提高植物抗病性的作用机制[J].菌物系统,2001,20(3):435-439.
    120. Barea J M,Pozo M J,Azcon R,et al.Microbial cooperation in the rhizosphere[J].Journalof Experimental Botany,2005,56(417):1761-1778.
    121.李海燕,刘润进,束怀瑞,等.Chib1和PAL5基因在AM真菌Glomus fasciculatus诱导大豆抗线虫病害防御反应中的作用[J].Mycosystema,2005,24(3):385-393.
    122. Carlsen S C K,Understrup A,Fomsgaard I S,et al.Flavonoids in roots of white clover:interaction of arbuscular mycorrhizal fungi and a pathogenic fungus[J].Plant and Soil,2008,302(1-2):33-43
    123.李敏.AM真菌对西瓜抗枯萎病的效应及其机制[D].北京:中国农业大学,2005.
    124.张淑彬,王幼珊,邹国元.从枝菌根真菌对黄瓜南方根结线虫病害防治效应[J].北方园艺,2011,(19):123-126.
    125. Wright S F,Upadhyaya A.Extraction of an abundant and unusual protein from soil andcomparison with hyphal protein of arbuscular mycorrhizal fung[iJ].Soil Science,1996,161(9):575-586.
    126. Rillig M C,Wright S F,Nichols K A,et al.Large contribution of arbuscular mycorrhizal fungito soil carbon pools in tropical forest soils[J].Plant and Soil,2001,233(2):167-177.
    127. Rillig M C.Arbuscular mycorrhizae,glomalin,and soil aggregation[J].Canadian Journal ofSoil Science,2004,84(4),355-363.
    128. Rillig M.C,Caldwell B A,Wosten H A B,et al.Role of protein in soil carbon and nitrogenstorage: controls on persistence[J].Biogeochemistry,2007,85(1):25-44.
    129. Lovelock C E,Wright S F,Clark D A,et al.Soil stocks ofglomalin produced by arbuscularmycorrhizal fungi across a tropical rain forest landscape[J].Journal of Ecology,2004,92(2):278-287.
    130.贺学礼,陈程,何博.北方两省农牧交错带沙棘根围AM真菌与球囊霉素空间分布[J].生态学报,2011,31(6):1653-1661.
    131. Rillig M C,Maester F T,Lamit L J.Microsite differences infungal hyphal length,glomalin,and soil aggregate stability in semiaridMediterranean steppes [J]. Soil Biology andBiochemistry,2003,35(9):1257-1260.
    132. Miller RM,Jastrow J D.Mycorrhizal fungi influence soil structure [A].In: Kapulnik Y,eds.Arbuscular Mycorrhizas:Physiology and Function [M].Dordrecht:Kluwer Academic Press,2000,3-18.
    133. Rillig M C,Wright S F,Eviner V T.The role of arbuscular mycorrhizal fungi and glomalin insoil aggregation: comparing effects of five plant species[J].Plant and Soil,2002,238(2):325-333.
    134. Nichols K A,Wright S F.Contributions of soil fungi to organic matter in agricultural soils. In:Functions and Management of Soil Organic Matter in Agroecosystems.Magdoff F and Weil R(Eds.). CRC, Washington, DC,2004,79-198.
    135. Nichols K A.Indirect contributions of AM fungi and soil aggregation to plant growth andprotection[M].Mycorrhizae,2008,177-194.
    136.田慧,刘晓蕾,盖京苹,等.球囊霉素及其作用研究进展[J].土壤通报,2009,40(5):1215-1220.
    137.王勇,韩蕊莲,梁宗锁.水分胁迫对4种菊科蒿属植物抗氧化特性的影响[J].西北农林科技大学学报,2010,38(10):178-186.
    138.鲍士旦.土壤农化分析[M].北京:农业出版社,2000.
    139. Phillips J M,Hayman D S.Improved procedures for clearing and staining parasitic and Vesiculararbuscular mycorrhizal fungi for rapid assessment of infection[J].Transactions of The BritishMycological Society,1970,55(1):158-161.
    140. Abbott L K,Robson A D,De Boer G. The effect of phosphorus on the formation of hyohae insoil by the vesicular-arbuscular mycorrhizal fungus,Glomus fasciculatum[J]. New Phytologist,1984,97(3):437-446.
    141. Wright S F,Upadhyaya A. A survey of soils for aggregate stability and glomalin,a glycoproteinproduced by hyphae of arbuscular mycorrhizal fung[iJ]. Plant and Soil,1998,198(1):97-107.
    142. Janos D P,Garamszegi S,Beltran B. Glomalin extraction and measurement[J]. Soil Biologyand Biochemistry,2008,40(3):728-739.
    143. Hirschi K D,The calcium conundrum.Both versatile nutrient and specific signal[J].PlantPhysiology,2004,136(1):2438-2442.
    144. Yang T B,Poovaiah B W.Calcium calmodulin-mediated signal network in plants[J].Trendsin plant science.2003,8(10):505-512.
    145.山仑,陈培元.旱地农业生理生态基础[M].北京:科学出版社,1999,159-173.
    146.王双,陈家宙,罗勇.施氮水平对不同干旱程度夏玉米生长的影响[J].植物营养与肥料学报,2008,14(4):646-651.
    147. Arora R,Palta J P.Perturbation of membrane calcium as a molecular mechanism of freezinginjury.In:Cherry J H(ed) Environmental stress in plants[J].Springer,Berlin,1989:281-290
    148. Marschner H.Mineral nutrition of higher plants.Academic.NewYork,1995
    149. Matoh H,Kobayashi M.Boron and calcium,essential inorganic constituents of PecticPolysaccharides in higher plant cell walls[J]. Plant Research,1998,111(1):179-190
    150. Sanders D,Brownlee C,Harper J F.Communicating with calcium[J].Plant Cell,1999,11(4):691-706.
    151. Palta J P.Role of calcium in plant response to stresses: linking basic research to the solution ofpractical problems[J].Hort Science,1996,31(1):51-57.
    152. Khan M N, Siddiqui M H,Mohammad F,et al.Calcium chloride and gibberellic acid protectLinseed from NaCl stress by inducing antioxidative defence system and Osmoprotectantaccumulation[J].Acta Physiologiae Plantarum,2010,32(1):121-132.
    153. Knight H.Calcium signaling during abiotic stress in plant[sJ].International Review of Cytology.2000,195:269-324
    154.葛瑛,高鹏,夏激宇,等.氯化钙在提高玉米抗盐性方面的作用[J].东北农业大学学报,2004,29(2):281-284.
    155. Whaibi M H A,Siddiqui M H,Basalah M O.Salicylic acid and calcium-induced protection ofwheat against salinity[J].Protoplasma,2011,249(3):769-778
    156. Amor N B,Megdiche W,Jiménez A,et al.The effect of calcium on the antioxidant systems inthe halophyte Cakile maritima under salt stres[sJ].Acta Physiologiae Plantarum,2010,32(3):453-461
    157. Schaberg P G,Minocha R,Long S,et al.Calcium addition at the Hubbard Brook ExperimentalForest increases the capacity forstress tolerance and carbon capture In red spruce trees during thecold season[J].Trees,2011,25(6):1053-1061
    158.朱义,何池全,杜玮,等.盐胁迫下外源钙对高羊茅种子萌发和幼苗离子分布的影响[J].农业工程学报,2007,23(22):133-137.
    159. Shinozaki K,Shinozaki K Y.Gene expression and signal transduction in water-Stress response[J].Plant Physiology,1997,115(2):327-334
    160. Johansson I,Larsson C,Kjellbom P.The major integral proteins of spinach leaf plasmamembranes are putative aquaporins and are phosphorylated in response to Ca2+and apo-plasticwater potential[J].Plant Cell,1996,8:1181-1191
    161.李新国,王艳,何利刚.钙对低温下柑橘愈伤组织渗透物质的调节[J].华中农业大学学报(自然科学版),2006,25(3):295-299.
    162. Yang T,Poovaiah B W.Calcium calmodul in mediated signal network in plants[J].Trends inplant science.2003,8(10):505-512.
    163.李强,曹建华,余龙江,等.干旱胁迫过程中外源钙对忍冬光合生理的影响[J].生态环境学报,2010,19(10):2291-2296.
    164.吴妍,张岁岐,刘小芳,等.水分胁迫及复水条件下外源Ca2+对玉米幼苗根系水力导度及生长的影响[J].作物学报,2010,36(6):1044-1049.
    165.介晓磊,刘世亮,李有田,等.不同浓度钙营养液对烟草矿质营养吸收与积累的影响[J].土壤通报,2005,36(4):560-563.
    166.吕德国,秦秀霞.3年生盆栽苹果树根系修剪的研究[J].山东农业大学学报(自然科学版),2000,31(4):389-394.
    167.白岗栓,杜社妮,侯喜录.不同修剪措施对苹果幼树生物量的影响[J].西北农林科技大学学报(自然科学版),2005,33(1):91-94.
    168.马守臣,徐炳成,李凤民.根修剪对黄土旱塬冬小麦根系分布、根系效率及产量形成的影响[J].生态学报,2008,28(12):6172-6177.
    169.宋海星,李生秀.玉米生长量、养分吸收量及氮肥利用率的动态变化[J].中国农业科学,2003,36(1):71-76.
    170.佟屏亚,凌碧莹.夏玉米氮、磷、钾积累和分配态势的研究[J].玉米科学,1994,2(2):65-69.
    171.杨如意.丛枝菌根对环境变化的响应及其对宿主植物的调节[D].浙江:浙江大学,2007.
    172.徐畅,高明.土壤中镁的化学行为及生物有效性研究进展[J].微量元素与健康研究,2007,2(5):51-54.
    173.唐跃刚,代世峰,唐真.乌达矿区煤质特性及动态评价研究[M].徐州:中国矿业大学出版社,1999.1-8.
    174.钱宝,刘凌,肖潇.两种不同方法测定土壤中有机质含量[J].河海大学学报(自然科学版),2011,739(1):34-38.
    175.赵兰坡,姜岩.土壤磷酸酶活性测定方法探讨[J].土壤通报,1986,17(3):138-142.
    176.沈萍,范秀容,李广斌.微生物学实验[M].北京:高等教育出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700