用户名: 密码: 验证码:
HIV-1蛋白酶与抑制剂相互作用的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
获得性免疫缺陷综合症(acquired immunodeficiency syndrome, AIDS)简称艾滋病,主要由Ⅰ型人类免疫缺陷性病毒(Human immunodeficiency virus I,HIV-1)引起,是一种跨种属传播的、死亡率很高的疾病,已成为世界第四大死亡原因,艾滋病在世界范围内的迅速传播严重威胁着人类的生命健康,对其的有效治疗已成为医学界最具挑战性的课题,针对艾滋病的药物设计在目前和将来都是相关理论研究的热点领域。
     在HIV-1基因组复制过程中,有三种关键的酶,分别是HIV-1逆转录酶(reverse transcriptase, RT)、蛋白酶(protease, PR)和整合酶(intergrase, IN)。其中PR是一个具有C2对称性的同源二聚体,每一条肽链由99个氨基酸组成,它在病毒生命周期中的功能是把HIV-1加工为能感染宿主细胞的成熟的病毒颗粒,因此PR成为研发治疗艾滋病药物的一个重要靶点。
     PR抑制剂(protease inhibitors,PIs)是一些具有抑制PR活性的化合物,其作用机理是模拟肽链与PR的结合部位结合,从而抑制PR的活性,阻断艾滋病毒的复制,因此PIs是一类重要的抗艾滋病药物。本文专门针对PR与PIs的相互作用来进行理论研究,这对于针对PR的抗艾滋病药物的设计和研发具有重要意义。
     在过去20多年里,人们针对艾滋病的治疗从理论到实验都做了大量的研究工作,取得了不小的进步。但由于实验测定PR及其PIs复合物结构存在较大的困难,因此这一领域的理论研究显得尤为重要。而计算机数据处理能力的不断增强以及各种理论模拟方法的不断发展和改进,又为理论研究提供了从技术到方法的支持。目前分子动力学(molecular dynamics, MD)模拟和自由能计算已成为研究生物大分子结构、动力学和热力学性质的重要工具。MD模拟不仅可给出生物大分子在原子水平上的运动细节,而且能够提供大分子位置涨落和构象变化的详细信息。准确的自由能预测,可以使我们更好地理解生物大分子的结构和功能关系,为合理的药物设计提供依据。目前分子力学/泊松–玻耳兹曼溶剂可接近表面积(molecular mechanics/Poisson-Boltzman surface area,MM-PBSA)方法是应用很广的一种基于经验方程的自由能计算方法。
     本文利用MD模拟和MM-PBSA方法进行PR及其PIs相互作用的理论研究,主要由以下三部分内容组成:
     1、BEC和BEG两种PIs与PR相互作用机理的研究
     本文选择了两种最近被美国食品药品管理局批准使用的PIs BEC和BEG来进行相关研究,采用的方法是MD模拟结合MM-PBSA方法。我们计算分析了BEC-PR和BEG-PR两种复合物PR主链上的Cα原子在整个MD过程中相对于其原始结构的均方根偏差(root-mean-squared deviation,RMSD)值;进行了两种复合物的晶体结构和MD轨迹中最后1ns平均结构的叠加分析;使用单轨迹拓扑的MM-PBSA方法计算了两种复合物的结合自由能;用自由能分解方法计算了PI-残基相互作用谱线。结果表明:这两种复合物的动力学稳定性是可信的;并且范德华能量是这类PIs与PR结合的主要推动力;对这两种复合物,主要的相互作用来自Gly27、Ala28/Ala28′、Gly49、Ile50/Ile50′和Ile84/Ile84′残基,两种复合物的相互作用能主要由三种类型的相互作用产生:氢键相互作用、C–H…π相互作用和C–H…H–C相互作用,它们在BEC和BEG与PR的结合方面发挥着重要作用,这些相互作用的改进和优化可以极大地推动对抗艾滋病的高效PIs的研究。
     2、质子化态在PR-Indinavir复合物中作用的研究
     茚地那韦(IDV N-[2(R)-HYDROXY-1(S)-INDANYL]-5-[(2(S)-TERTIARY BUTYLAMINOCARBONYL)- 4(3-PYRIDYLMETHYL) PIPERAZINO]-4(S)-HYDROXY- 2(R)-PHENYLMETHYLPENTANAMIDE )是较早被用来抑制PR的PI,PR和IDV的相互作用受两个天冬氨酸残基质子化态的影响很大,而实验提供的PR-IDV复合物的晶体结构不能直接给出有关质子化的信息,因此,确定PR-IDV复合物中天冬氨酸的质子化态有助于设计与IDV相关的PIs,有助于理论上研究PR的变异对其与IDV结合的影响。本文中我们对PR-IDV复合物的六种可能的质子化态分别进行了5ns的分子动力学模拟,分析了这六种不同的质子化状态对动力学特征和结构的影响,并用MM-PBSA方法计算了PR和IDV在各种质子化状态下的结合自由能。计算结果说明A链的Asp25的OD2的质子化是最为可能的状态。同时,我们对PR-IDV复合物中起媒介作用的水分子与PR-IDV复合物形成的氢键进行了分析,结果表明不同的质子化态对水分子在PR-IDV复合物中所起的媒介作用没有影响。
     3、PR与PI TMC114结合口袋内水分子作用的研究
     水分子在生物分子的稳定、动力学、功能和识别方面发挥着重要作用,许多研究表明水分子不仅能充当PIs和PR之间的桥梁,而且能稳定PR的结构。TMC114是一种相当有效的阻止PR发挥作用的第二代非肽PIs,在PR与TMC114结合口袋内发现有五个水分子(Wat301、Wat2、Wat5、Wat89和Wat211)。我们分别进行了带有和不带有5个水分子的PR-TMC114复合物的3ns分子动力学模拟,计算了PR主链上的Cα原子在MD轨迹过程中相对于原始最小能量结构的RMSD值,将复合物的晶体结构和MD轨迹最后1ns的平均结构进行叠加,并分析了描述结合特性的氢键。计算结果表明:结合口袋内的水分子可以维持PR-TMC114复合物结构的稳定;Wat301,Wat2和Wat5在MD模拟过程中保持稳定;Wat301可以稳定PR与TMC114柔性区域的结构;与5个水分子有关的氢键引起的约束使得PR的残基和TMC114在模拟过程中在它们的原始位置保持不动。我们期待这一研究可以增进人们对PR-PI复合物中水分子作用的深入了解,并且对高效PIs的设计提供有用的帮助。
Acquired immunodeficiency syndrome, simply called AIDS, is mainly caused by human immunodeficiency virus I, i.e. HIV-1. AIDS is a kind of zoonosis disease with high death rate. It has been the fourth death reason in the world. The rapid prevalence of AIDS in the entire world dramatically threatens human's lives and health. The effective therapeutics of AIDS is a challengeable difficulty and the drug design for it is the hot field for theoretical researches currently and in the future.
     In the copy procedure of HIV-1 gene group, there are three kinds of key enzyme, i.e. HIV-1 reverse transcriptase (RT), protease (PR) and intergrase (IN). PR is a homodimer with C2 symmetry, and each polypeptide chain is composed of 99 amino acids. Its function in the life cycle of virus is producting HIV-1 into matural virus particles which can infect host cells, thus PR is an important target for the development of AIDS’drugs.
     Protease inhibitors (PIs) are some compounds which can inhibit PR’s activity. Its mechanism is simulating the binding of peptide and PR to inhibit PR’s activity and to prevent the copy of HIV-1. Thus PIs are important anti-AIDS drugs. Theoretical study for the interaction of PR and PIs is performed in this paper, which is essential for the design and development of anti-AIDS drugs.
     In the last 20 years, lots of researches for AIDS therapeutics in theory and experiment have been done and made great progress. But there are many difficulties in determining the structures of PR and its PIs in experiment, theoretical study is very important for this field. On the other hand, the increasing of the data-dealing ability of computer and the development of theoretical simulation methods give strong technological and methodical support to the theoretical study. Currently, molecular dynamics (MD) and free energy calculation have become very important tools to study the structures, dynamics and thermodynamic properties for bimolecules. MD simulation can give the motional detail at the atomic level and the detail information of position's draft and construction change. Accurate free energy prediction can make us understand the relationship of bimolecular structure and function, and give accordance to rational drug design. Recently, molecular mechanics/Poisson-Boltzman surface area (MM-PBSA) method is an extensive applicable free energy method based on empirical equation.
     In this paper, we use MD simulation and MM-PBSA method to investigate the interaction of PR and its PIs, mainly composed by three parts as following.
     1、The study of the interaction mechanisms of PIs BEC and BEG with PR
     Two PIs BEC and BEG which were approved by the U.S. Food and Drug Administration recently were selected to investigate the PR-PI interactions with MD simulation and MM-PBSA method. The RMSD values of PR Cαatoms relative to the initial structure through the MD simulations were calculated and analyzed, and the analyses of superimposition of the crystal structures with the average structures of two complexes during the last 1ns of the MD trajectories via backbone atoms were carried out. MM-PBSA method involving the single trajectory protocol was performed to calculate the binding free energies, and the interaction spectra were calculated by the free energy decomposition. The results suggest that the stabilities of the dynamic equilibriums for two complexes are reliable and Van der Waals energies mostly drive the bindings of this class of inhibitors to the PR. For the case of two complexes, the favorable interactions come from Gly27, Ala28/Ala28′, Gly49, Ile50/Ile50′and Ile84/Ile84′. The favorable interactions mainly are produced by the three types of interactions: the hydrogen bond interactions, the C-H…πinteractions and the C-H…H-C interactions. These interactions of BEC and BEG with the PR play important roles in the binding of BEC and BEG to the PR. The improvement and optimization of these interactions may benefit the rational design of potent inhibitors combating AIDS.
     2、The study of the role of protonation states in PR-Indinavir complex
     Indinavir (IDV) is a PI which is used to combat PR early. The interaction of PI and IDV is effected by the protonation state of Asp25/Asp25′, but the crystal structure determined by the experiment can’t give the information about the protonation directly, so the protonation state of Asp25/Asp25′in PR-IDV complex is important for us to study the binding mechanism and the drug resistance induced by the mutation in theory. 5 ns molecular dynamic simulations have been performed for six possible protonation states, and the influences on dynamics behavior and structure caused by different protonation states were analyzed, and relative binding free energies were calculated by using the MM-PBSA method. The results show that the protonation state of OD2 from Asp25 in chain A is the most possible. The hydrogen bonds between the water molecule that plays a medium role and the PR-IDV complex were also analyzed, and the results show that the different states have not obvious influences on the medium role, which is different from our previous result on PR-BEA369 complex. It was expected that this study could provide a significative help for the high affinity inhibitor design and the mutation induced drug resistance research.
     3、The study of functional role of water molecules buried within binding pocket of PR with PI TMC114
     Water molecules play an important role in the stability, dynamics, function and recognition of bimolecules. Many studies showed that water molecules not only act as a bridge between PIs and PR, but also stabilize the structure of PR. TMC114 is a next-generation nonpeptidic PI that is extremely potent to inhibit the activation of PR. Five water molecules, i.e. Wat301、Wat2、Wat5、Wat89 and Wat211, have been observed within the binding packet of PR with TMC11. 3 ns MD simulations have been successfully performed for PR-TMC114 complexes, one with five water molecules in the binding packet, and another without. The RMSD values of PR’s Cαatoms relative to the initial structure through the MD simulations were calculated, and the analyses of superimposition of the crystal structure with the average structure during the last 1ns of the MD trajectories via backbone atoms were carried out. The hydrogen bond used to describe the binding specificity was analyzed, too. The results indicate that the water molecules can maintain the stability of the structure of complex PR-TMC114, and Wat301, Wat2 and Wat5 are conserved during MD simulation. Wat301 has an ability to maintain the stability of the flaps and TMC114. The restrictions produced by the hydrogen bonds involved 5 water molecules make the residues and TMC114 stay in their original positions during simulation. We expect that this study can provide a significant insight into the function of water molecules in PR-PI complex, and also give some favorable help for the design of potent PIs.
引文
[1]黄文林等.分子病毒学[M].北京:人民卫生出版社,2002: 392-402.
    [2] Pantaleo G., Fauci A. S. Immunopathogenesis of HIV infection [J]. Annu Rev Microbiol, 1996, 50: 825-854.
    [3] Frankel A. D.,Young J. A. T. HIV-1: fifteen proteins and an RNA [J]. Annu. Rev. Biochem., 1998, 67: 1-25.
    [4] Turner B. G., Summers M. F. Structural biology of HIV [J]. J. Mol. Biol., 1999, 285(1): 1-32.
    [5]陈建中. HIV-1蛋白酶与抑制剂相互作用的理论计算研究[D].济南:山东师范大学, 2009:
    [6] Dalgleish A. G., Beverley P. C., Clapham P. R., Crawford D. H., Greaves M. F., Weiss R. A. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus [J]. Nature 1984, 312(5996): 763-767.
    [7] Gale L. M., McColl S. R. Chemokines: Extracellular messengers for all occasions? [J]. Bioessays 1999, 21: 17-28.
    [8] Roberts J. D., Bebenek K., Kunkel T. A. The accuracy of reverse transcriptase from HIV-1 [J]. Science, 1988, 242(4882): 1171-1173.
    [9] Charneau P., Mirambeau G., Roux P., Paulous S., Buc H., Clavel F. HIV-1 reverse transcription. A termination step at the center of the genome [J]. J. Mol. Biol., 1994, 241(5): 651-662.
    [10] Luban J., Bossolt K. L., Franke E. K., Kalpana G. V., Goff S. P. Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B [J]. Cell, 1993, 73(6): 1067-1078.
    [11] Luban J. Absconding with the chaperone: essential cyclophilin-Gag interaction in HIV-1 virions [J]. Cell, 1996, 87(7): 1157-1159.
    [12] Hazuda D. J., Felock P., Witmer M., Wolfe A., Stillmock K., Grobler J. A., Espeseth A., Gabryelski L., Schleif W., Blau C., Miller M. D. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells [J]. Science, 2000, 287(5453): 646-650.
    [13] Gao K., Butler S. L., Bushman F. Human immunodeficiency virus type 1 integrase: arrangement of protein domains in active cDNA complexes [J]. EMBO J., 2001, 20(13):3565-3576.
    [14] Zack J. A., Arrigo S. J., Weitsman S. R., Go A. S., Haislip A., Chen I. S. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure [J]. Cell, 1990, 61(2): 213-222.
    [15] Bukrinsky M. I., Stanwick T. L., Dempsey M. P., Stevenson M. Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection [J]. Science, 1991, 254(5030): 423-427.
    [16] Marciniak R. A., Calnan B. J., Frankel A. D., Sharp P. A. HIV-1 Tat protein trans-activates transcription in vitro [J]. Cell 1990, 63(4): 791-802.
    [17] Jones K. A., Peterlin B. M. Control of RNA initiation and elongation at the HIV-1 promoter [J]. Annu. Rev. Biochem., 1994, 63: 717-743.
    [18] Shiraishi T., Misumi S., Takama M., Takahashi I., Shoji S. Myristoylation of human immunodeficiency virus type 1 gag protein is required for efficient env protein transportation to the surface of cells [J]. Biochem. Biophys. Res. Commun., 2001, 282(5): 1201-1205.
    [19] Garnier L., Bowzard J.B., Wills J.W. Recent advances and remaining problems in HIV assembly [J]. AIDS, 1998, 12, Suppl. A, S5-16.
    [20] Wilk T., Gross I., Gowen B. E., Rutten T., de Haas F., Welker R., Krausslich H. G., Boulanger P., Fuller S. D. Organization of immature human immunodeficiency virus type 1 [J]. J. Virol., 2001, 75(2): 759-771.
    [21] Ott D. E., Coren L. V., Chertova E. N., Gagliardi T. D., Schubert U. Ubiquitination of HIV-1 and MuLV Gag [J]. Virology, 2000, 278(1): 111-121.
    [22] Garrus J. E., von Schwedler U. K., Pornillos O. W., Morham S. G., Zavitz K. H., Wang H. E., Wettstein D. A., Stray K. M., Cote M., Rich R. L., Myszka D. G., Sundquist W. I. Tsg101 and the vacuolar protein sorting pathway are essential for hiv-1 budding [J]. Cell, 2001, 107(1): 55-65.
    [23] Toh H., Ono M., Saigo K., Miyata T. Retrovirla Protease-Like Sequence in the Yeast Transposon Ty1 [J]. Nature, 1985, 315: 691-692.
    [24] Pearl L. H., Taylor W. R. A structural model for the retroviral proteases [J]. Nature, 1987, 329(6137): 351-354.
    [25]张礼和,王梅祥.化学进展丛书——化学生物学进展[M].北京:化学工业出版社,2005.
    [26] Todd G., Anderson C., Jolly D.J. et al. HIV protease as a target for retrovirus vector-mediated gene therapy [J]. Biochemica Biophycical Acta, 2000, 1477: 168-188.
    [27]常俊标.艾滋病的分子生物学治疗[M].科学出版社,2001: 49-50.
    [28] Debouck C., Gorniack J. G., Strickler J. E., Meek T. D., Metcalf B. W., Rosenberg M. Rabbit endogenous retrovirus-H encodes a functional protease [J] Biochemistry, 1999, 84: 8903-8907.
    [29] Seelmeier S., Schmidt H., Turk V., von der Helm K. Human immunodeficiency virus has an aspartic-type protease that can be inhibited by pepstatin A [J]. Proc Natl Acad Sci U S A, 1988, 85(18): 6612-6616.
    [30] Fitzgerald P. M. D., Springer J. P. Structural analysis reveals mechanisms of drug resistance to HIV-1 protease inhibitors. These results have implications for the design of drugs and therapeutic strategies to combat drug resistance in AIDS [J]. Annu. Rev. Biophys. Biophys. Chem., 1991, 20: 299-320.
    [31] Kohl N. E., Emini E. A., Schleif W. A., Davis L. J., Heimbach J. C., Dixon R. A. F., Scolnick E. M., Sigal I. S. Active human immunodeficiency virus protease is required for viral infectivity [J]. Proc Natl Acad Sci U S A, 1988, 85(13): 4686-4690.
    [32]康玲.药物分子对接优化模型与算法研究[D].大连:大连理工大学, 2009:
    [33]郭宗儒等.药物分子设计[M].北京:科学出版社, 2005: 136。
    [34] Silva A. M., Cachau R. E., Sham H. L., Erickson J. W. Inhibition and catalytic mechanism of HIV-1 aspartic protease [J]. J. Mol. Biol., 1996, 255(2): 321-346.
    [35] Okimoto N., Tsukui T., Hata M., Hoshino T., Tsuda M. Hydrolysis mechanism of the phenylalanine-proline peptide bond specific to HIV-1 protease: investigation by the ab initio molecular orbital method [J]. J. Am. Chem. Soc., 1999, 121(32): 7349-7354.
    [36]丁晓明,刘新泳. I型人免疫缺陷病毒蛋白酶抑制剂临床应用新进展[J].中国新药与临床杂志,2007,26(8): 623-627.
    [37]刘新泳.抗艾滋病药物研究[M].北京:人民卫生出版社,2006: 117-189.
    [38]郭宗儒.药物化学总论[M].上海:中国医药科技出版社,2003: 72-100.
    [39]无机化学实验室.无机化学(上册)[M].北京:高等教育出版社,2002: 101-110。
    [40]蒋华良,胡增建,陈建忠,顾健德,朱维良,陈凯先,嵇汝运.配体-受体相互作用的计算机模拟及其在药物设计中的应用[J].化学进展,1998: 4(10):427-441..
    [41] Blaney J M, Dixon J S, Perspect [J].Drug Discov 1993, 1: 301-320.
    [42] Tanford C. The hydrophobic effect [M]. 2th, New York: Wiley, 1980
    [43] Hunter C.A., Siegh J. Thorton J.M. Pi-pi interactions: the geometry and energetics of phenylalanine-phenylalanine interactions in proteins [J]. J. Mol. Biol, 1991, 218(4): 837-846.
    [44] Sussman J.L., Harl M., Frolow F. et al. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein[J]. Science, 1991, 253(50222): 872-879.
    [45]谢希德,陆栋主编.固体能带理论[M].上海:复旦大学出版社.
    [46] Becke A. D. A new mixing of Hartree–Fock and local density-functional theories [J]. J. Chem. Phys., 1993, 98(2): 1372-1396.
    [47] Stevens P.J., Devlin J. F., Chabalowski C.F., Frisch M. J., Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. J. phys. Chem, 1994, 98: 11623.
    [48] Becke A. D. Correlation energy of an inhomogeneous electron gas: A coordinate-space model [J]. J. Chem. Phys, 1998, 88: 1053-1062.
    [49] Becke A. D. Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals [J]. J. Chem. Phys. 1997, 107(20): 8554-8560.
    [50] Adamo C., Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model [J]. J. Chem. Phys. 1999, 110(13): 6158-6170.
    [51] Sali A., Potterton L., Yuan F. et al. Evaluation of comparative protein modeling by MODELLER[J]. Proteins. 1995, 23(3), 1582-1590.
    [52] Schuler G.D., Altschul S.F., Lipman D.J., A workbench for multiple alignment construction and analysis [J]. Proteins. Struct. Func. Gen., 1991, 9:180-190.
    [53] Hill J.R., Sauer J., Molecular mechanics potential for silica and zeolite catalysts based on ab initio calculations. 1. Dense and microporous silica [J]. J. Phys. Chem, 1994, 98(4): 1238-1244.
    [54] Maple J.R., Dinur U., Hagler A., Derivation of force fields for molecular mechanics and dynamics from ab initio energy surfaces [J]. Proc. Nat. Acad. Sci. USA, 1998, 85(15): 5350-5354.
    [55] Ermer O., Calculation of molecular properties using force fields Applications in organic chemistry [J]. Structure and bonding, 1976, 27: 161-211.
    [56] Karasawa N., Goddard W.A., Force fields, structures, and properties of polyvinylidene fluoride crystals [J]. Macromolecules, 1992, 25: 7268.
    [57] Halgren T.A., Nachbar R.B., The Merck molecular force field: IV. Conformational energies and geometries for MMFF94 [J]. J. Comput. Chem., 1996, 19: 587-615.
    [58] Root D.M., Landis C.R., Cleveland T. Valence bond concepts applied to the molecular mechanics description of molecular shapes. 1. Application to nonhypervalent molecules of the P-block [J]. J. Am. Chem. Soc, 1993, 115: 4201-4209.
    [59] Nemethy G., Pottle M.S., Scheraga H.A. Energy Parameters in Polypeptides. 9. Updating of Geometrical Parameters, Nonbonded Interactions, and Hydrogen Bond Interactions for the Naturally Occurring Amino Acids [J]. J. Phys. Chem., 1983, 87: 1883-1887.
    [60] Rappe A.K., Casiwet C.J., Colwell K.S., Goddard W.A., Skiff W.M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations [J]. J. Am. Chem. Soc, 1992, 114(25): 10024-10035.
    [61] Mayo S.L., Olafson B.D., Goddard III W.A. Dreiding: A generic force field for molecular simulations [J]. J. Phys. Chem, 1990, 94: 8897-8809.
    [62] Castonguay L.A., Rappe A. Small heteroborane cluster systems. 4. The photochemistry and organometallic rearrangement chemistry of small phosphorus-bridged borane cluster compounds: the sequential loss of boron vertices from small metallaboranes [J]. J. Am. Chem. Soc., 1992, 114: 3831-3835.
    [63] Rappe A.K., Colwell K.S. Application of a universal force field to metal complexes [J]. Inorg. Chem, 1993, 32: 3438-3450.
    [64] Van Beest B.W.H., Kramer G.J., Santen R.A.van. Fractional statistics on a torus[J]. Physical Review Letters, 1990, 64:1995-1998.
    [65] Watanabe K., Austin N., Stapleton M.R. Investigation of the Air Separation Properties of Zeolites Types A, X and Y by Monte Carlo Simulations [J]. Molecular Simulation, 1995, 15(4): 197-221.
    [66] Momamy F.A., Carruthers L.M., McGuire R.F., Scheraga H.A. Interatomic Potentials from Crystal Data III. Determination of Empirical Potentials and Application to the Packing Configurations and Lattice Energies in Crystals of Hydrocarbons, CarboxylicAcids, Amines, and Amides [J]. J. Phys. Chem, 1974, 78: 1595-1620.
    [67] Sun H., Mumby S.J., Maple J.R., Hagler A.T. An ab Initio CFF93 All-Atom Force Field for Polycarbonates [J]. J. Am. Chem. Soc., 1994, 116: 2978.
    [68] Sun H. Ab initio characterizations of molecular structures, conformation energies, and hydrogen-bonding properties for polyurethane hard segments [J]. Macromolecules, 1994, 26: 5924-5936.
    [69] Sun H., Mumby S.J., Maple J.R., Hagler A.T. Ab Initio Calculations on Small Molecule Analogues of Polycarbonates [J], J. Phys. Chem, 1995, 99(16): 5873-5879.
    [70] Sun H. Force Field for Computation of Conformational Energies, Structures, and Vibrational Frequencies of Aromatic Polyesters [J]. J. Comput. Chem, 1994, 15(7): 752-758.
    [71] Rigby D., Sun H. Polysiloxanes: Ab Initio Force Field and Structural, Conformational and Thermophysical Properties [J]. Spectrochimica Acta (A), 1997, 53: 1301-1307.
    [72] Sun H., Ren P., Fried J.R.The Compass Force Field: Parameterization and Validation for Polyphosphazenes [J]. Computational and Theoretical Polymer Science, 1998, 8(1): 229-236.
    [73] Buckingham A.D. The Effects of Collisions on Molecular Properties [J]. Adv. Chem. Phys., 1967, 12: 107-142.
    [74] Brown D., Clark J.H.R. A comparison of constant energy, constant temperature and constant pressure ensembles in molecular dynamics simulations of atomic liquids [J], Molecular Physics, 1984, 51(5): 1243-1254.
    [75] Andrew R.L. In Molecular Modelling: Principles and Appiication Addison Wesley Longman [D]. London, 1996.
    [76] Dauber-Osguthorpe P., Robberts V.A., Osguthorpe D.J., Wolff J., Genest M., Hagler A.T. Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system [M], Proteins 1988, 4(1): 31-47.
    [77] Hagler A.T., Ewig C.S. On the use of quantum energy surfaces in the derivation of molecular force fields", Comp. Phys. Comm., 1994, 84, 131-155.
    [78] Allen F.H., Kennard O. 3D search and research using the Cambridge Structural Database [J]. Chemical Design Automation News, 1993, 8(1): 31-37.
    [79] Sali A. Modelling mutations and homologous proteins [J]. Curr. Opin. Biotechnol, 1995, 6(4): 437-451.
    [80] Sali A., Blundell T.L. Comparative protein modelling by satisfaction of spatial restraints [J]. J. Mol. Biol. 1993, 234(3): 779-815
    [81] Discover 3 User Guide San Giego [M]. 1999, MSI, USA.
    [82] Affinity User Guide San Diego [M] 1999 MSI, USA
    [83] Proudfoot A.E., Payton M. A., Wells T.N. Purification and characterization of fungal and mammalian phosphomannose isomerases [J]. J. Protein. Chem, 1994, 13(7): 619-627.
    [84]孙苗.几类重要蛋白质的分子模拟[D].吉林大学,2005.
    [85] Casewit C.J., Colwell K.S., Rappe A.K. Application of a universal force field to organic molecules [J]. J. Am. Chem. Soc., 1992, 114(25):10035-10046.
    [86] Sun,H.,Ren,P.,and Fried,J.R. The COMPASS Force Field:Parameterization and Validation for Phosphazenes[J]. Comput.Theor.Polymer Sci.,1998,8, 229-246.
    [87] Weiner S.J., Kollman P.A., Case D.A., Singh U., Ghio C., Alagona G., Profeta S.Jr., Weiner P. A new force field for molecular mechanical simulation of nucleic acids and proteins [J]. J. Am. Chem. Soc., 1984, 106(3):765-784.
    [88] Koher A.E., Garofalini S.H. Effect of Composition on the Penetration of Inert Gases Adsorbed onto Silicate Glass Surfaces [J]. Langmuir, 1994, 10(12): 4664-4669.
    [89] Kollman P, Free energy calculations: Applications to chemical and biochemical phenomena [J]. Chem. Rev., 1993, 93(7): 2395-2417.
    [90] Horng M., Gardecki J. A., Maroncelli A. Rotational Dynamics of Coumarin 153: Time-Dependent Friction, Dielectric Friction, and Other Nonhydrodynamic Effects [J]. J. Phys. Chem. A 1997, 72: 1030-1047.
    [91] Bj?rn O. Brandsdal, Fredrik ?sterberg, Martin Alml?f, Isabella Feierberg, Victor B. Luzhkov and Johan ?qvist. Free Energy Calculations and Ligand Binding [J]. Advances in Protein Chemistry, 2003, 66:123-158.
    [92]蒋勇军,曾敏,周先波,邹建卫,俞庆森. CDK2-抑制剂结合自由能计算[J].化学学报, 2004, 64(18): 1751-1754.
    [93] Smith K.C., Honing B. Evaluation of the conformational free energies of loops in proteins [J]. Proteins Struct. Funct. Genet., 1994, 18(2): 119-132.
    [94] Srinivasan J., Cheatham T.E., Cieplak P., Kollman P.A., Case D.A. Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helices [J]. J. Am. Chem. Soc, 1998, 120(37): 9401-9409.
    [95] Yang A.S., Hitz B. Free energy determinants of secondary structure formation: III. beta-turns and their role in protein folding[J]. J. Mol. Biol. 1996, 259(4):873–882.
    [96] Yang A.S., Hitz B. Free energy determinants of secondary structure formation Antiparallel beta-sheets [J]. J. Mol. Biol., 1995, 252(3): 366-376.
    [97]韩德刚,高执棣,高盘良.物理化学[M].北京:高等教育出版社, 2005: 46-55.
    [98] Rohrbacher A. et al.. The Dynamic of Noble Gas-Halogen Molecules and clusters [J]. Annu Rev Phys Chem, 2000, 51: 405-433.
    [99] Feig M., Im w., Brooks C.J. Implicit solvation based on generalized Born theory in different dielectric environments [J]. J. Chem. Phys. 2004, 120(2): 903-911.
    [100] Still W., Tempczk A., Hawley R., Hendricson T. Semianalytical treatment of solvation for molecular mechanics and dynamics [J]. J. Am. Chem. Soc, 1990, 112(16): 6127-6129.
    [101] Sitkoff D., Sharp K.A., Honig B. Accurate calculation of hydration free energies using macroscopic solvent models [J]. J. Phys. Chem. 1994, 98: 1978-1988.
    [102] Sanner M.F., Olson A.J., Spehner J.C. Reduced surface: an efficient way to compute molecular surfaces [J]. Biopolymers, 1996, 38(3): 305-320.
    [103] Wang W., Donini O., Reyes C., Kollman P.A. Biomolecular simulations: recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions [J]. Annu. Rev. Biophys. Biomol. Struct., 2001, 30(1): 211-243.
    [104] Tsui V., Case D.A. Theory and applications of the generalized born solvation model in macromolecular simulations [J]. Biopolymers, 2001, 56(4): 275-291.
    [105] Simonson T. Macromolecular electrostatics: continuum models and their growing pains [J]. Curr. Opin. Struct. Boil. 2001, 11(2): 243-252.
    [106] Bashford D., Case D.A. Generalized born models of macromolecular salvation effects [J]. Ann. Rev. Phys. Chem. 2000, 51: 129-152.
    [107] Wang C.X., Shi Y.Y., Zhou F., Wang L. Thermodynamic integration calculations of binding free energy difference for gly 169 mutation in subtilisin BPN [J]. Proteins, 1993, 15: 5-9.
    [108] Weiser J., Shenkin P.S., Still W.C. Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO) [J]. J. Comput. Chem., 1999, 20: 217-230.
    [109] Swain A.L., Miller M.M., Green J., Rich D.H., Schneider J., Kent S.B.H., Wlodawer A. X-ray crystallographic structure of a complex between a synthetic protease of human immunodeficiency virus 1 and a substrate-based hydroxyethylamine inhibitor [J]. Proc. Natl. Acad. Sci. USA 1990, 87(22): 8805-8809.
    [110] Navia M.A., Fitzgerald P.M.D., Mckeever B.M., Leu C.T., Heimbach J.C., Herber W.K., Sigal I.S., Darke P.L. Springer J. P. 3-Dimensional Structure of Aspartyl Protease from Human Immunodeficiency Virus Hiv-1 [J]. Nature 1989, 337(6208): 615-620.
    [111] Miller M., Jaskolski M., Rao J.K.M., Leis J., Wlodawer A. Crystal structure of a retroviral protease proves relationship to aspartic protease family [J]. Nature, 1989, 337(6208): 576-579.
    [112] Barbaro G., Scozzafava A., Mastrolorenzo A., Supuran C.T. Highly active antiretroviral therapy: current state of the art, new agents and their pharmacological interactions useful for improving therapeutic outcome [J]. Curr. Pharm. Des., 2005, 11(14): 1805-1843.
    [113] Chen J.Z., Yang M.Y., Yi C.H., Shi S.S., Zhang Q.G., Molecular dynamics simulation and free energy calculations of symmetric fluoro-substituted diol-based HIV-1 protease inhibitors [J]. Journal of Molecular Structure: THEOCHEM, 2009, 899(1-3): 1-8.
    [114] Kollman P.A., Massova I., Reyes C.M., Kuhn B., et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models [J]. Acc. Chem. Res. 2001, 33(12): 889-897.
    [115]扈国栋,张少龙,张庆刚,FKBP12蛋白与其抑制剂结合的分子动力学模拟和结合自由能计算[J].化学学报,2009,67(10): 1019-1025.
    [116] Xu Y., Wang R. X.. Computational Analysis of the Binding Affinities of FKBP12 Inhibitors Using the MM-PB/SA Method [J]. Proteins: Structure, Function, and Bioinformatics, 2006, 64: 1058-1068.
    [117] Kuhn B., Gerber P., Schulz-Gasch T., Stahl M. Validation and Use of the MM-PBSA Approach for Drug Discovery [J]. J. Med. Chem., 2005, 48(12): 4040-4048.
    [118] Wang W., Lim W.A., Jakalian A., Wang J., Luo R., Bayly C.I., Kollman P.A., An analysis of the interactions between the Sem-5 SH3 domain and its ligands using molecular dynamics, free energy calculations, and sequence analysis [J]. J. Am.Chem. Soc.,2001,123(17): 3986-3994.
    [119] Wang W., Kollman P.A. Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model [J]. J. Mol. Biol., 2000, 303(4): 567-582.
    [120] Wang J., Morin P., Wang W., Kollman P.A. Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA [J]. J. Am. Chem. Soc., 2001, 123(22): 5221-5230.
    [121] Swanson J.M., Henchman R.H., McCammon J.A. Revisiting free energy calculations: a theoretical connection to MM/PBSA and direct calculation of the association free energy [J]. Biophys. J., 2004, 86(1): 67-74.
    [122] Hu G. D., Zhu T., Zhang S. L., Wang D.y., Zhang Q.G. Some insights into mechanism for binding and drug resistance of wild type and I50V V82A and I84V mutations in HIV-1 protease with GRL-98065 inhibitor from molecular dynamic simulations [J]. European Journal of Medicinal Chemistry 2010, 45(1): 27-35.
    [123] Reyes C.M., Kollman P.A. Structure and Thermodynamics of RNA-protein Binding: Using Molecular Dynamics and Free Energy Analyses to Calculate the Free Energies of Binding and Conformational Change [J]. J. Mol. Biol. 2000, 297(5): 1145-1158.
    [124] Gohlke H., Kiel C., Case D.A. Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RaIGDS complexes [J]. J. Mol. Boil., 2003, 330: 891-913.
    [125] Chen X.N., Tropsha A. Relative binding free energies of peptide inhibitors of HIV-1 protease: the influence of the active site protonation state [J]. J. Med. Chem. 1995, 38(1):42–48.
    [126] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Zakrzewski V.G., Montgomery J.A. Jr., Stratmann R.E., Burant J.C., Dapprich S., Millam J.M., Daniels A.D., Kudin K.N., Strain M.C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson G.A., Ayala P.Y., Cui Q., Morokuma K., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Cioslowski J., Ortiz J.V., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Gomperts R., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Gonzalez C., Challacombe M., Gill P.M.W., Johnson B.G., Chen W., Wong M.W.,Andres J.L., ead-Gordon M., Replogle E.S., Pople J.A. [M]. Gaussian 98, revision A7, Gaussian, Inc., Pittsburgh, PA. 1998.
    [127] Cieplak P., Cornell W. D., Bayly C., Kollman P. A. Application of the multimolecule and multiconformational RESP methodology to biopolymers: charge derivation for DNA, RNA, and proteins [J]. J. Comput. Chem. 1995, 16:1357–1377.
    [128] Bayly C.I., Cieplak P., Cornell W.D., KollmanP.A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges—the resp mode Bayly CI, Cieplak P, Cornell WD, Kollman PA. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges the RESP model [J]. J. Phys. Chem. 1993 97:10269–10280.
    [129] Cornell W.D., Cieplak P., Bayly C.I., Gould I.R., Merz K.M., Ferguson D.M., Spellneyer D.C., Fox T., Caldwell J.W., Kollman P.A. A second generation force field for the simulation of proteins, nucleic acids, and organic moleculesJ.Am. Chem. Soc., 1995, 117: 5179-5197.
    [130] Darden T., York D., Pedersen L. Particle Mesh Ewald: An N·Log(N) method for Ewald sums in large systems [J]. J. Chem. Phys. 1993, 98 (12):10089-10092.
    [131]时术华,扈国栋,陈建中,张少龙,张庆刚.分子动力学模拟研究质子化态在HIV-1 Protease-Indinavir复合物中的作用[J].化学学报, 2009, 67(24):2791-2797.
    [132] Beveridge D.L., Dicapua F.M. Free-energy via molecular simulation. Applications to chemical and biomolecular systemsAnnu. Rev. Biophys. Chem. 1989, 18: 431-492.
    [133]侯廷军,徐筱杰.基于分子动力学模拟和连续介质模型的自由能计算方法[J].化学进展, 2004, 16(2): 153-158.
    [134] McQuarrie D.A. Statistical Mechanics [M]. Harper & Row New York:1976.
    [135] Lam P.Y.S, Jahdav P.K., Eyermann C.J., Hodge C.N., Ru Y., Meek L.T., Bacheler J.L., Otto M.J., Rayner M.M., Wong Y.N., Chang C.H., Weber P.C., Jackson D.A., Sharpe T.R., Erickson-Viitanen S.. Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. Science, 1994, 263(5145): 380-384.
    [136] Lam P.Y.S., Ru Y., Jahdav P.K., AldricP.E. h, DeLucca G.V., Eyermann C.J., Chang C.H., Emmett G., Holler E.R., Daneker W.F., Li L., Confalone P.N., McHugh R.J., Han Q., Li R., Markwalder J.A., Seitz S.P., Sharpe T.R., Bacheler L.T., Rayner M.M., Klabe R.M., Shum L., Winslow D.L., Korhauser D.M., Jackson D.A., Erickson-Viitanen S., Hodge C.N.Cyclic HIV protease inhibitors. Synthesis, conformational analysis, P2/P2' structure-activity relationship, and molecular recognition of cyclic ureas [J]. J. Med. Chem., 1996, 39(18): 3514.
    [137] Hodge C.N., Aldrich P.E., Bacheler L.T., Chang C.H., Eyermann C.J., Garber S., Grubb M., Jackson D.A., Jadhav P.K., Korant B., Lam P.Y., Maurin M.B., Meek J.L., Otto M.J., Otto M.M., Reid C., Sharpe T.R., Shum L., Winslow D.L., Erickson-Viitanen S. Improved cyclic urea inhibitors of the HIV-1 protease: synthesis, potency, resistance profile, human pharmacokinetics and X-ray crystal structure of DMP 450 [J]. Chem. Biol., 1996 3(4): 301-314.
    [138] Wittayanarakul K., Aruksakunwong O., Saen-oon S., Chantratita W., Parasuk V., Sompornpisut P., Hannongbua S. Insights into saquinavir resistance in the G48V HIV-1 protease: quantum calculations and molecular dynamic simulationsBiophys [J]. Biophys. J., 2005, 88(2): 867-879.
    [139] Hou T., Yu R. Molecular dynamics and free energy studies on the wild-type and double mutant HIV-1 protease complexed with amprenavir and two amprenavir-related inhibitors: mechanism for binding and drug resistance [J]. J. Med. Chem. 2007, 50(6):1177–1188
    [140] Mahalingam, B.; Wang, Y. F.; Boross, P. I.; Tozser, J.; Louis, J. M.; Harrison, R.W.; Weber, I. T. Crystal structures of HIV protease V82A and L90M mutants reveal changes in indinavir binding site [J]. Eur. J. Biochem. 2004, 271(8), 1516-1524.
    [141] Duan Y., Wu C., Chowdhury S., Lee M. C., Xiong G., Zhang W., Yang R., Cieplak P., Luo R., Lee T., Caldwell J., Wang J., Kollman P. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations [J]. J. Comput. Chem. 2003, 24(16): 1999–2012
    [142] Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollamn. P. A.; Case, D. A. Development and testing of a general amber force field [J]. J. Comput. Chem., 2004, 25(9): 1157-1174
    [143] David A. C., Thomas E.C.Ⅲ., Tom D., Holger G., Ray L., Kenneth M. M., JR., Alexey O., Carlos S., Bing W., Robert J. W. The Amber biomolecular simulation programs[J]. J. Comput. Chem. 2005, 26(16):1668–1688.
    [144] Jorgensen W. L., Chandrasekhar J., Madurs J. D., Impey R. W., Klein M. L. Comparison of simple potential functions for simulating liquid water[J]. J. Chem. Phys 1983, 79: 926-935.
    [145] Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. Numerical-integration of cartesian equations of motion of a system with constraints—molecular-dynamics of N-alkanes [J]. J. Chem. Phys., 1977, 23(3):327–341
    [146]胡建平,孙庭广,陈慰祖,王存新.谷氨酰胺结合蛋白的分子动力学模拟和自由能计算[J].化学学报, 2006, 64(20): 2079-2085.
    [147] Lu, Y.; Yang, C.; Wang, S. Binding free energy contributions of interfacial waters in HIV-1 protease/inhibitor complexes [J]. J. Am. Chem. Soc., 2006, 128(36): 11830-11839.
    [148] Duan, L. L.; Tong, Y.; Mei, Y.; Zhang, Q. G.; Zhang, J. Z. H. Quantum study of HIV-1 protease-bridge water interaction[J]. J. Chem. Phys. 2007, 127(14): 145101-6.
    [149] Jianzhong Chen, Maoyou Yang, Guodong Hu, Shuhua Shi, Changhong Yi, Qinggang Zhang, Insights into the functional role of protonation states in the HIV-1 protease-BEA369 complex: molecular dynamics simulations and free energy calculations. J. Mol. Model. 2009,15: 1245-1252.
    [150] García A.E., Hummer G. Water penetration and escape in proteins [J]. Proteins, 2000, 38(3): 261-272.
    [151] Park S., J. G. Saven, Computationally assisted protein design [J]. Annual Reports in Computational Chemistry, 2005, 1: 245-253.
    [152] Jin H.X., Wu T.X., Jiang Y.J., Zou J.W., Zhuang S.L., Zhang N., Mao X., Yu Q.S. Functional role of three water molecular buried within catalytic subunit of cyclic 3’,5’-adenosine monophosphate-dependent protein kinase [J]. J. Mol. Struct. (THEOCHEM) 2007, 809(1-3): 21-27.
    [153] P. Luo, R. Baldwin, Interaction between water and polar groups of the helix backbone: An important determinant of helix propensities Proc. Natl. Acad. Sci. USA, 1999, 96(9): 4930-4935.
    [154] Russo D., Baglioni P., Peroni E. Teixeira J. Hydration water dynamics of a completely hydrophobic oligopeptide [J]. Chem. Phys., 2003, 292(2-3): 235–245.
    [155] Prévost M. Dynamics of water molecules buried in cavities of apolipoprotein E studied by molecular dynamics simulations and continuum electrostatic calculations Biopolymers [J]. 2004, 75(2): 196-207.
    [156] Robinson C.R., Sligar S.G. Changes in solvation during DNA binding and cleavage are critical to altered specificity of the EcoRI endonuclease [J]. Proc. Natl. Acad. Sci. U S A.,1998, 95(5):2186–2191.
    [157] Robinson C.R., Sligar S.G. Molecular recognition mediated by bound water. A mechanism for star activity of the restriction endonuclease EcoRI [J]. J. Mol. Biol., 1993, 234(2):302–306.
    [158] Dill K.A. Dominant forces in protein folding [J]. Biochemistry., 1990, 29(31):7133–7155.
    [159] Li Z., Lazaridis T. The effect of water displacement on binding thermodynamics: Concanavalin A [J]. J. Phys. Chem. 2005, 109(1): 662-670.
    [160] Li Z., Lazaridis T. Thermodynamic contributions of the ordered water molecule in HIV-1 protease [J]. J. Am. Chem. Soc., 2003, 125(22): 6636-6637.
    [161] Kovalevsky A.Y., Tie Y., Liu F., Boross P.I., Wang Y.F., Leshchenko S., Ghosh A.K., Harrison R.W., Weber I.T. Effectiveness of nonpeptide clinical inhibitor TMC-114 on HIV-1 protease with highly drug resistant mutations D30N, I50V, and L90M[J]. J. Med. Chem. 2006, 49(4):1379–1387.
    [162] Hyland L.J., Tomaszek T.A., Meek T.D. Human immunodeficiency virus-1 protease. 2. Use of pH rate studies and solvent kinetic isotope effects to elucidate details of chemical mechanism [J]. Biochemistry-US, 1991, 30: 8454-8463.
    [163] Hou T.J., Mclaughlin W.A., Wang W. Evaluating the potency of HIV-1 protease drugs to combat resistance [J]. Proteins, 2008, 71(3):1163–1174.
    [164] Shi S.S., Chen J.Z., Hu G.D., Yi C.H., Zhang S. L., Zhang Q. G. Molecular Insight into the Interaction mechanisms of Inhibitors BEC and BEG with HIV-1 Protease by Using MM-PBSA and Molecular Dynamics Simulation [J]. Journal of Molecular Structure: THEOCHEM, 2009, 913(1-3): 22-27.
    [165] Wlodawer A., Vondrasek J. Inhibitors of HIV-1 protease: a major success of structure-sssisted drug design [J]. Annu. Rev. Biomol. Struct., 1998, 27:249-284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700