用户名: 密码: 验证码:
超疏水表面微结构对其疏水性能的影响及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浸润性是材料表面的一个重要性质;有关物理化学过程如吸附、润滑、黏合、分散和摩擦等均与表面的浸润性密切相关。近来,受“荷叶效应”的启发而发展起来的超疏水性在自清洁、微流体系统和生物相容性等方面的潜在应用激发了学术界和工业界的广泛兴趣。然而到目前为止,无论是实验研究还是理论研究均达不到使超疏水表面上升到实用化的高度,实验上还没有开发出简易方法制备出经久耐用的超疏水表面;理论上也还未完全揭示超疏水表面的微观润湿机理。就固体表面的润湿及液滴运动而言,Young方程、Cassie方程、Wenzel方程仅仅是对液滴状态的一种静态描述,未能涉及到液滴的运动或接触角滞后的定量描述,也没有深入地建立起表面润湿性能同微观结构之间的定量联系。相关研究者尽管做出过很大努力企图通过热力学方法建模解决固体表面上液滴运动的定量描述问题,但所用方法在数学上大多繁琐难懂且主要倾向于唯像的描述。基于以上研究现状,我们以超疏水表面作为研究对象寻求解决问题的方法,将静态表观接触角(对应于液滴–超疏水表面系统的最小自由能)同运动角(前进、后退接触角及滚动角)联系起来,将超疏水表面的疏水性能同表面的微观结构联系起来。
     同时,研究发现超疏水表面对于宏观尺度水滴带来的覆冰具有抑制作用;它能延缓结冰时间、减少覆冰量、降低冰块与固体表面的粘附。因而,我们试图将超疏水表面研究成果应用到高压电缆的防冰,并进一步分析超疏水表面的防冰机制和可能实现防冰的方法。纵观整个研究过程,我们主要做了如下系列工作:
     第一,首先从宏观角度建立起超疏水表面上液滴的静态表观接触角(如Cassie接触角和Wenzel接触角)和动态接触角之间的定量关系。针对接触角滞后定性定量实验,宏观上分析了超疏水表面上液滴运动滞后过程中初始态、预前进态、前进态、预后退态与后退态的表观接触角的变化(静态表观接触角、前进角、后退角)、三相接触线半径的变化、液滴表面自由能的变化等。提出了用于解释超疏水表面上液滴运动的两个新概念,如自由能变化(Changes in free energy)和可用于三维液滴的自由能能垒(Free energy change)。
     第二,针对超疏水表面的疏水性能主要取决于表面的微观结构形貌这一结论,我们分别在Cassie方程、Wenzel方程的基础上讨论了超疏水表面和液滴系统在复合和非复合润湿状态的下润湿性能,通过三维模型的固体份数和粗糙度因子建立起了疏水性能和表面微结构之间的定量关系,并根据微结构参数的变化讨论了超疏水表面性能的变化。
     (1)针对某些人工和自然超疏水表面的一级微结构,提出了一级柱形微结构模型;将一级柱形微结构表面的疏水性能同方柱的宽度、间距和高度联系起来;分别针对复合和非复合润湿状态,建立起超疏水表面上液滴的表观接触角(Cassie接触角、Wenzel接触角)、接触角滞后、自由能变化、自由能能垒、粘附功和铺展系数与柱形微结构之间的数学关系。通过比较粘附功和能垒的变化,从数学角度解释了液滴运动时所需克服的能垒与固–液界面的润湿状态没有关系,而是由三相接触线附近的接触状态和表面的材料化学性质来决定。并从数学的角度解释了超疏水表面对于凝结的水分子团簇丧失疏水性。
     (2)同样,受荷叶表面二级微结构和仿荷叶表面微结构的启发,我们亦提出了仿荷叶的二级微结构柱形模型,通过以上同样的方式建立起仿荷叶表面的超疏水性能和表面微结构之间的关系。从结构参数的数量变化解释了二级结构为何能够有效降低接触角滞后;并从能垒和粘附功的角度讨论了超疏水表面上的液滴润湿状态的复合非复合转换。
     (3)基于以上工作,利用分形几何建模讨论了具有不同等级(或多尺度)微结构的超疏水表面的疏水性质,提出液滴润湿状态的转换与分形维度没有关系(外界条件相同),而是由表面的微观粗糙度来决定,并求出用于转换的临界粗糙度大约为1.8,这与以往的研究者从接触角滞后的变化求得的临界粗糙度基本一致。进一步对比发现:单从疏水性能来看,构造具有二级微结构的超疏水表面已能满足疏水性要求,高于二级的微结构表面,如三级分形微结构,是不必要的。考虑到力学性能的持久性和表面加工的方便,一级微结构的表面也许是理想选择。
     第三,在超疏水表面研究基础上,讨论了超疏水表面防冰性能的热力学机制。鉴于冰粒粘附力的不便测定和已有的测定方法不统一,本文主要从粘附功的角度分析了超疏水表面的防冰属性。研究发现:超疏水表面的防冰性能同疏水性能一样主要由表面的材料和微结构决定;当表面–水滴系统处于复合态时,超疏水表面的确具有防冰功能;反之,当表面–水滴系统处于非复合态时,表面覆冰性能跟材料有关,材料亲水时表面会更倾向于覆冰,材料疏水时,表面倾向于防冰。
     第四,考虑到覆冰防冰的复杂性和超疏水技术的不足,我们以目前用于重冰区的紧缩型钢芯铝合金绞线为基础,结合电热技术设计了实用新型的防冰高压电缆。该电缆设计了两套防线用于防冰,两套防线可相互协作,亦可独立工作,工艺上没有大幅度改变传统生产方法,不会带来新的不便。第一套防线,采用内嵌铁铬铝线加热融冰,第二套防线采用在电缆上涂敷超疏水复合涂层防冰。当铁铬铝线加热电缆时,冰与电缆表面直接接触的冰首先融化,覆冰转化为疏水,覆冰融化到一定程度,在疏水表面的作用下,借助冰块本身的重力自动滑落电缆,达到除冰的目的。
The wetting of the surfaces, as an important property, is associated with therelevant physical and chemical process, i.e., absorption, lubrication, adhesion,dispersion and friction. Recently, the superhydrophobic surfaces (SHS) have attractedthe widespread attentions from both academic and industrial fields due to its potentialapplications in self–cleaning, micro–fluid system and biologic compatibility.However, up to now, two aspects of both theoretical and experimental study are faraway the level of making the SHS be of practicality. There are experimentally nopractical methods exploited to prepare the durable SHS or the special SHS that areapplied to the specific environment; and also there are theoretically no perfectconceptions used for explantion of micro–wetting mechanisms of the SHS. From boththe wetting and movement of the droplets, both Young and Cassie equations as wellas Wenzel equation are only a static description for the droplets, not involving thequantitative description for the movement and the hysteresis of the droplets, and alsonot establishing the relationships between the surface wetting properties and themicrostructures. Although the researchers have made a great effort to settle down thedescription for the movement in thermodynamics, the used methods aremathematically obscure and fall into the phenomenon description. Based on thepresent situation, we attempt to search for the methods to solve the problems on thebasis of the wetting of the SHS for the purpose of establishing the relationshipsbetween the static apparent contact angle (CA) with dynamic angle (includingadvancing, receding CAs together with sliding angles) as well as between thehydrophobic properties and the surface microstructures.
     Meanwhile, the SHS again shows a new application in the icing of thetransmitting lines. The study indicates that the SHS can effectively inhibit the icingfrom the droplets with macro–scale, delay the time to ice, and reduce the quantity ofthe icing and the adhesion between the icing and them. Therefore, we attempt to applythe SHS to the anti–icing of the high–voltage cables and further analyze the anti–icingmechanism of the SHS and the possible methods used for the anti–icing.
     Reviewing the study, we have finished the following work:
     Firstly, the relationships have been established between the static apparent CAand the dynamic CAs, including advancing or receding CAs, by considering the SHSas our object of our study. Based on the quantitative and qualitative experiments, we analyzed the variations of both the apparent CA and the changes in the radius of thethree–phase–contact line along with free energy among the initial, pre–advancing,advancing, pre–receding, receding states, and put forward two new conceptions ofboth changes in free energy (CFE) and free energy barrier (FEB) to explain themovement of the droplets on the SHS.
     Secondly, based on the conclusion that the hydrophobic properties of the SHSdepends mainly on the surface microstructures, we discussed the wetting of thesystem of both the droplets and the surfaces in the composite/non–composite wettingstates on the ground of the Cassie/Wenzel equations respectively, and established therelationships between the hydrophobic properties and the surface microstructures byboth the solid fraction and the roughness factor of a three–dimensional model, anddiscussed the variations of the properties of the SHS with the microstructures.
     (1) On the basis of the one–step microstructures of some artificial and naturalSHS, we proposed one–step model for simulation of the SHS, and established therelationships between the hydrophobic properties, i.e., the apparent CAs, CAH, CFE,FEB, adhesion work (Wa), the spreading coefficient (SS/L), and the width, heighttogether with spacing of a pillar according to composite/non–composite wetting state;and explained that the energy barrier, being overcome by a droplet while it moves, isindependent of the state of the solid–liquid interfaces within the three–phase contactline, and depends mainly on the materials and microstructures near the three–phasecontact line; meanwhile mathematically explained that the SHS, e.g., a lotus leafsurface, lost their hydrophobic ability to the condensed vapor.
     (2) Similarly, enlightened by a two–step micro–structure, we developed thetwo–step model to simulate the lotus leaf surfaces, and established the relationshipsbetween the hydrophobic properties of the lotus–simulating surfaces andmirostructures; and mathematically explained why the two–step microstructures caneffectively reduce the CAH; and discussed the transition between the composite andnoncomposite wetting states from both the energy barrier and adhesion work point ofview.
     (3) Then on the basis of the above work, we discussed the hydrophobicproperties of the SHS with different dimension by modeling in fractal geometry; andproposed that the transition between composite and non–composite wetting isindependence of the fractal dimension and only determined by the microscopicroughness; and found that the critical roughness factor for the transition is1.8or so, which is in agreement with the one from the changes in CAH. By comparing, wefurther found that designing the SHS with two–step microstructure is enough tosatisfy the requirement of the hydrophobicity; higher dimensional surfaces, forexample, three–dimensional surfaces are unnecessary; meanwhile, the SHS withone–step microstructures may be an ideal selection, if our considering both thedurability and the surface formation.
     Thirdly, based on the study of the SHS, the thermodynamic mechanism for theanti–icing was also discussed. In view of the inconvenience of the measurement of theadhesion force and the existing measurement not being uniform, the anti–icingproperty of the SHS was analyzed only from the adhesion work point of view in thisstudy. The study indicates that the anti–icing property of the SHS depends mainly onboth the surface materials and microstructures as demonstrated for the hydrophobicproperty;when the system of both the surfaces and the droplets is in the compositewetting state, the SHS surely have the ability to anti–icing due to the main role of themicrostructures; conversely, the anti–icing property was related to the materials in thenon–composite wetting state, both the hydrophilic and hydrophobic materials showingthe icing and anti–icing respectively.
     Fourthly, considering both the complexity of the anti–icing process and theimperfect techniques for the superhydrophobicity, we have designed a new–type ofhigh–voltage cable with anti–icing property based on the compressed steel–corealuminum alloy twisted lines used in the heavy icing area, integrating theelectricity–heating techniques. The cable was designed to anti–ice with two lines:those which the iron–chrome–aluminum lines inserted into the cable are to heat withthe action of the current; the others which the superhydrophobic coatings are towaterproof and anti–ice. With the iron–chrome–aluminum lines connected to thepower, the ice directly contact with cable surface is melted firstly; and thecorresponding water is repelled by the hydrophobic coatings. When the ice is meltedto some extent, the ice will slide off the cables with its gravitation. The two lines canwork cooperatively or independently as well.
引文
[1]胡福增.材料表面与界面[M].1ed.上海:华东理工大学出版社,2008.
    [2] Feng L, Li S, Li Y, et al. Superhydrophobic surfaces: from natural to artificial [J]. AdvMater,2002,14(24):1857-1860.
    [3] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination inbiological surfaces [J]. Planta,1997,202(1):1-8.
    [4] Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaningplant surfaces [J]. Ann Bot,1997,79(6):667-677.
    [5]江雷,冯琳.仿生智能纳米界面材料[M].1ed.北京:化学工业出版社,2007.
    [6] Park Y M, Gang M, Seo Y H, et al. Artificial petal surface based on hierarchical micro-andnanostructures [J]. Thin Solid Films,2011,520(1):362-367.
    [7] Wei P J, Chen S C, Lin J F. Adhesion forces and contact angles of water strider legs [J].Langmuir,2009,25:1526-1528
    [8] Gao X, Jiang L. Biophysics: Water-repellent legs of water striders [J]. Nature,2004,432(7013):36-36.
    [9] Gao X, Wu Z, Jiang L, et al. Superior water repellency of water strider legs withhierarchical structures: experiments and analysis [J]. Langmuir,2007,23(9):4892-4896.
    [10] Lee W, Jin M-K, Yoo W-C, et al. Nanostructuring of a polymeric substrate withwell-defined nanometer-scale topography and tailored surface wettability [J]. Langmuir,2004,20(18):7665-7669.
    [11] Parker A R, Lawrence C R. Water capture by a desert beetle [J]. Nature,2001,414(6859):33-34.
    [12] Wei P J, Chen S C, Lin J F. Adhesion forces and contact angles of water strider legs [J].Langmuir,2008,25(3):1526-1528.
    [13] Chen W, Fadeev A Y, Hsieh M C, et al. Ultrahydrophobic and ultralyophobic surfaces:some comments and examples [J]. Langmuir,1999,15(10):3395-3399.
    [14] Rao A V, Kulkarni M M, Amalnerkar D P, et al. Superhydrophobic silica aerogels based onmethyltrimethoxysilane precursor [J]. J Non-cryst Solids,2003,330(1-3):187-195.
    [15] Lau K K S, Bico J, Teo K B K, et al. Superhydrophobic carbon nanotube forests [J]. NanoLett,2003,3(12):1701-1705.
    [16] Genzer J, Efimenko K. Creating long-lived superhydrophobic polymer surfaces throughmechanically assembled monolayers [J]. Science,2000,290(5499):2130-2133.
    [17] Erbil H Y, Demirel A L, Avc Y, et al. Transformation of a simple plastic into asuperhydrophobic surface [J]. Science,2003,299(5611):1377-1380.
    [18] Feng L, Li S, Li H, et al. Superhydrophobic surface of aligned polyacrylonitrile nanofibers[J]. Angewandte Chemie,2002,114(7):1269-1271.
    [19] Jiang L, Zhao Y, Zhai J. A lotus-leaf-like superhydrophobic surface: a porousmicrosphere/nanofiber composite film prepared by electrohydrodynamics [J]. AngewandteChemie,2004,116(33):4438-4441.
    [20] Zhang X, Shi F, Yu X, et al. Polyelectrolyte multilayer as matrix for electrochemicaldeposition of gold clusters: toward super-hydrophobic surface [J]. J Am Chem Soc,2004,126(10):3064-3065.
    [21] Zhao N, Shi F, Wang Z, et al. Combining layer-by-layer assembly with electrodeposition ofsilver aggregates for fabricating superhydrophobic surfaces [J]. Langmuir,2005,21(10):4713-4716.
    [22] Shi F, Song Y, Niu J, et al. Facile method to fabricate a large-scale superhydrophobicsurface by galvanic cell reaction [J]. Chem Mater,2006,18(5):1365-1368.
    [23] Yu X, Wang Z, Jiang Y, et al. Reversible pH-esponsive surface: from superhydrophobicityto superhydrophilicity [J]. Adv Mater,2005,17(10):1289-1293.
    [24] Jiang Y, Wang Z, Yu X, et al. Self-assembled monolayers of dendron thiols forelectrodeposition of gold nanostructures: Toward fabrication ofsuperhydrophobic/superhydrophilic surfaces and PH-responsive surfaces [J]. Langmuir,2005,21(5):1986-1990.
    [25] Jisr R M, Rmaile H H, Schlenoff J B. Hydrophobic and ultrahydrophobic multilayer thinfilms from perfluorinated polyelectrolytes [J]. Angew Chem Int Ed,2004,44(5):782-785.
    [26] Qian B, Shen Z. Fabrication of superhydrophobic surfaces by dislocation-selective chemicaletching on aluminum, copper, and zinc substrates [J]. Langmuir,2005,21(20):9007-9009.
    [27] Young T. An essay on the cohesion of fluids [J]. Philosophical Transactions of the RoyalSociety of London,1805,95:65-87.
    [28]顾惕人,朱步瑶,马季铭.表面化学[M].北京:科学出版社,2001.
    [29] Wang L, Zhao Y, Wang J, et al. Ultra-fast spreading on superhydrophilic fibrous mesh withnanochannels [J]. Appl Surf Sci,2009,255(9):4944-4949.
    [30] Kollias K, Wang H, Song Y, et al. Production of a superhydrophilic surface byaluminum-induced crystallization of amorphous silicon [J]. Nanotechnology,2008,19(46):465304.
    [31] Song S, Jing L, Li S, et al. Superhydrophilic anatase TiO2film with the micro-andnanometer-scale hierarchical surface structure [J]. Mater Lett,2008,62(20):3503-3505.
    [32] Liu X, Du X, He J. Hierarchically structured porous films of silica hollow spheres viaLayer-by-ayer assembly and sheir superhydrophilic and antifogging properties [J].Chemphyschem,2008,9(2):305-309.
    [33] Wu Z Z, Lee D, Rubner M. Structural color in porous, superhydrophilic and self-cleaningSiO2/TiO2brag stacks [J]. Small,2007,3(8):1445-1451.
    [34] Tang K, Wang X, Yan W, et al. Fabrication of superhydrophilic Cu2O and CuO membranes[J]. J Membrane Sci,2006,286(1):279-284.
    [35] Zhong W, Liu S, Chen X, et al. High-yield synthesis of superhydrophilic polypyrrolenanowire networks [J]. Macromolecules,2006,39(9):3224-3230.
    [36] Premkumar J R, Khoo S B. Electrochemically generated super-hydrophilic surfaces [J].Chem Commun,2004,5:640-642.
    [37] Feng L, Zhang Y, Xi J, et al. Petal Effect: A Superhydrophobic state with high adhesiveforce [J]. Langmuir,2008,24(8):4114-4119.
    [38] Extrand C W. Contact angles and their hysteresis as a measure of liquid-solid adhesion [J].Langmuir,2004,20(10):4017-4021.
    [39] D. Q. Rough ideas on wetting [J]. Physica A: Statistical mechanics and its applications,2002,313(1-2):32-46.
    [40] Marmur A. The lotus effect:superhydrophobicity and metastability [J]. Langmuir,2004,20(9):3517-3519.
    [41] Furmidge C. Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces anda theory for spray retention [J]. J Colloid Sci,1962,17(4):309-324.
    [42] Nakajima A, Fujishima A, Hashimoto K, et al. Preparation of transparent superhydrophobicboehmite and silica films by sublimation of aluminum acetylacetonate [J]. Adv Mater,1999,11(16):1365-1368.
    [43] Zhang X, Shi F, Niu J, et al. Superhydrophobic surfaces: from structural control tofunctional application [J]. J Mater Chem,2008,18(6):621-633.
    [44] McHale G, Shirtcliffe N, Newton M. Contact-angle hysteresis on super-hydrophobicsurfaces [J]. Langmuir,2004,20(23):10146-10149.
    [45] Nishino T, Meguro M, Nakamae K, et al. The lowest surface free energy based on-CF3alignment [J]. Langmuir,1999,15(13):4321-4323.
    [46] Herminghaus S. Roughness-induced non-wetting [J]. EPL (Europhysics Letters),2000,52(2):165.
    [47] Lafuma A, Quere D. Superhydrophobic states [J]. Nat Mater,2003,2(7):457-460.
    [48] Wenzel R N. Resistance of solid surfaces to wetting by water [J]. Ind Eng Chem,1936,28(8):988-994.
    [49] Callies M, Quéré D. On water repellency [J]. Soft Matter,2005,1:55-61.
    [50] Cassie A B D, Baxter S. Wettability of porous surfaces [J]. Trans Faraday Soc,1944,40:546-551.
    [51] Bico J, Thiele U, D. Q. Wetting of textured surfaces [J]. Colloids and Surfaces A:Physicochem Eng Aspects,2002,206(1-3):41-46.
    [52] Gao N, Yan Y. Modeling superhydrophobic contact angles and wetting transition [J].Journal of Bionic Engineering,2009,6(4):335-340.
    [53] Quere D, Lafuma A, Bico J. Slippy and sticky microtextured solids [J]. Nanotechnology,2003,14(10):1109.
    [54] Jopp J, Grüll H, Yerushalmi-Rozen R. Wetting behavior of water droplets on hydrophobicmicrotextures of comparable size [J]. Langmuir,2004,20(23):10015-10019.
    [55] Patankar N A. Transition between superhydrophobic states on rough surfaces [J]. Langmuir,2004,20:7097-7102.
    [56] Koishi T, Yasuoka K, Fujikawa S, et al. Coexistence and transition between Cassie andWenzel state on pillared hydrophobic surface [J]. Proceedings of the National Academy ofSciences,2009,106(21):8435-8440.
    [57] Jung Y C, Bhushan B. Wetting transition of water droplets on superhydrophobic patternedsurfaces [J]. Scripta Mater,2007,57(12):1057-1060.
    [58] Ishino C, Okumura K. Wetting transitions on textured hydrophilic surfaces [J]. Eur Phys J E:Soft Matter Biol Phys,2008,25(4):415-424.
    [59] Ran C, Ding G, Liu W, et al. Wetting on nanoporous alumina surface: transition betweenWenzel and Cassie states controlled by surface structure [J]. Langmuir,2008,24(18):9952-9955.
    [60] Kusumaatmaja H, Blow M, Dupuis A, et al. The collapse transition on superhydrophobicsurfaces [J]. EPL (Europhysics Letters),2008,81(3):36003.
    [61] Nosonovsky M, Bhushan B. Biomimetic superhydrophobic surfaces:multiscale approach [J].Nano Lett,2007,7(9):2633-2637.
    [62] Lee C, Choi C H, Kim C J. Structured surfaces for a giant liquid slip [J]. Phys Rev Lett,2008,101(6):64501.
    [63] Marmur A. From hygrophilic to superhygrophobic: theoretical conditions for makinghigh-contact-angle surfaces from low-contact-angle materials [J]. Langmuir,2008,24:7573-7579
    [64] Bormashenko E, Pogreb R, Whyman G, et al. Resonance Cassie-Wenzel wetting transitionfor horizontally vibrated drops deposited on a rough surface [J]. Langmuir,2007,23(24):12217-12221.
    [65] Marmur A, Bittoun E. When Wenzel and Cassie are right: reconciling local and globalconsiderations [J]. Langmuir,2009,25(3):1277-1281.
    [66] He B, Patankar N A, Lee J. Multiple equilibrium droplet shapes and design criterion forrough hydrophobic surfaces [J]. Langmuir,2003,19(12):4999-5003.
    [67] Li W, Amirfazli A. A thermodynamic approach for determining the contact angle hysteresisfor superhydrophobic surfaces [J]. J Colloid Interf Sci,2005,292(1):195-201.
    [68] Li W, Amirfazli A. Microtextured superhydrophobic surfaces: A thermodynamic analysis[J]. Adv Colloid Interface Sci,2007,132(2):51-68.
    [69] Fang G, Li W, Wang X, et al. Droplet motion on designed microtextured superhydrophobicsurfaces with tunable wettability [J]. Langmuir,2008,24:11651-11660.
    [70] Li W, Fang G, Li Y, et al. Anisotropic wetting behavior arising from superhydrophobicsurfaces: parallel grooved structure [J]. J Phys Chem B,2008,112(24):7234-7243.
    [71] Butt H J, Graf K, Kappl M. Physics and chemistry of interfaces.2003[M]. Wiley-VCH.
    [72] Liu H H, Zhang H Y, Li W. Thermodynamic analysis on wetting behavior of hierarchicalstructured superhydrophobic surfaces [J]. Langmuir,2011,27(10):6260-6267.
    [73]刘海华.表面多尺度微纳结构对超疏水特性的影响[硕士学位论文][D].湘潭;湘潭大学,2011.
    [74] Zhu M, Zuo W, Yu H, et al. Superhydrophobic surface directly created by electrospinningbased on hydrophilic material [J]. J Mater Sci,2006,41(12):3793-3797.
    [75] Cao L, Hu H-H, Gao D. Design and fabrication of micro-textures for inducing asuperhydrophobic behavior on hydrophilic materials [J]. Langmuir,2007,23(8):4310-4314.
    [76] Liu J L, Feng X Q, Wang G, et al. Mechanisms of superhydrophobicity on hydrophilicsubstrates [J]. J Phys: Condens Matter,2007,19(35):356002.
    [77] Guo Z, Liu W. Biomimic from the superhydrophobic plant leaves in nature: binary structureand unitary structure [J]. Plant Sci,2007,172(6):1103-1112.
    [78] Li W, Amirfazli A. Hierarchical structures for natural superhydrophobic surfaces [J]. SoftMatter,2007,4(3):462-466.
    [79] Cui X, Li W. On the possibility of superhydrophobic behavior for hydrophilic materials [J].J Colloid Interf Sci,347(1):156-162.
    [80] Zhang H, Li W, Fang G. A new model for thermodynamic analysis on wetting behavior ofsuperhydrophobic surfaces [J]. Appl Surf Sci,2012,258:2707-2716.
    [81] Zhang H, Li W, Cui D, et al. Design of lotus-simulating surfaces: Thermodynamic analysisbased on a new methodology [J]. Colloids and Surfaces A: Physicochem Eng Aspects,2012,413:314-327.
    [82] Zhang H, Li W, Liu H, et al. Thermodynamic analysis on superhydrophobicity based on thedesign of a pillar model [J]. Soft Matter,2012,8:10360-10369.
    [83] Zhang H, Li W, Yang J, Jiang C, Jia J. Compare study to hierarchy of superhydrophobicsurfaces based on thermodynamics [J]. Chemphyschem,2013,(revision).
    [84] Zhang H, Li W, Zhang X, et al. Determination of the second step microstructure forsuperhydrophobic surfaces [J]. Surf Interface Anal,2013,45:919-929.
    [85] Hosono E, Fujihara S, Honma I, et al. Superhydrophobic perpendicular nanopin film by thebottom-up process [J]. J Am Chem Soc,2005,127(39):13458-13459.
    [86] Badre C, Dubot P, Lincot D, et al. Effects of nanorod structure and conformation of fattyacid self-assembled layers on superhydrophobicity of zinc oxide surface [J]. J Colloid InterfSci,2007,316(2):233-237.
    [87] Han J T, Kim S Y, Woo J S, et al. Transparent, conductive, and superhydrophobic filmsfrom stabilized carbon nanotube/silane sol mixture solution [J]. Adv Mater,2008,20(19):3724-3727.
    [88] Akram Raza M, Kooij E S, van Silfhout A, et al. Superhydrophobic surfaces by anomalousfluoroalkylsilane self-assembly on silica nanosphere arrays [J]. Langmuir,2010,26(15):12962-12972.
    [89] Liu X, Dai B, Zhou L, et al. Polymeric complexes as building blocks for rapid fabrication oflayer-by-layer assembled multilayer films and their application as superhydrophobiccoatings [J]. J Mater Chem,2008,19(4):497-504.
    [90] Nuzzo R G, Allara D L. Adsorption of bifunctional organic disulfides on gold surfaces [J]. JAm Chem Soc,1983,105(13):4481-4483.
    [91] Shi F, Niu J, Liu Z, et al. To adjust wetting properties of organic surface by in situphotoreaction of aromatic azide [J]. Langmuir,2007,23(3):1253-1257.
    [92] Edward B, Roman P, Gene W, et al. Vibration-induced Cassie-Wenzel wetting transition onrough surfaces [J]. Appl Phys Lett,2007,90(20):201917.
    [93] Ichimura K, Oh S K, Nakagawa M. Light-driven motion of liquids on a photoresponsivesurface [J]. Science,2000,288(5471):1624-1626.
    [94] Krupenkin T N, Taylor J A, Schneider T M, et al. From rolling ball to complete wetting: thedynamic tuning of liquids on nanostructured surfaces [J]. Langmuir,2004,20(10):3824-3827.
    [95] Jones J B, Adamson A W. Temperature dependence of contact angle and of interfacial freeenergies in the naphthalene-water-air system [M].1968:646-650.
    [96] Liu B, Lange F F. Pressure induced transition between superhydrophobic states:configuration diagrams and effect of surface feature size [J]. J Colloid Interf Sci,2006,298(2):899-909.
    [97] Moulinet S, Bartolo D. Life and death of a fakir droplet: Impalement transitions onsuperhydrophobic surfaces [J]. Eur Phys J E: Soft Matter Biol Phys,2007,24(3):251-260.
    [98] Eick J, Good R, Neumann A. Thermodynamics of contact angles. II. Rough solid surfaces[J]. J Colloid Interf Sci,1975,53(2):235-238.
    [99] Dettre R, Johnson R. Contact angle hysteresis. I. Study of an idealized rough surface [J].Adv Chem Ser,1964,43:112.
    [100] Mittal K L. Contact angle, wettability and adhesion [M]. Brill Academic Publishers,2009.
    [101] Gould R F. Contact angle, wettability and adhesion [M]. American Chemical Society,1964.
    [102] Angle C. Wettability and adhesion [J]. Adv Chem Ser,1964,43.
    [103] Kwok D, Neumann A. Contact angle measurement and contact angle interpretation [J]. AdvColloid Interface Sci,1999,81(3):167-249.
    [104] Bartell F E S J W. Surface roughness as related to hysteresis of contact angle: I thesystem-water-air [J]. Journal of Physical Chemistry,1953,57:211-215.
    [105] Johnson R, Dettre R H. Contact angle hysteresis [J]. Contact angle, wettability, andadhesion advances in chemistry series,1964,43:112-135.
    [106] Huh C, Mason S. Effects of surface roughness on wetting (theoretical)[J]. J Colloid InterfSci,1977,60(1):11-38.
    [107] Good R J. A Thermodynamic derivation of wenzel's modification of young's equation forcontact angles; together with a theory of hysteresis1[J]. J Am Chem Soc,1952,74(20):5041-5042.
    [108] Johnson R E, Dettre R H. Contact angle hysteresis. III. Study of an idealized heterogeneoussurface [J]. J Phys Chem,1964,68(7):1744-1750.
    [109] Dettre R H, Johnson Jr R E. Contact angle hysteresis. IV. Contact angle measurements onheterogeneous surfaces1[J]. J Phys Chem,1965,69(5):1507-1515.
    [110] Neumann A, Good R. Thermodynamics of contact angles. I. Heterogeneous solid surfaces[J]. J Colloid Interf Sci,1972,38(2):341-358.
    [111] Schwartz L W, Garoff S. Contact angle hysteresis on heterogeneous surfaces [J]. Langmuir,1985,1(2):219-230.
    [112] Marmur A. Contact angle hysteresis on heterogeneous smooth surfaces [J]. J Colloid InterfSci,1994,168(1):40-46.
    [113] Decker E, Garoff S. Using vibrational noise to probe energy barriers producing contactangle hysteresis [J]. Langmuir,1996,12(8):2100-2110.
    [114] Decker E, Garoff S. Contact line structure and dynamics on surfaces with contact anglehysteresis [J]. Langmuir,1997,13(23):6321-6332.
    [115]Johnson R, Dettre R. Wettability and contact angles [J]. Surface and colloid science,1969,2:85-153.
    [116] Timmons C, Zisman W. The effect of liquid structure on contact angle hysteresis [J]. JColloid Interf Sci,1966,22(2):165-171.
    [117] Fadeev A Y, McCarthy T J. Binary monolayer mixtures: modification of nanopores insilicon-supported tris (trimethylsiloxy) silyl monolayers [J]. Langmuir,1999,15(21):7238-7243.
    [118] Chen W, McCarthy T J. Layer-by-layer deposition: a tool for polymer surface modification[J]. Macromolecules,1997,30(1):78-86.
    [119] Fadeev A Y, McCarthy T J. Trialkylsilane monolayers covalently attached to siliconsurfaces: Wettability studies indicating that molecular topography contributes to contactangle hysteresis [J]. Langmuir,1999,15(11):3759-3766.
    [120] ner D, McCarthy T J. Ultrahydrophobic surfaces. Effects of topography length scales onwettability [J]. Langmuir,2000,16(20):7777-7782.
    [121] Youngblood J P, McCarthy T J. Ultrahydrophobic polymer surfaces prepared bysimultaneous ablation of polypropylene and sputtering of poly (tetrafluoroethylene) usingradio frequency plasma [J]. Macromolecules,1999,32(20):6800-6806.
    [122] Sedev R, Petrov J, Neumann A. Effect of swelling of a polymer surface on advancing andreceding contact angles [J]. J Colloid Interf Sci,1996,180(1):36-42.
    [123] Lam C, Kim N, Hui D, et al. The effect of liquid properties to contact angle hysteresis [J].Colloids and Surfaces A: Physicochem Eng Aspects,2001,189(1):265-278.
    [124] Lam C, Ko R, Yu L, et al. Dynamic cycling contact angle measurements: study ofadvancing and receding contact angles [J]. J Colloid Interf Sci,2001,243(1):208-218.
    [125] Eick J D, Good R J, Neumann A W. Thermodynamics of contact angles, Part II: roughsolid surfaces [J]. J Colloid Interf Sci,1975,53:235-248.
    [126] Oliver J, Huh C, Mason S. The apparent contact angle of liquids on finely-grooved solidsurfaces-a SEM study [J]. The Journal of Adhesion,1976,8(3):223-234.
    [127] Cox R. The spreading of a liquid on a rough solid surface [J]. J Fluid Mech,1983,131(1):1-26.
    [128] Wang X D, Peng X F, Min J C. Hysteresis of contact angle at liquid-solid surface [J].Journal of Basic Science and Engineering,2001,9(4):343-353.
    [129]王晓东,彭晓峰,闵敬春.接触角滞后现象的理论分析[J].工程热物理学报,2002,23(1):67-70.
    [130] Youngblood J P, McCarthy T J. Ultrahydrophobic polymer surfaces prepared bysimultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene) usingradio frequency plasma [J]. Macromolecules,1999,32(20):6800-6806.
    [131] Nakajima A, Abe K, Hashimoto K, et al. Preparation of hard super-hydrophobic films withvisible light transmission [J]. Thin Solid Films,2000,376(1):140-143.
    [132] Tadanaga K, Katata N, Minami T. Super-water-repellent Al2O3coating films with hightransparency [J]. J Am Ceram Soc,1997,80(4):1040-1042.
    [133] Tadanaga K, Katata N, Minami T. Formation process of super-water-repellent Al2O3coating films with high transparency by the Sol-Gel method [J]. J Am Ceram Soc,1997,80(12):3213-3216.
    [134] Song X, Zhai J, Wang Y, et al. Self-assembly of amino-functionalized monolayers onsilicon surfaces and preparation of superhydrophobic surfaces based on alkanoic acid duallayers and surface roughening [J]. J Colloid Interf Sci,2006,298(1):267-273.
    [135] Zhai L, Cebeci F C, Cohen R E, et al. Stable superhydrophobic coatings frompolyelectrolyte multilayers [J]. Nano Lett,2004,4(7):1349-1353.
    [136] Onda T, Shibuichi S, Satoh N, et al. Super-water-repellent fractal surfaces [J]. Langmuir,1996,12(9):2125-2127.
    [137] Shibuichi S, Onda T, Satoh N, et al. Super water-repellent surfaces resulting from fractalstructure [J]. J Phys Chem,1996,100(50):19512-19517.
    [138] Feng L, Song Y, Zhai J, et al. Creation of a superhydrophobic surface from an amphiphilicpolymer [J]. Angewandte Chemie,2003,115(7):824-826.
    [139] Quere D. Non-sticking drops [J]. Rep Prog Phys,2005,68(11):2495.
    [140] Blossey R. Self-cleaning surfaces-virtual realities [J]. Nat Mater,2003,2(5):301-306.
    [141] Nosonovsky M, Bhushan B. Superhydrophobic surfaces and emerging applications:Non-adhesion, energy,green engineering [J]. Curr Opin Colloid In,2009,14:270–280
    [142]胡小华,魏锡文,陈蓓.输电线路防覆冰涂料的研究进展[J].材料保护,2006,39(3):36-38.
    [143]张燕,王贤明,宁亮, et al.氟硅涂料在电力设施防冰中的应用
    [M].第八届全国高功能氟硅材料和涂料开发及应用技术研讨会山东·威海.2010.
    [144] Gau H, Herminghaus S, Lenz P, et al. Liquid morphologies on structured surfaces: frommicrochannels to microchips [J]. Science,1999,283(5398):46-49.
    [145] Taolei Sun G W L F B L Y M L J D Z. Reversible switching between superhydrophilicityand superhydrophobicity13[J]. Angew Chem Int Ed,2004,43(3):357-360.
    [146] Feng X, Feng L, Jin M, et al. Reversible super-hydrophobicity to super-hydrophilicitytransition of aligned ZnO nanorod films [J]. J Am Chem Soc,2004,126(1):62-63.
    [147] Wang S, Feng X, Yao J, et al. Controlling wettability and photochromism in adual-responsive Tungsten Oxide Film [J]. Angew Chem Int Ed,2006,45(8):1264-1267.
    [148] Xia F, Feng L, Wang S, et al. Dual-responsive surfaces that switch betweensuperhydrophilicity and superhydrophobicity [J]. Adv Mater,2006,18(4):432-436.
    [149] Xu L, Chen W, Mulchandani A, et al. Reversible conversion of conducting polymer filmsfrom superhydrophobic to superhydrophilic [J]. Angew Chem Int Ed,2005,44(37):6009-6012.
    [150] Bhushan B, Ling X. Integrating electrowetting into micromanipulation of liquid droplets [J].J Phys: Condens Matter,2008,20(48):485009.
    [151].
    [152]高世桥,刘海鹏.毛细力学[M].北京;科学出版社.2010:1-178.
    [153] Nakajima A, Hashimoto K, Watanabe T. Recent studies on super-hydrophobic films [J].Monatsh Chem,2001,132:31-41.
    [154] Wier K A, McCarthy T J. Condensation on ultrahydrophobic surfaces and its effect ondroplet mobility: ultrahydrophobic surfaces are not always water repellant [J]. Langmuir,2006,22:2433-2436.
    [155] Marmur A. Underwater superhydrophobicity: theoretical feasibility [J]. Langmuir,2006,22:1400-1402.
    [156] Extrand C. Designing for optimum liquid repellency [J]. Langmuir,2006,22(4):1711-1714.
    [157] Toes G, Van Muiswinkel K, Van Oeveren W, et al. Superhydrophobic modification fails toimprove the performance of small diameter expanded polytetrafluoroethylene vasculargrafts [J]. Biomaterials,2002,23(1):255-262.
    [158] Yan H, Shiga H, Ito E, et al. Super water-repellent surfaces with fractal structures and theirpotential application to biological studies [J]. Colloids and Surfaces A: Physicochem EngAspects,2006,284:490-494.
    [159] Johnson R E, Dettre R H. Contact Angle, Wettability and adhesion [M]. Washington D C:American Chemical Society,1964.
    [160] De Gennes P G. Wetting: statics and dynamics [J]. Rev Mod Phys,1985,57(3):827.
    [161] Dussan V E, Chow R T P. On the ability of drops or bubbles to stick to non-horizontalsurfaces of solids [J]. J Fluid Mech,1983,137(1):1-29.
    [162] Marmur A. Thermodynamic aspects of contact angle hysteresis [J]. Adv Colloid InterfaceSci,1994,50:121-141.
    [163] Yoshimitsu Z, Nakajima A, Watanabe T, et al. Effects of Surface Structure on theHydrophobicity and Sliding Behavior of Water Droplets [J]. Langmuir,2002,18(15):5818-5822.
    [164] Chen L J, Chen M, Zhou H D, et al. Preparation of super-hydrophobic surface on stainlesssteel [J]. Appl Surf Sci,2008,255(5):3459-3462.
    [165]王丽芳,赵勇,江雷, et al.静电纺丝制备超疏水TiO2纳米纤维网膜[J].高等学校化学学报,2009,30(04):731-734.
    [166] Wu X, Shi G. Fabrication of a lotus-like micro-nanoscale binary structured surface andwettability modulation from superhydrophilic to superhydrophobic [J]. Nanotechnology,2005,16(10):2056.
    [167] Wang S, Feng L, Jiang L. One-tep solution-mmersion process for the fabrication of stablebionic superhydrophobic surfaces [J]. Adv Mater,2006,18(6):767-770.
    [168]公茂刚,许小亮,杨周, et al.用水热法制备超疏水性ZnO纳米棒薄膜[J].功能材料,2008,39(11):1906-1908.
    [169] Ming W, Wu D, van Benthem R, et al. Superhydrophobic films from raspberry-like particles[J]. Nano Lett,2005,5(11):2298-2301.
    [170] Xie Q, Xu J, Feng L, et al. Facile creation of a super-amphiphobic coating surface withbionic microstructure [J]. Adv Mater,2004,16(4):302-305.
    [171] Acatay K, Simsek E, Ow-Yang C, et al. Tunable, superhydrophobically stable polymericsurfaces by electrospinning [J]. Angew Chem Int Ed,2004,43(39):5210-5213.
    [172] Zhu Y, Zhang J, Zheng Y, et al. Stable, superhydrophobic, and conductivepolyaniline/polystyrene films for corrosive environments [J]. Adv Funct Mater,2006,16(4):568-574.
    [173] Cui D Y, Li W, Li T H, et al. Development of a simple method for the fabrication ofsuperhydrophobic surfaces with NH4VO3and SiO2[J]. Mater Lett,2012,70:105–108.
    [174] Li H, Wang X, Song Y, et al. Super-"amphiphobic" aligned carbon nanotube films [J].Angew Chem Int Ed,2001,40(9):1743-1746.
    [175] Sarkar D, Farzaneh M. Superhydrophobic coatings with reduced ice adhesion [J]. J AdhesSci Technol,2009,23(9):1215-1237.
    [176] Ji J, Fu J, Shen J. Fabrication of a superhydrophobic surface from the amplified exponentialgrowth of a multilayer [J]. Adv Mater,2006,18(11):1441-1444.
    [177]杨常卫,郝鹏飞,何枫.微结构超疏水表面液滴运动的性质[J].科学通报,2009,54(4):436-440.
    [178]粟常红,肖怡,崔喆, et al.一种多尺度仿生超疏水表面制备[J].无机化学学报,2006,22(5):785-788.
    [179] Furstner R, Barthlott W, Neinhuis C, et al. Wetting and self-Cleaning properties of artificialsuperhydrophobic surfaces [J]. Langmuir,2005,21(3):956-961.
    [180] Xie Q, Fan G, Zhao N, et al. Facile creation of a bionic super-hydrophobic block copolymersurface [J]. Adv Mater,2004,16(20):1830-1833.
    [181] Ma M, Hill R M, Lowery J L, et al. Electrospun poly (styrene-block-dimethylsiloxane)block copolymer fibers exhibiting superhydrophobicity [J]. Langmuir,2005,21(12):5549-5554.
    [182] Kulinich S A, Farzaneh. Effect of contact angle hysteresis on water droplet evaporationfrom super-hydrophobic surfaces [J]. Appl Surf Sci,2009,255:4056-4060.
    [183] Yabu H, Takebayashi M, Tanaka M, et al. Superhydrophobic and lipophobic properties ofself-organized honeycomb and pincushion structures [J]. Langmuir,2005,21:3235-3237
    [184] Decker E, Frank B, Suo Y, et al. Physics of contact angle measurement [J]. Colloids andsurfaces A: Physicochem Eng Aspects,1999,156(1):177-189.
    [185] Kong B, Yang X. Dissipative particle dynamics simulation of contact angle hysteresis on apatterned solid/air composite surface [J]. Langmuir,2006,22(5):2065-2073.
    [186] Kotz K, Noble K, Faris G. Optical microfluidics [J]. Appl Phys Lett,2004,85(13):2658-2660.
    [187] Bormashenko E, Stein T, Whyman G, et al. Wetting properties of the multiscalednanostructured polymer and metallic superhydrophobic surfaces [J]. Langmuir,2006,22:9982-9985.
    [188] Zhao N, Lu X Y, Zhang X Y, et al. Progress in superhydrophobic surfaces [J]. Prog Chem2007,19:860-871.
    [189] Feng X-Q, Gao X, Wu Z, et al. Superior water repellency of water strider legs withhierarchical structures: experiments and analysis [J]. Langmuir,2007,23(9):4892-4896.
    [190] Wager T, Neinhuis C, Barthlott W. Wettability and contaminability of insect wings as afunction of their surface sculptures [J]. Acta Zool-stockholm,1996,77:213-225.
    [191] Gao L, McCarthy T J. How Wenzel and Cassie were wrong [J]. Langmuir,2007,23(7):3762-3765.
    [192] Feng L, Li S, Li H, et al. Super-hydrophobic surface of aligned polyacrylonitrile nanofibers[J]. Angewandte Chemie,2002,114(7):1269-1271.
    [193] Gao L, McCarthy T J. Contact angle hysteresis explained [J]. Langmuir,2006,22(14):6234-6237.
    [194] Cheng Y T, Rodak D E, Angelopoulos A, et al. Microscopic observations of condensationof water on lotus leaves [J]. Appl Phys Lett,2005,87(19):194112-194113.
    [195] Cheng Y T, Rodak D E. Is the lotus leaf superhydrophobic?[J]. Appl Phys Lett,2005,86(14):144101-144103.
    [196] Li M, Zhai J, Liu H, et al. Electrochemical deposition of conductive superhydrophobic zincoxide thin films [J]. J Phys Chem B,2003,107(37):9954-9957.
    [197] Zhang X T, Sato O, Fujishima A. Water ultrarepellency induced by nanocolumnar ZnOsurface [J]. Langmuir: the ACS journal of surfaces and colloids,2004,20(14):6065.
    [198] Li S, Li H, Wang X, et al. Super-hydrophobicity of large-area honeycomb-like alignedcarbon nanotubes [J]. J Phys Chem B,2002,106(36):9274-9276.
    [199] Zhang J, Li J, Han Y. Superhydrophobic PTFE surfaces by extension [J]. Macromol RapidComm,2004,25(11):1105-1108.
    [200] Tadanaga K, Morinaga J, Matsuda A, et al. Superhydrophobic-superhydrophilicmicropatterning on flowerlike alumina coating film by the sol-gel method [J]. Chem Mater,2000,12(3):590-592.
    [201] Tadanaga K, Morinaga J, Minami T. Formation of superhydrophobic-superhydrophilicpattern on flowerlike alumina thin film by the sol-gel method [J]. J Sol-gel Sci Techn,2000,19(1):211-214.
    [202]叶霞,周明,李健, et al.从自然到仿生的超疏水表面的微观结构[J].纳米技术与精密工程,2009,5:381-386.
    [203] Dorrer C, Ru¨he J r. Advancing and receding motion of droplets on ultrahydrophobic postsurfaces [J]. Langmuir,2006,22:7652-7657.
    [204] Shirtcliffe N J, McHale G, Newton M I, et al. Intrinsically superhydrophobic organosilicasol-gel foams [J]. Langmuir,2003,19(14):5626-5631.
    [205] Erbil H Y, Demirel A L, Avcl Y, et al. Transformation of a simple plastic into asuperhydrophobic surface [J]. Science,2003,299(5611):1377-1380.
    [206] Jin M, Feng X, Xi J, et al. Super-hydrophobic PDMS surface with ultra-low adhesive force[J]. Macromol Rapid Comm,2005,26(22):1805-1809.
    [207] Wang J, Chen H, Sui T, et al. Investigation on hydrophobicity of lotus leaf: experiment andtheory [J]. Plant Sci,2009,176:687–695.
    [208] Lee S M, Kwon T H. Effects of intrinsic hydrophobicity on wettability of polymer replicasof a superhydrophobic lotus leaf [J]. J Micromech Microeng,2007,17(4):687.
    [209] Chen M H, Hsu T H, Chuang Y J, et al. Dual hierarchical biomimic superhydrophobicsurface with three energy states [J]. Appl Phys Lett,2009,95(2):023702-023702-023703.
    [210] Jung Y C, Bhushan B. Mechanically durable carbon nanotube composite hierarchicalstructures with superhydrophobicity, self-cleaning, and low-drag [J]. ACS Nano,2009,3(12):4155-4163.
    [211] Johnson Jr R E, Dettre R H. An evaluation of Neumann's" surface equation of state"[J].Langmuir,1989,5(1):293-295.
    [212] Aussillous P, Queue D. Liquid marbles [J]. Nature,2001,411(6840):924-927.
    [213] Gao L, McCarthy T J. A perfectly hydrophobic surface(θA/θR)180°/180°)[J]. J Am ChemSoc,2006,128(28):9052-9053.
    [214] Sun M, Luo C X, Xu L, et al. Artificial lotus leaf by nanocasting [J]. Langmuir,2005,21(19):8978-8981.
    [215] Lee S M, Kwon T H. Mass-producible replication of highly hydrophobic surfaces fromplant leaves [J]. Nanotechnology,2006,17(13):3189.
    [216]素常红,陈庆民.一种荷叶效应涂层的制备[J].无机化学学报,2008,24(2):298-302.
    [217] Sun G, Fang Y, Cong Q, et al. Anisotropism of the non-smooth surface of butterfly wing [J].Journal of Bionic Engineering,2009,6(1):71-76.
    [218] Burkarter E, Saul C K, Thomazi F, et al. Electrosprayed superhydrophobic PTFE: anon-contaminating surface [J]. Journal of Physics D: Applied Physics,2007,40(24):7778.
    [219] Wang M F, Raghunathan N, Ziaie B. A nonlithographic top-down electrochemical approachfor creating hierarchical (micro-nano) superhydrophobic silicon surfaces [J]. Langmuir,2007,23(5):2300-2303.
    [220] Bhushan B. Biomimetics: lessons from nature-an overview [J]. Phil Trans R Soc A: Math,Phys Eng Sci,2009,367(1893):1445-1486.
    [221] Koch K, Bhushan B, Jungb Y C, et al. Fabrication of artificial lotus leaves and significanceof hierarchical structure for superhydrophobicity and low adhesion [J]. Soft Matter,2009,5:1386-1393.
    [222] Guo C, Feng L, Zhai J, et al. Large-area fabrication of a nanostructure-induced hydrophobicsurface from a hydrophilic polymer [J]. Chemphyschem,2004,5(5):750-753.
    [223] Wang J, Wen Y, Feng X, et al. Control over the wettability of colloidal crystal films byassembly temperature [J]. Macromol Rapid Comm,2006,27(3):188-192.
    [224] Cheng Y-T. Microscopic observations of condensation of water on lotus leaves [J]. ApplPhys Lett,2005,87:194112.
    [225] Chen A, Peng X, Koczkur K, et al. Super-hydrophobic tin oxide nanoflowers [J]. ChemCommun,2004,17:1964-1965.
    [226] Sun T, Feng L, Gao X, et al. Bioinspired Surfaces with Special Wettability [J]. Acc ChemRes,2005,38(8):644-652.
    [227]房岩,孙刚,王同庆, et al.蝴蝶翅膀表面非光滑形态疏水机理[J].科学通报,2007,52(3):354-357.
    [228] Patankar N A. On the Modeling of Hydrophobic contact angles on rough surfaces [J].Langmuir,2003,19(4):1249-1253.
    [229] Bhushan B, Jung Y C. Micro-and nanoscale characterization of hydrophobic andhydrophilic leaf surfaces [J]. Nanotechnology,2006,17(11):2758.
    [230] Bhushan B, Jung Y C. Natural and biomimetic artificial surfaces for superhydrophobicity,self-cleaning, low adhesion, and drag reduction [J]. Prog Mater Sci,2011,56(1):1-108.
    [231] Boinovich L, Emelyanenko A. Principles of design of superhydrophobic coatings bydeposition from dispersions [J]. Langmuir,2009,25(5):2907-2912.
    [232] Bico J, Marzolin C, Quere D. Pearl drops [J]. EPL (Europhysics Letters),2007,47(2):220.
    [233] Sun T, Wang G, Liu H, et al. Control over the wettability of an aligned carbon nanotubefilm [J]. J Am Chem Soc,2003,125(49):14996-14997.
    [234] Yabu H, Shimomura M. Single-step fabrication of transparent superhydrophobic porouspolymer films [J]. Chem Mater,2005,17(21):5231-5234.
    [235]钱柏太,沈自求.控制表面氧化法制备超疏水CuO纳米花膜[J].无机材料学报,2006,21(3):747-752.
    [236] Hadley N F. Wax secretion and color phases of the desert tenebrionid beetle cryptoglossaverrucosa (LeConte)[J]. Science,1979,203:367-369.
    [237] Koch K, Bhushan B, Barthlott W. Multifunctional surface structures of plants: an inspirationfor biomimetics [J]. Prog Mater Sci,2009,54:137-178.
    [238]洪啸吟,冯汉宝.涂料化学[M].2ed.北京:科学出版社,2005.
    [239] Miwa M, Nakajima A, Fujishima A, et al. Effects of the surface roughness on sliding anglesof water droplets on superhydrophobic surfaces [J]. Langmuir,2000,16(13):5754-5760.
    [240] Ma Y, Cao X, Feng X, et al. Fabrication of super-hydrophobic film from PMMA withintrinsic water contact angle below90degree [J]. Polymer,2007,48(26):7455-7460.
    [241] Ahuja A, Taylor J, Lifton V, et al. Nanonails: a simple geometrical approach to electricallytunable superlyophobic surfaces [J]. Langmuir,2008,24(1):9-14.
    [242] Tuteja A, Choi W, Ma M, et al. Designing superoleophobic surfaces [J]. Science,2007,318(5856):1618-1622.
    [243] Baldacchini T, Carey J E, Zhou M, et al. Superhydrophobic surfaces prepared bymicrostructuring of silicon using a femtosecond laser [J]. Langmuir,2006,22(11):4917-4919.
    [244]薛禹胜,费圣英,卜凡强.极端外部灾害中的停电防御系统构思(一)[J].电力系统自动化,2008,32(9):1-6.
    [245]薛禹胜,费圣英,卜凡强.极端外部灾害中的停电防御系统构思(二)任务与展望[J].电力系统自动化,2009,32(10):1-5.
    [246]侯慧,尹项根,陈庆前, et al.南方部分500kV主网架2008年冰雪灾害中受损分析与思考[J].电力系统自动化,2009,32(11):12-15.
    [247] Laforte J, Allaire M, Laflamme J. State-of-the-art on power line de-icing [J]. Atmos Res,1998,46(1):143-158.
    [248] Chen M H, Guo B X, Wang D J, et al. Research progress of hydrophobic and icephobiccoatings [J]. Electroplating&Finishing,30(7):55-59.
    [249] Gao X, Yan X, Yao X, et al. The dry-style antifogging properties of mosquito compoundeyes and artificial analogues prepared by soft lithography [J]. Adv Mater,2007,19(17):2213-2217.
    [250] Watson G S, Cribb B W, Watson J A. How micro/nanoarchitecture facilitates anti-wetting:an elegant hierarchical design on the termite wing [J]. ACS nano,4(1):129-136.
    [251] Zhu L, Feng Y, Ye X, et al. Tuning wettability and getting superhydrophobic surface bycontrolling surface roughness with well-designed microstructures [J]. Sensors and ActuatorsA: Physical,2006,130:595-600.
    [252] Shirtcliffe N J, McHale G, Newton M I, et al. Wetting and wetting transitions oncopper-based super-hydrophobic surfaces [J]. Langmuir,2005,21(3):937-943.
    [253] Shirtcliffe N J, Aqil S, Evans C, et al. The use of high aspect ratio photoresist (SU-8) forsuper-hydrophobic pattern prototyping [J]. J Micromech Microeng,2004,14(10):1384.
    [254] Mills A, Lee S K, Lepre A, et al. Spectral and photocatalytic characteristics of TiO2CVDfilms on quartz [J]. Photochem Photobiol Sci,2002,1(11):865-868.
    [255] Croutch V, Hartley R. Adhesion of ice to coatings and the performance of ice releasecoatings [J]. JCT, Journal of coatings technology,1992,64(815):41-53.
    [256] Somlo B, Gupta V. A hydrophobic self-assembled monolayer with improved adhesion toaluminum for deicing application [J]. Mech Mater,2001,33(8):471-480.
    [257] Laforte C, Laforte J, Carrier J. How a solid coating can reduce the adhesion of ice on astructure; proceedings of the Proceedings of the International Workshop on AtmosphericIcing of Structures, F,2002[C].
    [258] Saito H, Takai K, Yamauchi G. Water-and ice-repellent coatings [J]. Surface CoatingsInternational Part B: Coatings Transactions,1997,80(4):168-171.
    [259] Watson G S, Watson J A. Natural nano-structures on insects-possible functions of orderedarrays characterized by atomic force microscopy [J]. Appl Surf Sci,2004,235(1):139-144.
    [260]杨常卫,黄珺,艾剑波.超疏水表面材料在电热防/除冰系统应用中的节能原理分析[J].直升机技术,3:35-40.
    [261] Guo P, Zheng Y, Wen M, et al. Icephobic/anti-icing properties of micro/nanostructuredsurfaces [J]. Adv Mater,
    [262]谷国团,党鸿辛.超疏水性透明涂层的研究进展[J].河南大学学报(自然科学版),2004,4:006.
    [263]张燕,王贤明,宁亮, et al.氟硅涂料在电力设施防冰中的应用[J].技术新进展,2010,05:112-119.
    [264] Guo P, Zheng Y, Wen M, et al. Icephobic/anti-icing properties of micro/nanostructuredsurfaces [J]. Adv Mater,2012,24:2642-2648.
    [265] Motornov M, Sheparovych R, Lupitskyy R, et al. Superhydrophobic surfaces generatedfrom water-borne dispersions of hierarchically assembled nanoparticles coated with areversibly switchable shell [J]. Adv Mater,2007,20(1):200-205.
    [266]江雷.从自然到仿生的超疏水纳米界面材料[J].化工进展,2003,22(12):1258-1264.
    [267]魏增江,田冬,肖成龙, et al.超疏水表面:从制备方法到功能应用[J].化工进展,2009,28(011):1965-1968.
    [268] Ma M, Hill R M. Superhydrophobic surfaces [J]. Curr Opin Colloid In,2006,11(4):193-202.
    [269] Zheng Y, Han D, Zhai J, et al. In situ investigation on dynamic suspending of microdropleton lotus leaf and gradient of wettable micro-and nanostructure from water condensation [J].Appl Phys Lett,2008,92(8):084106-084103.
    [270]左亚鹏,柴冰,史宏伟.浅谈输电线路覆冰故障处理技术[J].河南电力,001):1-5.
    [271]中国建材网.河南电力公司涂刷超疏水性纳米防覆冰涂料防舞动[M].河南新乡;www.bmlink.com.2010.
    [272]曾荣,王霞.电工材料[M].01ed.北京:中国电力出版社,2007.
    [273] Wenzel R N. Surface roughness and contact angle [J]. J Phys Chem,1949,53(9):1466-1467.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700