用户名: 密码: 验证码:
整合素αVβ3在机械通气性肺损伤中的作用及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的机械通气是呼吸衰竭患者不可缺少的生命支持手段,也是手术患者常用的呼吸管理方法,而机械通气性肺损伤(ventilator induced lung injury, VILI)是机械通气的常见并发症,影响机械通气的治疗效果。尽管肺保护通气策略(小潮气量机械通气)能减少VILI的发生,但为了保证足够的气体交换潮气量的减少常常受到限制,因此寻求VILI有效的药物预防仍有重要意义。VILI的主要病理基础是肺泡炎症及肺泡毛细血管通透性增加,但具体机制还不清楚。因此,本研究拟观察SD大鼠VILI过程中肺泡炎症反应、整合素αVβ3、核转录因子(nuclear factor kappa B, NF-κB)的活性,以及人工合成RGDS肽(非特异性整合素受体阻断剂)对机械通气导致的αVβ3、NF-κB活性变化的影响,以期阐明整合素αVβ3介导的NF-κB通路在肺泡炎症中的作用。同时,建立人肺微血管内皮细胞(human pulmonary microvascular,HPMVEC)的机械牵拉模型,观察机械牵拉对HPMVEC单层通透性及整合素αVβ3活性的影响,并分析两者的关系,以期阐明整合素αVβ3在肺泡毛细血管通透性中的作用。从而最终明确整合素αVβ3在VILI中的作用及相关机制,为VILI的防治寻求新的靶点。
     方法
     动物实验:21只雄性SD(Sprague Dawley)成年大鼠随机分为3组(n=7):对照组(Control组),大潮气量机械通气组(H_(VT)组);RGDS肽预处理组(H_(VT)+RGDS组)。各组大鼠麻醉后气管切开插管,Control组大鼠自主呼吸4 h;H_(VT)组大鼠行机械通气,潮气量35 ml/kg,呼吸频率50次/min;H_(VT)+RGDS组在机械通气前30 min给予整合素受体阻断剂RGDS肽5 mg/kg腹腔注射,机械通气参数设定同H_(VT)组。机械通气4 h后放血处死大鼠,收集支气管肺泡灌洗液(bronchoalveolar lavage ?uid,BALF)和肺组织。BALF经离心分别收集上清和沉淀,用酶联免疫吸附实验(enzyme-linked immunosorbent assays, ELISA)检测上清中肿瘤坏死因子α(tumor necrosis factor alpha, TNF-α)、白细胞介素-6(interleukin-6, IL-6)的浓度,用BAC( bicinchoninic acid)蛋白检测试剂盒检测上清中总蛋白的浓度;BALF沉淀用于有核细胞计数,并通过细胞涂片的瑞氏染色对有核细胞进行分类。左肺组织行苏木精-伊红(hematoxylin-eosin, HE)染色观察肺组织病理变化;右肺组织提取总蛋白并用蛋白质免疫印迹(Western Blot)方法测定整合素αVβ3、NF-κB抑制蛋白(I-κB)的表达以及其磷酸化水平。
     细胞实验:购买HPMVEC细胞株进行培养传代,4~8代细胞用于实验。实验分为3组:对照组(Control组);机械牵拉组(Stretch组);ML9预处理组(Stretch+ML9组)。Control组细胞静态培养在培养箱内,不给予机械牵拉;Stretch组细胞给予机械牵拉刺激2 h;Stretch+ML9组细胞于机械牵拉前给予肌球蛋白轻链激酶抑制剂ML9预处理(50μM,2 h)。用磁扭力刺激(magnetic twisting stimulation, MTS)对单层内皮细胞实施机械牵拉。用Transwell模型及异硫氰酸荧光素标记的右旋糖苷(fluorescrin isothiocyanate marked dextran, FITC-dextran)溶液检测单层细胞通透性,右旋糖苷通过单层内皮细胞的多少代表单层细胞通透性,用光密度(optical density, OD)表示;用磁扭力细胞仪(magnetic twisting cytometry, MTC)检测细胞间拉力;用免疫荧光染色检测整合素αVβ3和肌动蛋白的分布;用Western Blot方法检测整合素αVβ3的表达。
     计量资料用均数±标准差表示。采用SPSS12.0统计软件进行方差分析(ANOVA),P值小于0.05为差异有显著性。
     结果
     动物实验:(1)Control组大鼠无明显的病理改变,而H_(VT)组肺组织病理变化明显,包括炎症细胞浸润、肺泡水肿以及肺泡结构破坏,而H_(VT)+RGDS组的肺组织病理变化较H_(VT)组明显减轻;(2)与Control组比较,H_(VT)组支气管肺泡灌洗液中多核细胞、单核细胞数量和总蛋白浓度明显增高;与H_(VT)组比较,H_(VT)+RGDS组支气管肺泡灌洗液中多核细胞、单核细胞及总蛋白明显减少(P<0.05);(3)与Control组比较,H_(VT)组支气管肺泡灌洗液中IL-6,TNF-α浓度明显增加;与H_(VT)组比较,H_(VT)+RGDS组支气管肺泡灌洗液中IL-6,TNF-α浓度明显减少(P<0.05);(4)与Control组比较,H_(VT)组肺组织整合素αVβ3、I-κB磷酸化明显增加;与H_(VT)组比较,H_(VT)+RGDS组肺组织整合素αVβ3、I-κB磷酸化明显减少(P<0.05)。
     细胞实验:(1)与Control组比较,Stretch组的通透性明显增加(P<0.05),而Stretch+ML9组通透性无明显变化;(2)Control组细胞肌动蛋白主要分布在细胞周边,而Stretch组细胞浆内可见明显的应力纤维形成,Stretch+ML9组肌动蛋白的分布与Control组相似(;3)Control组细胞整合素αVβ3均匀分布在细胞表面;而Stretch组细胞的整合素αVβ3明显簇积;Stretch+ML9组细胞整合素αVβ3的分布与Control组相似;(4)与Control组比较,Stretch组细胞间拉力明显增加(P<0.05),而Stretch+ML9组无明显改变。
     结论(1)整合素αVβ3活化参与VILI的炎症反应及毛细血管通透性增加;(2)整合素αVβ3介导的NF-κB活化是VILI炎症反应的机制之一;(3)整合素αVβ3簇积及应力纤维形成导致的细胞间拉力增加是VILI毛细血管通透性增加的可能机制; (4)抑制整合素活性可望成为VILI新的防治手段。
Objective Mechanical ventilation (MV) is a necessary supportive method for patients with respiratory failure without alternatives, it is also a common way to manage respiration during anesthesia and operations. However, ventilator induced lung injury (VILI) is a common complication of MV and aggravates previous lung injury. Although lung protective MV with low tidal volume (VT) can attenuate lung injury degree of VILI, it is still needed to find effective adjuvant pharmacological therapy for prevention from VILI in addition to lung protective ventilation because the necessity to guarantee sufficient gas exchange frequently limits a further substantial reduction of tidal volumes. The main pathology of VILI is alveolar inflammation response and hyperpermeability of pulmonary capillary, but the mechanism is not clear yet. Therefore, model of rats exposed to mechanical ventilation with high VT was constructed to investigate alveolar inflammation and activation of integrinαVβ3 and nuclear factor kappa B (NF-κB), and effect of synthesized RGDS peptide (non-specific blocker of integrins) on activation of integrinαVβ3 and inhibitor of NF-κB (I-κB), and then to evaluate the role of integrinαVβ3 mediated NF-κB activation in alveolar inflammation of VILI in rats. In addition, model of human pulmonary microvascular endothelial cells (HPMVEC) exposed to mechanical stretch was constructed to investigate the effect of mechanical stretch on monolayer permeability and integrinαVβ3 activity, and to analyze the relationship between integrinαVβ3 activity and monolayer permeability, and then to assess the effect of integrinαVβ3 in endothelium permeability. Taken all together, this study is aimed to discover the role of integrinαVβ3 in the development of VILI and its underlying mechanism, and to find a new target of prevention from VILI.
     Methods
     Animal experiment: Anesthetized and intratracheal intubation male Sprague Dawley (SD) rats were randomly divided into 3 groups: control group (Control), mechanical ventilating with high tidal volume (H_(VT)) group, RGDS pretreatment group (H_(VT) +RGDS). Each group had 7 rats. Rats kept spontaneous respiration in Control group; rats in H_(VT) group were mechanical ventilated with high tidal volme of 35 ml/kg and frequency of 50 per minutes; rats in H_(VT) +RGDS group were pretreated with RGDS peptide 5 mg/kg, i.p. 30 min before mechanical ventilation, and the parameters of mechanical ventilation were as same as H_(VT) group. Rats were killed after 4 h mechanical ventilation, and bronchoalveolar lavaged fluid (BALF) and lung tissues were collected. BALF was centrifuged to get supernant and deposit. Cytokines of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) in supernant were detected with enzyme linked immunoabsorbance assay (ELISA); total protein in supernant was detected with bicinchoninic acid (BCA) protein assay kit. Cell counts and classification were examined with deposit slides and Wright’s staining. Pathological changes of lung tissue were detected with hematoxylin and eosin (HE) staining; expression of integrinαVβ3, I-κB and their phosphataion were detected with Western Blot.
     Cellular experiment: Primary HPMVEC were purchased and passaged, and the passages 4 to 8 were used in this study. Cells were randomly divided into 3 groups: control group (group Control), mechanical stretching group (group Streth), and ML9 pretreatment group (group Stretch+ML9). Cells in group Control were cultured in static condition without mechanical stretch; cells in group Stretch were exposed to mechanical stretch for 2 h; cells in group Stretch+ML9 were pretreated with 50μM ML9 2 h before mechanical stretch. Mechanical stretch was produced with magnetic twisting stimulation (MTS); monolayer permeability was examined with fluorescein isothiocyanate marked dextran (FITC-dextran) in Transwell model, permeability was evaluated by the quantity of dextran through monolayer HPMVEC and expressed as optical density (OD); distribution of integrinαVβ3 and actin was investigated by immunofluorescence staining; expression of integrinαVβ3 was detected with Western Blot; intracellular tension was measured with magnetic twisting cytometry (MTC).
     All data were expressed as mean±S.D. (standard deviation), difference was tested by ANOVA with SPSS software,P values less than or equal to 0.05 was considered significant.
     Results
     Animal experiment: (1) There was no pathological changes in lung tissues of Control group; in, significant pathological changes in lung tissue was observed including leukocyte recruitment, alveolar edema and structure damage of alveolar; the pathological changes in lung tissue of H_(VT)+RGDS group was less than H_(VT) group. (2) Compared with Control group, polynuclear cells, mononuclear cells and total protein in BALF increased significantly in H_(VT) group; compared with H_(VT) group, they decreased significantly in H_(VT)+RGDS group (P<0.05). (3) Compared with Control group, IL-6 and TNF-αin BALF increased significantly in H_(VT) group; compared with H_(VT) group, they decreased significantly in H_(VT)+RGDS group (P<0.05). (4) Compared with Control group, phosphorylation of integrinαVβ3 and NF-κB in lung tissues increased significantly in H_(VT) group; compared with H_(VT) group, they decreased significantly in H_(VT)+RGDS group (P<0.05).
     Cellular experiment: (1) Compared with Control group, permeability of monolayer HPMVEC increased significantly in Stretch group (P<0.05), while no significant change was observed in Stretch+ML9 group. (2) Actin was distributed at the border of HPMVEC in control group; in Stretch group, actin polymerized into stress fiber in plasma; in Stretch+ML9 group, actin distributed similarly with Control group. (3) IntegrinαVβ3 distributed evenly on the HPMVEC surface in Control group, while integrinαVβ3 clustered significantly in Stretch group, and its clustering decreased in Stretch+ML9 group. (4) Compared with Control group, intracellular tension increased significantly in Stretch group (P<0.05), while no significant change was observed in Stretch+ML9 group.
     Conclusions (1) IntegrinαVβ3 activation takes part in pulmonary inflammation response and hyperpermeability of capillary in VILI. (2) IntegrinαVβ3 mediated NF-κB activation is one of the mechanisms of pulmonary inflammation in VILI. (3) Stress fiber formation and integrinαVβ3 clustering may be the mechanism of mechanical stretch induced monolayer hyperpermeability in HPMVEC. (4) It is a promising method to inhibit integrin activity for prevention of VILI.
引文
[1] Plataki M, Hubmayr RD. The physical basis of ventilator-induced lung injury [J]. Expert Rev Respir Med. 2010, 4(3):373-385
    [2] Dhanireddy S, Altemeier WA, Matute-Bello G, et al. Mechanical ventilation induces inflammation, lung injury, and extra-pulmonary organ dysfunction in experimental pneumonia [J]. Lab Invest. 2006, 86(8):790-799
    [3] Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network [J]. N Engl J Med. 2000, 342 (18):1301-1308.
    [4] Wolthuis EK, Vlaar AP, Choi G, et al. Mechanical ventilation using non-injurious ventilation settings causes lung injury in the absence of pre-existing lung injury in healthy mice [J]. Crit Care. 2009, 13 (1):R1.
    [5]许厚仁,马龙先.机械通气致肺损伤的研究进展[J].南昌大学学报医学版. 2010, 50 (7):123-125
    [6] Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by postive end-expiratory pressure [J]. Am Rev Respir Dis. 1974, 110 (5): 556–565
    [7] Dreyfuss D, Basset G, Soler P, et al. Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats [J]. Am Rev Respir Dis. 1985, 132 (4): 880–884
    [8] Dreyfuss D, Soler P, Basset G, et al. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure [J]. American Review of Respiratory Disease. 1988, 137 (5): 1159–1164
    [9] Dreyfuss D, Saumon G. Barotrauma is volutrauma, but which volume is the one responsible [J]. Intensive Care Medicine. 1992, 18 (3): 139–141
    [10] Dreyfuss D, Soler P, Saumon G. Spontaneous resolution of pulmonary edema caused by short periods of cyclic overinflation [J]. Journal of Applied Physiology. 1992, 72 (6): 2081–2089
    [11] Hughes JM, Rosenzweig DY. Factors affecting trapped gas volume in perfused dog lungs [J]. J Appl Physiol. 1970, 29 (3): 332–339
    [12] Plataki M, Hubmayr RD. The physical basis of ventilator-induced lung injury [J]. Expert Rev Resp Med. 2010, 4 (3): 373–85
    [13] Maniatis NA, Letsiou E, Orfanos SE, et al. Inhaled activated protein C protects mice from ventilator-induced lung injury [J]. Crit Care. 2010, 14 (2):R70.
    [14] Faller S, Ryter SW, Choi AM, et al. Inhaled hydrogen sulfide protects against ventilator-induced lung injury [J]. Anesthesiology. 2010, 113 (1):104-115.
    [15] Schwartz MA. Integrins and Extracellular Matrix in Mechanotransduction [J]. Cold Spring Harb Perspect Biol. 2010, 2 (12):a005066
    [16] Friedland JC, Lee MH, Boettiger D. Mechanically activated integrin switch controlsα5β1 function [J]. Science. 2009, 323 (5914): 642–644
    [17] Puklin-Faucher E, Gao M, Schulten K, et al. How the headpiece hinge angle is opened: New insights into the dynamics of integrin activation [J]. J Cell Biol. 2006, 175 (2): 349–60
    [18] Geiger B, Yamada KM. Molecular architecture and function of matrix adhesions [J].Cold Spring Harb Perspect Biol. 2011, doi:10.1101/cshperspect.a005033
    [19] Gaudreault M, Vigneauh F, Zanioto K, et a1.Contral of integrin genes in the eye [J].Prog Retin Eye Res. 2007,26(2):99-161
    [20] Hood JD, Bednarski M, Frausto R, et al. Tumor regression by targeted gene delivery to the neovasculature [J]. Science. 2002, 296 (5577):2404-2407
    [21] Guo M, Daines D, Tang J, et al. Fibrinogen-gamma C-terminal fragments induce endothelial barrier dysfunction and microvascular leak via integrin-mediated and RhoA-dependent mechanism [J]. Arterioscler Thromb Vasc Biol. 2009, 29 (3): 394-400
    [22] Antonov AS, Antonova GN, Munn DH, et al.αVβ3 integrin regulates macrophage inflammatory responses via PI3 kinase/Akt-dependent NF-κB activation [J]. J Cell Physiol. 2011, 226 (2): 469-76
    [23] Moon C, Han JR, Park HJ, et al. Synthetic RGDS peptide attenuates lipopolysaccharide-induced pulmonary inflammation by inhibiting integrin signaled MAP kinase pathways [J]. Respiratory Research. 2009, 10:18-27
    [24] Laitinen I, Saraste A, Weidl E, et al. Evaluation of alphavbeta3 integrin-targeted positron emission tomography tracer 18F-galacto-RGD for imaging of vascular inflammation in atherosclerotic mice [J]. Circulation. 2009, 2 (4):331-338
    [25] Antonov AS, Kolodgie FD, Munn DH, et al. Regulation of macrophage foam cell formation by alphaVbeta3 integrin: potential role in human atherosclerosis [J]. Am J Pathol. 2004, 165(1):247-58
    [26] Galliher AJ, Schiemann WP. Beta3 integrin and Src facilitate transforming growth factor-beta mediated induction of epithelial-mesenchymal transition in ma mmary epithelial cells [J]. Breast Cancer Res. 2006, 8 (4):R42
    [27] McCabe NP, De S, Vasanji A, et al. Prostate cancer specific integrin alphavbeta3 modulates bone metastatic growth and tissue remodeling [J]. Oncogene. 2007, 26(42):6238-6243
    [28] Jesús Villar, Nuria E Cabrera, Milena Casula, et al. Mechanical ventilation modulates TLR4 and IRAK-3 in a non-infectious, ventilator-induced lung injury model [J]. Respiratory Research. 2010, 11(1):27-37
    [29] Dekker RJ, van Soest S, Fontijn RD, et al. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2) [J]. Blood. 2002, 100 (5):1689-1698.
    [30] Liu M, Tanswell AK, Post M. Mechanical force-induced signal transduction in lung cells [J]. Am J Physiol (Lung Cell Mol Physiol). 1999, 21 (4 pt 1):L667-L683.
    [31] Cohen J. The immunopathogenesis of sepsis [J]. Nature. 2002, 420 (6917):885-891.
    [32] Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response [J]. Nature. 2000, 406 (6797):782-787.
    [33] Jiang D, Liang J, Li Y, et al. The role of Toll-like receptors in noninfectious lung injury [J]. Cell Res. 2006, 16 (8):693-701
    [34] Antonov AS, Antonova GN, Munn DH, et al.αVβ3 integrin regulates macrophage inflammatory responses via PI3 kinase/Akt-dependent NF-κB activation [J].J Cell Physiol. 2011, 226 (2):469-476
    [35] Moon C, Han JR, Park HJ, et al. Synthetic RGDS peptide attenuates lipopolysaccharide-induced pulmonary inflammation by inhibiting integrin signaled MAP kinase pathways [J]. Respiratory Research. 2009, 10:18-27
    [36] Slutsky AS, Tremblay LN. Multiple system organ failure. Is mechanical ventilation a contributing factor [J]. Am J Respir Crit Care Med. 1998, 157 (6 pt 1):1721-1725.
    [37] Chiang CH, Pai HI, Liua SL, et al. Ventilator-induced lung injury (VILI) promotes ischemia/reperfusion lung injury (I/R) and NF-kB antibody attenuates both injuries [J]. Resuscitation. 2008, 79 (1): 147-154
    [38] Humphries MJ. Insights into integrin–ligand binding and activation from the first crystal structure [J]. Arthritis Res. 2002 (4 supple 3), 4: S69-78
    [39] Kao WJ, Lee D. In vivo modulation of host response and macrophage behavior by polymer networks grafted with fibronectin-derived biomimetic oligopeptides: the role of RGD and PHSRN domains [J]. Biomaterials. 2001, 22 (21): 2901-2909.
    [40] Sage EH. Regulation of interactions between cells and extracellular matrix command performance on several stages [J].Clin Invest. 2001, 107 (7):781-783.
    [41] Chung A, Gao Q, Kao WJ. Macrophage matrix metalloproteinase-2/-9 gene and protein expression following adhesion to ECM-derived multi functional matrices via integrin complexation [J]. Biomaterials. 2007, 28 (2):285-298.
    [42] Bengtsson T, Greneg?rd M. Leucocyte activation by collagenstimulated platelets in whole blood [J]. Scand J Clin Lab Invest. 2002, 62 (6):451-461.
    [43] Koning GA, Schiffelers MR, Wauben MH, et al. Targeting of angiogenic endothelial cells at sites of inflammation by dexamethasone phosphate-containing RGD peptide liposomes inhibits experimental arthritis [J]. Arthritis Rheum. 2006, 54 (4):1198-1208.
    [44] Fondevila C, Shen XD, Moore C, et al. Cyclic RGD peptides with high affinity forα5β1 integrin protect genetically fat Zucker rat livers from cold ischemia/reperfusion injury [J]. Transplant Proc. 2005, 37 (4):1679-1681.
    [45] Vlahakis NE, Hubmayr RD. Cellular stress failure in ventilator-injured lungs [J]. Am J Respir Crit Care Med. 2005,171 (12): 1328–1342
    [46] Matute-Bello G, Frevert CW, Martin TR. Animal models of acute lung injury [J]. Am J Physiol Lung Cell Mol Physiol. 2008, 295 (3):L379-L399
    [47] Villar J, Cabrera NE, Casula M, et al. Mechanical ventilation modulates TLR4 and IRAK-3 in a non-infectious, ventilator-induced lung injury model [J].Respiratory Research. 2010, 11 (1):27-37
    [48] Niitsu T, Tsuchida S, Peltekova V, et al. Cyclooxygenase inhibition in ventilator-induced lung injury [J]. Anesth Analg. 2011, 112 (1):143-149.
    [49] Jiang JS, Chou HC, Wang LF, et al. Effects of activated protein C on ventilator-induced lung injury in rats [J]. Respiration. 2010, 80 (3):246-53.
    [50] Boost KA, Hoegl S, Dolfen A, et al. Inhaled levosimendan reduces mortality and release of proinflammatory mediators in a rat model of experimental ventilator-induced lung injury [J]. Crit Care Med. 2008, 36 (6):1873-1879.
    [51] Tremblay LN , Slutsky AS . Ventilator-induced iniury: from barotrauma to biotrauma[J].Proc Assoc Am Physicians.1998, 110(6): 482-488
    [52] Tremblay LN,Miatto D.Injurious ventilation induces wid spread pulmonary epithelial expression of tumor necrosis factor-alpha and interleukin-6 messenger RNA[J].Crit Care Med. 2002, 30(8):1693-l700
    [53] Stricter RM, Belperio JA, Keane MP. Cytokines in innate host defense in the lung[J]. J Clin Invest. 2002, 109(6): 699-705
    [54] Puneet P, Moochhala S, Bhatia M. Chemokines in acute respiratory distress syndrome[J]. Am J Physiol Lung Cell Mol Physiol. 2005, 288(1): L3-L15
    [55] Hammerschmidt S, Kuhn H, Grasenack T, et a1. Apoptosis and necrosis induced by cyclic mechanical stretching in alveolar type II cells[J].Am J Respir Cell Mol Biol. 2004, 30(3): 396-402
    [56] Rimensberger PC.Neonatal respiratory failure[J].Curr Opin Pediatr. 2002, 14(3): 315-321
    [57] Slutsky AS, Tremblay LN. Multiple system organ failure. Is mechanical ventilation a contributing factor [J]. Am J Respir Crit Care Med. 1998, 157 (6 pt 1):1721-1725
    [58] Kissner TL, Ruthel G, Alam S, et al. Activation of MyD88 signaling upon staphylococcal enterotoxin binding to MHC class II molecules. PLoS One 2011; 20;6(1):e15985
    [59] Wilson MR, Choudhury S, Goddard ME, et a1. High tidal volume up regulates intrapulmonary cytokines in an in vivo mouse model of ventilator induced lung injury[J].J Appl Physiol. 2003, 95(4):1385-1393
    [60] Naik AS,Kallapur SG,Bachurski C J,et a1.Efects of ventilation with different positive end-expiratory pressures on cytokine expression in the preterm lamb lung[J].Am J Respir Crit Care Med. 2001;164(3):494-498
    [61] Cheng KC, Zhang H, Lin CY, et a1. Ventilation with negative airway pressure induces a cytokine response in isolated mouse lung[J].Anesth Analg. 2002, 94(6): 1577-1582
    [62] Yang KY,Arcaroli JJ,Abraham E.Early alterations in neutrophi1 activation are associated with outcome in acute lung injury[J].Am J Respir Crit Care Med 2003; 67(11):1567-1574
    [63] Jafari B,Ouyang B,Li LF,et a1.Intracellular glutathione in stretch induced cytokine release from alveolar type 2 like cells [J].Respirolory 2004; 9(1):43-53
    [64]朱宏飞,冯丹,姚尚龙.大潮气量机械通气对大鼠肺组织急性炎症、氧化应激及细胞凋亡的影响[J].华中科技大学学报(医学版).2010, 39 (1):59-63
    [65]冯丹,姚尚龙,武庆平.合成短肽S247对呼吸机所致肺损伤p38MAPK通路激活的影响[J].中华急诊医学杂志. 2006, 15 (7): 603-607
    [66] Gaudreault M, Vigneauh F, Zanioto K, et a1. Contral of integrin genes in the eye[J].Prog Retin Eye Res. 2007, 26(2):99-161
    [67] Luo BH, Timothy AS, Integrin structures and conformationa signaling[J].Current Opinion in Cell Biology. 2006, 18(5): 579-586
    [68] Alison B, Nicola GA, Stuart C, et a1. Specificity of the VP1 GH loop of foot and mouth disease virus for a integrin[J].J Virol. 2006, 80(19): 9798-9810
    [69] Calderwood DA., FujiokaY, de Pereda J M, Het al. Integrin beta cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling [J]. Proc Natl Acad Sci USA. 2003, 100 (5): 2272-2277
    [70] Cluzel C, Saltel F, Lussi J, et al. The mechanisms and dynamics of (alpha)v(beta)3 integrin clustering in living cells [J]. J Cell Biol. 2005, 171 (2): 383-392
    [71] Kim M, Carman CV, Yang W, et al. The primacy of affinity over clustering in regulation of adhesiveness of the integrin {alpha} L {beta} 2 [J]. J Cell Biol. 2004, 167 (6): 1241-1253
    [72] Hynes RO. Integrins: bidirectional, allosteric signaling machines [J]. Cell. 2002, 110 (6): 673-687
    [73] Woolf E, Grigorova I, Sagiv A, et al. Lymph node chemokines promote sustained T lymphocyte motility without triggering stable integrin adhesiveness in the absence of shear forces [J]. Nat Immunol. 2007, 8 (10): 1076-1085
    [74] Wegener KL, Partridge AW, Han J, et al. Structural basis of integrin activation by talin [J]. Cell. 2007, 128 (1): 171-182
    [75]程刚英,倪广慧,姜凤超.整合素αVβ3受体拮抗剂药效团模型的研究[J].药学学报. 2009, 44(4):379-385
    [76] Hegeman MA, Hennus MP, van Meurs M, et al. Angiopoietin-1 treatment reduces inflammation but does not prevent ventilator-induced lung injury [J].PLoS One. 2010, 5(12):e15653
    [77] Iwaki M, Ito S, Morioka M, et al. Mechanical stretch enhances IL-8 production in pulmonary microvascular endothelial cells [J]. Biochem Biophys Res Commun. 2009, 389 (3): 531–536.
    [78] Birukov KG, Jacobson JR, Flores AA, et al. Magnitude-dependent regulation of pulmonary endothelial cell barrier function by cyclic stretch [J]. Am J Physiol Lung Cell Mol Physiol. 2003, 285 (4): L785–L797
    [79] Muth H, Maus U, Wygrecka M, et al. Pro- and antifibrinolytic properties of human pulmonary microvascular versus artery endothelial cells: impact of endotoxin and tumor necrosis factor-alpha [J]. Crit Care Med. 2004, 32 (1): 217-226
    [80] Dejana E, Tournier-Lasserve E, Weinstein BM. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications [J]. Dev Cell. 2009, 16 (2): 209-221
    [81] Tetsunaga T, Furumatsu T, Abe N, et al. Mechanical stretch stimulates integrinαVβ3-mediated collagen expression in human anterior cruciate ligament cells [J]. J Biomech. 2009, 42 (13): 2097–2103
    [82] Chen J, Fabry B, Schiffrin EL, et al. Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells [J]. Am J Physiol Cell Physiol. 2001, 280 (6): C1475-1484.
    [83] Martins-Green M, Petreaca M, Yao M. An assay system for in vitro detection of permeability in human "endothelium" [J]. Methods Enzymol. 2008, 443: 137-153.
    [84] Wang N, Tolic-Norrelykke IM, Chen J, et al. Cell prestress. I. stiffness and prestress are closely associated in adherent contractile cells [J]. Am J Physiol Cell Physiol. 2002, 282 (3): C606-616
    [85] Féréol S, Fodil R, Pelle G, et al. Cell mechanics of alveolar epithelial cells (AECs) and macrophages (AMs) [J]. Respir Physiol Neurobiol. 2008, 163 (1-3): 3-16
    [86] Laurent VM, Fodil R, Canadas P, et al. Partitioning of cortical and deep cytoskeleton responses from transient magnetic bead twisting [J]. Ann Biomed Eng. 2003, 31(10): 1263-1278.
    [87] Dreyfuss D, Saumon G. Ventilator-induced lung injury: lessons from experimental studies [J].Am J Respir Crit Care Med. 1998, 157 (1): 294-323
    [88] Matthay MA, Bhattacharya S, Gaver D, et al. Ventilator-induced lung injury: in vivo and in vitro mechanisms [J]. Am J Physiol Lung Cell Mol Physiol. 2002, 283 (4): L678-682
    [89] Aghajanian A, Wittchen ES, Allingham MJ, et al. Endothelial cell junctions and the regulation of vascular permeability and leukocyte transmigration [J]. J Thromb Haemost. 2008, 6 (9): 1453-1460
    [90] Orfanos SE, Mavrommati I, Korovesi I, et al. Pulmonary endothelium in acute lung injury: from basic science to the critically ill [J]. Intensive Care Med. 2004, 30 (9): 1702-1714
    [91] Cohen TS, Gray Lawrence G, Khasgiwala A, et al. MAPK activation modulates permeability of isolated rat alveolar epithelial cell monolayers following cyclic stretch [J]. PLoS One. 2010, 5(4):e10385.
    [92] Deng L, Fairbank NJ, Fabry B, et al. Localized mechanical stress induces time-dependent actin cytoskeletal remodeling and stiffening in cultured airway smooth muscle cells [J]. Am J Physiol Cell Physiol. 2004, 287 (2): C440-448.
    [93] Ohayon J, Tracqui P, Fodil R, et al. Analysis of nonlinear responses of adherent epithelial cells probed by magnetic bead twisting: A finite element model based on a homogenization approach [J]. J Biomech Eng. 2004, 126 (6): 685-698.
    [94] Moldobaeva A, Wagner EM. Heterogeneity of bronchial endothelial cell permeability [J]. Am J Physiol Lung Cell Mol Physiol. 2002, 283 (3): L520-527.
    [95] Muth H, Maus U, Wygrecka M, et al. Pro and antifibrinolytic properties of human pulmonary microvascular versus artery endothelial cells: impact of endotoxin and tumor necrosis factor-alpha [J]. Crit Care Med. 2004, 32 (1): 217-226.
    [96] Puklin-Faucher E, Sheetz MP. The mechanical integrin cycle [J]. J Cell Sci. 2009, 122 (pt 2): 179-186
    [97] Butler B, Gao C, Mersich AT. Purified integrin adhesion complexes exhibit actin-polymerization activity [J]. Curr Biol. 2006, 16 (3): 242–251.
    [98] Burridge K. Are stress fibres contractile [J]. Nature. 1981, 294 (5843): 691-92.
    [99] Balaban NQ, Schwarz US, Riveline D, et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates [J]. Nat Cell Biol. 2001, 3 (5): 466-472.
    [100] Cluzel C, Saltel F, Lussi J, et al. The mechanisms and dynamics of (alpha)v(beta)3 integrin clustering in living cells [J]. J Cell Biol. 2005, 171 (2): 383-392.
    [101] Garcia JG, Schaphorst KL. Regulation of endothelial cell gap formation and paracellular permeability [J]. J Investig Med, 1995, 43(2): 117–126
    [102] Dudek SM, Garcia JR. Cytoskeletal regulation of pulmonary vascular permeability [J]. J Appl Physiol. 2001, 91 (4): 1487–1500
    [1] Rubenfeld GD, Caldwell E, Peabody E, et al. Incidence and outcomes of acute lung injury [J]. N Engl J Med. 2005, 353(16): 1685–1693
    [2] Bernard GR, Artigas A, Brigham KL, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination [J]. Am J Respir Crit Care Med. 1994, 149 (3 Pt 1): 818–824
    [3] Ware LB. Pathophysiology of acute lung injury and the acute respiratory distress syndrome [J]. Semin Respir Crit Care Med. 2006, 27 (4):337–349
    [4] Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. ARDS Network. [J]. N Engl J Med 2000.342 (18): 1301–1308
    [5] Matthay MA, Wiener-Kronish JP. Intact epithelial barrier function is critical for the resolution of alveolar edema in humans [J]. Am Rev Respir Dis. 1990, 142 (6 Pt 1): 1250–1257
    [6] Idell S. Coagulation, fibrinolysis, and fibrin deposition in acute lung injury [J]. Crit Care Med. 2003, 31(4 suppl): S213–S220
    [7] Bastarache JA, Ware LB, Bernard GR. The role of the coagulation cascade in the continuum of sepsis and acute lung injury and acute respiratory distress syndrome [J]. Semin Respir Crit Care Med. 2006, 27 (4): 365–376
    [8] Wang L, Bastarache JA, Ware LB. The coagulation cascade in sepsis [J]. Curr Pharm Des. 2008, 14 (19): 1860–1869
    [9] Sannes PL. Structural and functional relationships between type II pneumocytes and components of extracellular matrices [J]. Exp Lung Res. 1991, 17 (4): 639–659
    [10] Sannes PL. Differences in basement membrane-associated microdomains of type I and type II pneumocytes in the rat and rabbit lung [J]. J Histochem Cytochem. 1984, 32 (8): 827–833
    [11] Gattinoni L, Bombino M, Pelosi P, et al. Lung structure and function in different stages of severe adult respiratory distress syndrome [J]. JAMA. 1994, 271 (22): 1772–1779
    [12] Matute-Bello G., Frevert CW, Martin TR.Animal models of acute lung injury [J]. Am J Physiol Lung Cell Mol Physiol. 2008, 295 (3): L379–L399
    [13] Wiener-Kronish JP, Albertine KH, Matthay MA. Differential responses of the endothelial and epithelial barriers of the lung in sheep to Escherichia coli endotoxin [J]. J Clin Invest. 1991, 88 (3): 864–875
    [14] Gharib SA, Nguyen E, Altemeier WA, et al. Of mice and men: comparative proteomics of bronchoalveolar fluid [J]. Eur Respir J. 2010, 35 (6): 1388–1395
    [15] Albertine KH, Wiener-Kronish JP, Staub NC. The structure of the parietal pleura and its relationship to pleural liquid dynamics in sheep [J]. Anat Rec. 1984, 208 (3): 401–409
    [16] Shapiro SD. Animal models of asthma: pro: allergic avoidance of animal (model[s]) is not an option [J]. Am J Respir Crit Care Med. 2006, 174 (11): 1171–1173
    [17] Rock JR, Randell SH, Hogan BLM. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling [J]. Dis Model Mech. 2010, 3 (9-10): 545–556
    [18] Matthay MA, Berthiaume Y, Staub NC. Long-term clearance of liquid and protein from the lungs of unanesthetized sheep [J]. J Appl Physiol. 1985, 59 (3): 928–934
    [19] Smedira N, Gates L, Hastings R, et al. Alveolar and lung liquid clearance in anesthetized rabbits [J]. J Appl Physiol. 1991, 70 (4): 1827–1835
    [20] Sakuma T, Folkesson HG, Suzuki S, et al. Beta-adrenergic agonist stimulated alveolar fluid clearance in ex vivo human and rat lungs [J]. Am J Respir Crit Care Med. 1997, 155 (2): 506–512
    [21] Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury [J]. J Pathol. 2000, 190 (3): 255–266
    [22] Jordan S, Mitchell JA, Quinlan G.J, et al. The pathogenesis of lung injury following pulmonary resection [J]. Eur Respir J. 2000, 15 (4): 790–799
    [23] Her C, Mandy S. Acute respiratory distress syndrome of the contralateral lung after reexpansion pulmonary edema of a collapsed lung [J]. J Clin Anesth. 2004, 16 (4): 244–250
    [24] Yin K, Gribbin E, Emanuel S, et al. Histochemical alterations in one lung ventilation [J]. J Surg Res. 2007, 137 (1): 16–20
    [25] Kutlu CA, Williams EA, Evans TW, et al. Acute lung injury and acute respiratory distress syndrome after pulmonary resection [J]. Ann Thorac Surg. 2000, 69 (2): 376–380
    [26] Ruffini E, Parola A, Papalia E, et al. Frequency and mortality of acute lung injury and acute respiratory distress syndrome after pulmonary resection for bronchogenic carcinoma [J]. Eur J Cardiothorac Surg. 2001, 20 (1): 30–36
    [27] Dulu A, Pastores SM, Park B, et al. Prevalence and mortality of acute lung injury and ARDS after lung resection [J]. Chest. 2006, 130 (1): 73–78
    [28] Alam N, Park BJ, Wilton A, et al. Incidence and risk factors for lung injury after lung cancer resection [J]. Ann Thorac Surg. 2007, 84 (4): 1085–1091
    [29] Tandon S, Batchelor A, Bullock R, et al. Peri-operative risk factors for acute lung injury after elective oesophagectomy [J]. Br J Anaesth. 2001, 86 (5): 633–638
    [30] Fan X, Liu Y, Wang Q, et al. Lung perfusion with clarithromycin ameliorates lung function after cardiopulmonary bypass [J]. Ann Thorac Surg. 2006, 81(3): 896–901
    [31] Nick JA, Coldren CD, Geraci MW, et al. Recombinant human activated protein C reduces human endotoxin-induced pulmonary inflammation via inhibition of neutrophil chemotaxis [J]. Blood. 2004, 104 (13): 3878–3885
    [32] Orens JB, Estenne M, Arcasoy S, et al. International guidelines for the selection of lung transplant candidates: 2006 update-a consensus report from the Pulmonary Scientific Council of the International Society for Heart and Lung Transplantation [J]. J Heart Lung Transplant. 2006, 25 (7): 745–755
    [33] Proudfoot AG, McAuley DF, Griffiths MJ, et al. Human models of acute lung injury [J]. Dis Model Mech. 2011, 4 (2):145-53.
    [34] Steen S, Liao Q, Wierup PN, et al. Transplantation of lungs from non-heart-beating donors after functional assessment ex vivo [J]. Ann Thorac Surg. 2003, 76 (1): 244–252
    [1]张力.促炎症消退介质脂氧素与炎症性疾病.生命的化学, 2008, 28: 752-754
    [2] Serhan CN, et al. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing [J]. J Experim Med. 2000, 192 (8): 1197–1204.
    [3] Serhan CN, et al. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals [J]. J Experim Med. 2002, 196 (8):1025–1037.
    [4] Serhan CN, et al. Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers [J]. Lipids. 2004, 39 (11):1125–1132.
    [5] Serhan CN, et al. Resolution of inflammation: the beginning programs the end [J]. Nat Immunol. 2005, 6(12):1191–1197.
    [6] Arita M, et al. Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1 [J]. J Experim Med. 2005, 201 (5):713–722.
    [7] Samson M, et al. ChemR23, a putative chemoattractant receptor, is expressed in monocyte derived dendritic cells and macrophages and is a coreceptor for SIV andsome primary HIV-1 strains [J]. Eur J Immunol. 1998, 28 (5):1689–1700
    [8] Yokomizo T, et al. A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis [J]. Nature. 1997, 387 (6633):620–624
    [9] Serhan CN. Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways [J]. Ann Rev Immunol. 2007, 25:101–137.
    [10] Schwab JM, et al. Resolvin E1 and protectin D1 activate inflammation-resolution programmes [J]. Nature. 2007, 447(7146):869–874
    [11] Kasuga K, et al. Rapid appearance of resolvin precursors in inflammatory exudates: novel mechanisms in resolution [J]. J Immunol. 2008, 181(12):8677–8687
    [12] Campbell EL, et al. Resolvin E1 promotes mucosal surface clearance of neutrophils: a new paradigm for inflammatory resolution [J]. FASEB J. 2007, 21 (12):3162–3170
    [13] Arita M, et al. Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2, 4, 6-trinitrobenzene sulfonic acid-induced colitis [J]. Proc Natl Acad Sci USA. 2005, 102 (21):7671–7676.
    [14] Dona M, et al. Resolvin E1, an EPA-derived mediator in whole blood, selectively counterregulates leukocytes and platelets [J]. Blood. 2008, 112(3):848–855.
    [15] Merched AJ, et al. Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators [J]. FASEB J. 2008, 22 (10):3595–3606.
    [16] Navarro-Xavier RA, et al. A new strategy for the identification of novel molecules with targeted proresolution of inflammation properties [J]. J Immunol. 2010, 184 (3):1516–1525.
    [17] Jin Y, et al. Anti-angiogenesis effect of the novel anti-inflammatory and pro-resolving lipid mediators [J]. Invest Ophthalmol Vis Sci. 2009, 50 (10): 4743–4752.
    [18] Herrera BS, et al. An endogenous regulator of inflammation, resolvin E1, modulates osteoclast differentiation and bone resorption [J]. Br J Pharmacol. 2008,155 (8):1214–1223.
    [19] Ishida T, et al. Resolvin E1, an endogenous lipid mediator derived from eicosapentaenoic acid, prevents dextran sulfate sodium-induced colitis [J]. Inflamm Bowel Dis. 2010, 16 (1):87– 95
    [20] Ohira T, et al. Resolvin E1 receptor activation signals phosphorylation and phagocytosis [J]. J Biol Chem. 2010, 285 (5):3451–3461.
    [21] Spite M, et al. Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis [J]. Nature. 2009, 461(7268):1287–1289
    [22] Xu ZZ, et al. Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions [J]. Nat Med. 2010, 16 (5):592–597
    [23] Freedman SD, et al. Association of cystic fibrosis with abnormalities in fatty acid metabolism [J]. N Engl J Med. 2004, 350 (6):560–569.
    [24] Haworth O, et al. Resolvin E1 regulates interleukin 23, interferon-gamma and lipoxin A4 to promote the resolution of allergic airway inflammation [J]. Nat Immunol. 2008, 9 (8):873–879.
    [25] Connor KM, et al. Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis [J]. Nat Med. 2007, 13 (7): 868–873.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700