用户名: 密码: 验证码:
对神经退行性疾病具有多靶点治疗作用的药物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经退行性疾病如老年痴呆(Alzheimer's disease, AD)、帕金森病(Parkinson's disease, PD)、和中风(Stroke)等均是由多病因引起的,造成神经细胞死亡的过程也是多因素的。因此基于单个治疗靶点设计的药物并未在治疗中枢神经系统紊乱疾病上达到令人满意的疗效。随着中枢神经系统紊乱疾病的致病因素和发病机制不断的被发现和阐明,具有多靶点治疗作用的药物研究开始出现,为治疗神经退行性疾病药物的研究开辟了一个崭新的领域。
     本文选择作用于AD不同致病环节的关键靶点,对其配体结构进行研究,利用药效团模型设计软件Catalyst中的HypoGen模块分别建立了Acetylcholinesterase (AChE)、Beta-site APP cleaving enzymes 1 (BACE-1)、Poly(ADP-ribose)polymerase-1 (PARP-1).与Cysteine Asp-specific proteases-3 (Caspase-3)抑制剂的药效团模型。以已知的具有神经保护作用的2-氨基噻唑衍生物为先导化合物,结合药效团模型进行结构优化,设计出具有多功能神经保护作用的PARP-1抑制剂(1-7)。在所设计的单靶点神经保护剂的基础上,利用药效团模型叠合比对法,找到与PARP-1具有最大配体结构相似性的作用靶点AChE,设计出符合PARP-1抑制剂药效团模型和AChE抑制剂药效团模型的多靶点配体化合物(8-10)。经药效团预测化合物1-10具有较好的PARP-1抑制活性和AChE抑制活性。目标化合物经过合成后将进行相关生物活性筛选试验,以验证所提出的基于药效团的多靶点配体药物设计方法的可靠性,为进一步设计多靶点神经保护剂提供理论指导与实验数据。
     目标化合物的合成过程中,首先采用微波辐射方法合成4,5取代-2-氨基噻唑化合物,将其作为母体结构进行进一步的合成,得到10个4,5取代-2-氨基噻唑酰胺和Schiff碱衍生物。化合物的结构经过UV、IR、1H-NMR、13C-NMR、EI-MS、与HPLC等方法得到了确证。
     将得到的目标化合物进行相关的生物活性筛选,结果如下:
     1.酶抑制活性筛选
     PARP-1抑制活性实验结果显示化合物1-3和7在1μM时对PARP-1均产生大于50%的抑制活性,IC50值分别为240,753,224,和682 nM。
     AChE抑制活性实验结果显示化合物10具有较好的抑制活性作用,IC50值为2511nM。
     Caspase-3抑制活性初筛实验结果表明化合物3在65.3μM时对Caspase-3具有54.99±2.42%的抑制活性。蛋白酪氨酸磷酸酯酶(PTP-SIGMA)抑制活性初筛实验结果表明化合物4在272.9μM浓度下能抑制93.22±3.08%的PTP-SIGMA活性。
     2.PC12细胞保护活性筛选
     H2O2诱导的PC12细胞损伤模型:采用MTT法检测细胞存活率,结果表明化合物3和7对H2O2诱导的PC12细胞损伤具有较高细胞保护作用,EC50值分别为129和324nM。
     氧糖剥夺(OGD)诱导的PC12细胞损伤模型:首先采用MTT法检测细胞存活率,化合物1、2和7表现出较好的细胞保护作用,EC5o值分别为143、191和361 nM。然后利用另一种细胞活性检测方法LDH法进行验证,实验结果显示化合物1-4和7在3μM浓度下能分别减少34.6%,20.1%,33.1%,24.0%,和28.4%OGD损伤导致的细胞LDH释放。最后考察了化合物1-3对OGD导致的PC12细胞凋亡的抑制作用,在浓度3μM下它们分别产生了70.7%,45.1%,和64.4%的抑制细胞凋亡作用。
     3.SH-SY5Y细胞保护活性初筛
     β-淀粉样蛋白(Aβ)诱导神经母细胞瘤细胞(SH-SY5Y细胞)损伤的保护作用的初筛结果表明化合物1在32.9μM浓度下能减少45.54%的细胞死亡,具有明显的抗Aβ细胞毒性作用。
     目标化合物的生物活性筛选结果验证了基于药效团的单靶点与多靶点化合物的设计方法的可靠性,筛选得到了对H2O2,OGD与Aβ毒性均具有较好神经细胞保护作用的PARP-1抑制剂(化合物1-3),以及潜在的具有PARP-1与AChE双重抑制活性的多靶点配体化合物(化合物10)。
     本论文的研究特点和创新之处:
     1.本文的多靶点配体药物设计思路合理,以AD各个致病环节的关键靶点为研究对象,选择具有配体结构相似性的靶点进行多靶点配体药物的设计,得到具有潜在PARP-1和AChE双重抑制活性的多靶点配体化合物。
     2.本文利用药效团模型叠合比对进行多靶点配体药物设计的方法具有创新性。
     3.所设计合成的目标化合物经过生物活性筛选,实验结果验证了化合物设计思路的可行性与设计方法的可靠性。
The pathogenic mechanism of neurodegenerative diseases are poly-etiological in origin and the processes leading to neuronal death are multifactorial, as indicated by transcriptomics and proteomic. The pathology of many disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), and stroke, includes an array of different pathways, and many of pathways involved in etiology of these diseases overlap. The traditional drug design "one-target, one-disease" in earlier and in many current researches has not met with the expected success for Central Nervous System (CNS) disorders. As increasing understanding of the entire complex pharmacological picture associated with the disease, a concept the multi-target-directed ligands that are rationally designed to modulate multiple mechanisms of a specific disease emerges. It will broaden our outlook in the treatment of neurodegenerative diseases.
     The ligands of some key targets related to the pathogenic mechanism of AD were chosen to be research objects. The pharmacophore models of Acetylcholinesterase (AChE) inhibitors、Beta-site APP cleaving enzymes 1 (BACE-1) inhibitors、Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors、and Cysteine Asp-specific proteases-3 (Caspase-3) inhibitors were respectively established by using the HypoGen module of catalyst software. Firstly, molecules with 2-aminothiazole framework were chosen as a scaffold for further chemical modification by phamacophore model to explore PARP-1 inhibitors with multi-function neuroprotection (1-7). Secondary, because targets which resemble in ligands will exhibit similarity in pharmacophore models, on the basis of the designed PARP-1 inhibitors, multi-target-directed compounds (8-10) were designed by overlapping pharmacophores. As pharmacophore model predicted, compounds 1-10 with drug-likeness had good estimate activity to inhibit AChE and PARP-1. After synthesis, the biological activity screening was carried to validate the design method of multi-target-directed drugs based on the pharmacophore models. This work will provide theory guidance and experimental data for further design of multi-target neuroprotective agents.
     In this study, we prepared 2-aminothiazole analogs in which the application of microwave technology was used.The cyclization step, carried by microwave, was performed in only a few minutes compared to the conventional thermal heating for 12h. Then they were reacted with different acid or acyl chloride respectively at RT. Finally, ten 4, 5-substituted-2-aminothiazole derivatives were synthesized. They were all characterized and analyzed by UV、IR、1H-NMR、13C-NMR、EI-MS、and HPLC.
     After biological activity screening, the results included as follows:
     1. Enzyme inhibition screening
     Assay for PARP-1 inhibition in vitro:Compounds 1-3 and 7 almost showed more than 50% PARP-1 inhibition at a concentration of 1μM. They were more potent (IC50 240,753, 224, and 682 nM, respectively).
     Assay for AChE inhibition in vitro:Compound 10 show potent AChE inhibition (IC50=2511nM).
     Preliminary screening for Caspase-3 inhibitory activity in vitro:Compound 3 showed 54.99±2.42% inhibitory activity of Caspase-3 in the concentration of 65.3μM.
     Preliminary screening for PTP-sigma inhibitory activity in vitro:In the concertration of 272.9μM, compound 4 showed 93.22±3.08%inhibitory activity.
     2. Assays for cytoprotective action in PC12 cell
     H2O2-induced PC12 cell injury model:In MTT assay, compounds 3 and 7 were highly protective (EC50 129, and 324 nM, respectively), and compounds 1,2, and 4 were moderately protective.
     oxygen-glucose deprivation (OGD) induced PC12 cell death model:In MTT assay, compounds 1,2, and 7 were more protective (EC50 143,191, and 361 nM, respectively). In LDH release assay, compounds 1-4 and 7 (3μM) significantly reduced the OGD-induced LDH release by 34.6%,20.1%,33.1%,24.0%, and 28.4% respectively. We also performed a biparametric cytofluorimetric analysis using fluorescein isothiocyanate (FITC)-conjugated annexin V and propidium iodide (PI) double staining. A concentration of 3μM of compounds 1-3 significantly reduced OGD-induced total apoptotic cells (early and late apoptotic cells) by 70.7%,45.1%, and 64.4% respectively.
     3. Preliminary screening for cytoprotective action in SH-SY5Y cell
     Preliminary screening of cytoprotection against Aβinduced SH-SY5Y cell death: Compound 1 had 45.54% protection in the concentration of 32.9μM.
     In conclusion, compounds 1-3 possessed expecting neuroprotection against H2O2, OGD, and Aβinduced cell death, and compounds 10 had potent multi-target-directed activities with both PARP-1 and AChE inhibiton, which validated method of muliti-target-directed ligands design.
     The characters and innovation points:
     1. The muliti-target-directed ligands design is reasonable. The key targets related to the pathogenic mechanism of AD were chosen to be research objects, and targets which resemble in ligands were selected to use to multi-target-directed ligands design. A series of compounds that have potent multi-target-directed activities with both PARP-1 and AChE inhibiton were designed.
     2. The method of overlapping pharmacophores used to multi-target-directed ligands design is original.
     3. The results of biological activity screening validated the feasibility of the concept and method of muliti-target-directed ligands design.
引文
[1]Youdim M. B. H., Am O. B., Yogev-Falach M., et al. Rasagiline:Neurodegeneration, neuroprotection, and mitochondrial permeability transition. J. Neurosci. Res.2005,79: 172-179.
    [2]Zheng H., Gal S., Weiner L. M., et al. Novel multifunctional neurotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases:in vitro studies on antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition. J. Neurochem.2005,95:68-78.
    [3]Zheng H., Weiner L. M., Bar-Am O., et al. Design, synthesis, and evaluation of novel bifunctional iron-chelators as potential agents for neuroprotection in Alzheimer's, Parkinson's, and other neurodegenerative diseases. Bioorg. Med. Chem.2005,13: 773-783.
    [4]Sagi Y., Weinstock M., Youdim M. B. H. Attenuation of MPTP-induced dopaminergic neurotoxicity by TV3326, a cholinesterase-monoamine oxidase inhibitor. J. Neurochem.2003,86:290-297.
    [5]Terry A. V., Gattu M., Buccafusco J. J., et al. Ranitidine analog JWS-USC-75Ⅸ enhances memory related task performance in rats. Drug Develop. Res.1999,47: 97-106.
    [6]Greenblatt H. M., Kryger G., Lewis T., et al. Structure of acetylcholinesterase complexed with (-)-galanthamine at 2.3 A resolution. FEBS Lett.1999,463:321-326.
    [7]Dajas-Bailador F. A., Heimala K., Wonnacott S., et al. The allosteric potentiation of nicotinic acetylcholine receptors by galantamine is transduced into cellular responses in neurons:Ca2+ signals and neurotransmitter release. Mol. Pharmacol.2003,64: 1217-1226.
    [8]Snape M. F., Misra A., Murray T. K., et al. A comparative study in rats of the in vitro and in vivo pharmacology of the acetylcholinesterase inhibitors tacrine, donepezil and NXX-066. Neuropharmacol.1999,38:181-193.
    [9]Wang X. D., Chen X. Q., Yang H. H., et al. Comparison of the effects of cholinesterase inhibitors on [3H]MK-801 binding in rat cerebral cortex. Neurosci. Lett.1999,272:21-24.
    [10]Orozco C., de Los R. C., Arias E., et al. ITH4012 (ethyl 5-amino-6,7, 8,9-tetrahydro-2-methyl-4-phenylbenzol[1,8]naphthyridine-3-carboxylate), a novel acetylcholinesterase inhibitor with "calcium promotor" and neuroprotective properties. J. Pharmacol. Exp. Ther.2004,310:987-994.
    [11]Narahashi T., Moriguchi S., Zhao X., et al. Mechanisms of action of cognitive enhancers on neuroreceptors. Biol. Pharm. Bull.2004,27:1701-1706.
    [12]Mandel S. A., Avramovich-Tirosh Y., Reznichenko L., et al. Multifunctional activities of green tea catechins in neuroprotection. Modulation of cell survival genes, iron-dependent oxidative stress and PKC signaling pathway. Neurosignals.2005,14: 46-60.
    [13]Mandel S., Amit T., Reznichenko L., et al. Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disoeders. Mol. Nutr. Food Res.2006,50:229-234.
    [14]Annoura H., Nakanishi K., Uesugi M., et al. A novel class of Na+ and Ca+ channel dual blockers with highly potent anti-ischemic effects. Bioorg. Med. Chem. Lett.1999, 9:2999-3002.
    [15]姜凤超.药物设计学.第一版.北京:化学工业出版社,2007.209-238.
    [16]Zhu Y., Tong X., Zhao Y., et al. Construction of the pharmacophore model of acetylcholinesterase inhibitor. Acta Pharmaceutica Sinica.2008,43:2-11.
    [17]Cai H., Wang Y., McCarthy D., et al. BACE-1 is the major β-secretase for generation of Aβ peptides by neurons. Nat. Neurosci.2001,43,233-234.
    [18]Tesco G., Koh Y. H., Kang E. L., et al. Neuron.2007,54,721-737.
    [19]Roberds S. L., Anderson J., Bienkowski M. J., et al. BACE knockout mice are healthy despite lacking the primary β-secretase activity in brain:inplications for Alzheimer's disease therapeutics. Hum. Mol. Genet.2001,10,1317-1324.
    [20]Ghosh A. K., Bilcer G., Harwood C., et al. Structure-based design:potent inhibitors of human brain Memapsin 2 (β-secretase). J. Med.Chem.2001,44,2865-2868.
    [21]Freskos J. N., Fobian Y. M., Benson T. E., et al. Design of potent inhibitors of human β-secretase. Bioorg. Med. Chem. Lett.2007,17,78-81.
    [22]Kimura T., Hamada Y., Stochaj M., et al. Design and synthesis of potent β-secretase (BACE-1) inhibitors with P1 carboxylic acid bioisosteres. Bioorg. Med. Chem. Lett. 2006,16,2380-2386.
    [23]Kimura T., Shuto D., Hamada Y., et al. Design and synthesis of highly active Alzheimer's p-secretase (BACE1) inhibitors, KMI-420 and KMI-429, with enhanced chemical stability. Bioorg. Med. Chem. Lett.2005,15,211-215.
    [24]Hamada Y., Igawa N., Ikari H., et al. β-Secretase inhibitors:modification at the P4 position and improvement of inhibitory activity in cultured cells. Bioorg. Med. Chem. Lett.2006,16,4354-4359.
    [25]Stauffer S. R., Stanton M. G., Gregro A. R., et al. Discovery and SAR of isonicotinamide BACE-1 inhibitors that bind P-secretase in a N-terminal lOs-loop down conformation. Bioorg. Med. Chem. Lett.2007,17,1788-1792.
    [26]Stanton M. G., Stauffer S. R., Gregro A. R., et al.'Discovery of isonicotinamide derived β-secretase inhibitors:in vivo reduction of β-secretase. J. Med. Chem.2007, 50,3431-3433.
    [27]Edwards P. D., Albert J. S., Sylvester M., et al. Application of fragment-based lead generation to the discovery of novel, cyclic amidine β-secretase inhibitors with nanomolar potency, cellular activity, and high ligand efficiency.J.Med. Chem.2007, 50,5912-5925.
    [28]Cole D. C., Manas E. S., Stock J. R., et al. Acylguanidines as small-molecule β-secretase inhibitors. J. Med.Chem.2006,49,6158-6161.
    [29]Jennings L. D., Cole D.C., Stock J. R., et al. Acylguanidine inhibitors of P-secretase: optimization of the pyrrole ring substituents extending into the S1 substrate binding pocket. Bioorg. Med. Chem. Lett.2008,18,767-771.
    [30]Garino C., Tomita T., Pietrancosta N., et al. Naphthyl and coumarinyl biarylpiperazine derivatives as highly potent human β-secretase inhibitors. Design, synthesis, and enzymatic BACE-1 and cell assays. J. Med. Chem.2006,49, 4275-4285.
    [31]Huang D., Luthi U., Kolb P., et al. In silico discovery of β-secretase inhibitors. J. Am. Chem. Soc.2006,128,5436-5443.
    [32]Pietrancosta N., Quelever G., Garino C., et al. Identification of privileged scaffolds from a diversified chemical library for P-secretase inhibition. Lett. Drug Des. Discov. 2005,2,595-600.
    [33]Maillard M. C., Horn R. K., Benson T. E., et al. Design, synthesis, and crystal structure of hydroxyethyl secondary amine-based peptidomimetic inhibitors of human β-secretase. J. Med.Chem.2007,50,776-781.
    [34]Congreve M., Aharony D., Albert J., et al. Application of fragment screening by X-ray crystallography to the discovery of aminopyridines as inhibitors of β-secretase. J. Med. Chem.2007,50,1124-1132.
    [35]Cole D. C, Stock J. R., Chopra R., et al. Acylguanidine inhibitors of β-secretase: optimization of the pyrrole ring substituents extending into the S1 and S3 substrate binding pockets. Bioorg. Med. Chem. Lett.2008,18,1063-1066.
    [36]John V., Beck J. P., Bienkowski M. J., et al. Human p-secretase (BACE) and BACE inhibitors. J. Med. Chem.2003,46,4625-4630.
    [37]Gorfe A. A., Caflisch A. Functional plasticity in the substrate binding site of β-secretase. Structure.2005, 13,1487-1498.
    [38]Hong L., Koelsch G., Lin X., et al. Structure of the protease domain of memapsin 2 (β-secretase) complexed with inhibitor. Science.2000,290,150-153.
    [39]Ghosh A. K., Kumaragurubaran N., Hong L., et al. Design, synthesis and X-ray structure of protein-ligand complexes:important insight into selectivity of Memapsin 2 (β-secretase) inhibitors. J. Am. Chem. Soc.2006,128,5310-5311.
    [40]Hu B., Xiong B., Qiu B.Y., et al. Construction of a small peptide library related to inhibitor OM99-2 and its structure-activity relationship to β-secretase. Acta Pharmacol. Sin,2006,27,1586-1593.
    [41]Griininger-Leitch F., Schlatter D.. Kung, E., et al. Substrate and inhibitor profile of BACE (β-secretase) and comparison with other mammalian aspartic proteases. J. Biol. Chem.2002,277,4687-4693.
    [42]Lucio T., Ilaria P., Grazia G.. Potential clinical applications of poly(ADP-Ribose) polymerase (PARP) inhibitors. Pharmacol. Res,2002,45,73-85.
    [43]Ha H. C., Snyder S. H.. Poly(ADP-ribose)polymerase is a mediator of necrotic cell death by ATP depletion. Proc. Natl. Acad. Sci. USA.1999,96,13978-13982.
    [44]Gabriele C., Antonio M., Emidio C., et al. Modeling of Poly(ADP-ribose)polymerase (PARP) Inhibitors. Docking of Ligands and Quantitative Structure-Activity Relationship Analysis. J. Med. Chem.2001,44,3786-3794.
    [45]张文婷,鄢浩,姜凤超.聚腺苷二磷酸核糖聚合酶-1 抑制剂药效团模型的建立.药学学报.2007,42,279-285.
    [46]Armin R., Veronique R., Gilbert D. M., et al. The Mechanism of the Elongation and Branching Reaction of Poly(ADP-ribose) Polymerase as Derived From Crystal Structures and Mutagenesis. J. Mol. Biol.1998,278,57-65.
    [47]Armin R., Gilbert D. M., Schulz G. E.. Inhibitor and NAD+Binding to (ADP-ribose) Polymerase As Derived from Crystal Structures and Homology Modeling. Biochemistry.1998,37,3893-3900.
    [48]Chen Y. H., Zhang Y. H., Zhang H. J., et al. Design, synthesis, amd biological evaluation of isoquinoline-1,3,4-trione derivatives as potent Caspase-3 inhibitors. J. Med. Chem.2006,49,1613-1623.
    [49]Isabel E., Black W. C., Bayly, C. I., et al. Nicotinyl aspartyl ketones as inhibitors of Caspase-3. Bioorg. Med. Chem. Lett.2003,13,2137-2140.
    [50]Kravchenko D. V., Kysil, V. V., Ilyn, A. P., et al. 1,3-Dioxo-4-methyl-2,3-dihydro-1H-pyrrolo[3,4-c]quinolines as potent caspase-3 inhibitors. Bioorg. Med. Chem. Lett. 2005,15,1841-1845.
    [51]Head M. S., Ryan M. D., Lee D., et al. Structure-based combinatorial library design: Discovery of non-peptidic inhibitors of caspases 3 and 8. J. Comput. Aided Mol. Des. 2001,15,1105-1117.
    [52]Wang Y., Huang C. J., Zhou Z., et al. Dipeptidyl aspartyl fluoromethylketones as potent caspase-3 inhibitors:SAR of the P2 amino acid. Bioorg Med Chem Lett.2004, 14,1269-1272.
    [53]Cai S. X., Guan L. F., Jia S. J., et al. Dipeptidyl aspartyl fluoromethylketones as potent caspase inhibitors:SAR of the N-protecting group. Bioorg Med Chem Lett. 2004,14,5295-5300.
    [54]Morphy R., Kay C., Rankovic Z. From magic bullets to designed multiple ligands. Drug Discovery Today.2004,9,641-651.
    [55]Ha H. C., Snyder S. H. Ploy (ADP-ribose) polymerase is a mediator of necrotic cell death by depletion. Proc. Nati. Acad. Sci. U.S. A.1999,96,13978-13982.
    [56]Yu S. W., Wang H., Poitras C. C., et al. Poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science.2002,297,259-263.
    [57]Oliver F. J., Murcia C. N., Nacci C., et al. Andriantsitohaina, R.; Muller, S.; Rubia G.; Stoclet, J. C.; Murcia,G Resistance to Endotoxic Shock as a consequence of defective NF-KB activation in poly (ADP-ribose) polymerase-1 deficient mice. EMBO. J.1999,18,4446-4454.
    [58]Haddad M., Rhinn H., Bloquel C., et al. Anti-inflammatory effects of PJ34, a poly(ADP-ribose) polymerase inhibitor, in transient focal cerebral ischemia in mice. Br. J. Pharmacol.2006,149,23-30.
    [59]Mandir A. S., Poitras M. F., Berliner A. R., et al. NMDA but not non-NMDA excitotoxicity is mediated by poly (ADP-ribose) polymerase. Neuroscience.2000,20, 8005-8011.
    [60]Kauppinen T. M., Swanson R. A. The role of poly (ADP-ribose) polymerase-1 in CNS disease. Neuroscience.2007,145,1267-1272.
    [61]Geronikaki, A., Dearden J. C., Filimonov D., et al. L. Design of new congnition enhancers:From computer prediction to synthesis and biological evalution. J. Med. Chem.2004,47,2870-2876.
    [62]Schneider C. S., Mierau J. Dpamine autoreceptor agonist:Resolution and pharmacological activity of 2,6-diaminotetrahydrobenzothiazole and an aminothiazole analog of apomorphine. J. Med. Chem.1987,30,494-498.
    [63]Kin K. M., Kim K. H., Kang T. C., et al. Design and biological evaluation of novel antioxidants containing N-t-butyl-N-hydroxylaminophenyl moieties. Bioorg. Med. Chem. Lett.2003,13,2273-3375.
    [64]Zhu X., Yu Q. S., Cutler R. G., et al. Culmsee, C. W.; Holloway, H. W.; Lahiri, D. K.; Mattson, M. P.; Greig, N. H. Novel p53 inactivators with neuroprotective action: Syntheses and pharmacological evaluation of 2-imino-2,3,4,5,6, 7-hexahydrobenzothiazole and 2-imino-2,3,4,5,6,7-hexahydrobenzoxazole derivatives. J. Med. Chem.2002,45,5090-5097.
    [65]Gedye R., Smith F., Westaway K., et al. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett.1986,27,279-282.
    [66]王静,姜凤超.微波有机合成反应的新进展.有机化学,2002,22,212-219.
    [67]Kyung I. L, Joo H. C., Ae N. P., et al. Studies on novel 3-isoxazolylvinyl cep halosporins:Ⅱ.Synthesis and biological activity of 7-[2-(2-aminothiazol-4-yl)-2-hy droxy-iminoacetamido] derivatives. J. Antibiot.1998,21,1122-1125.
    [68]Kumar Y., Green R., Borysko K. Z., et al. Synthesis of 2,4-disubstituted thiazo les and selenazoles as potential antitumor and antifilarial agents:1.methyl 4-(is othiocyanatomethyl)thiazole-2-carbamates,selenazole-2-carbamates, and related der ivatives. J. Med. Chem.1993,36,3843-3848.
    [69]Haviv F., Ratajczyk J. D., Denet R. W., et al.3-[1-(2-Benzoxazolyl) hydrazino]propanenitrile derivatives:inhibitors of immune complex induced inflammation. J.Med. Chem.1988,31,1719-1728.
    [70]Hargrave K. D., Hess F. K., Oliver J. T., et al. N-(4-Substituted-thiazolyl)oxamica cidderivatives, new series of potent, orally active antiallergy agents. J. Med.Chem. 1983,26,1158-1163.
    [71]Patt W. C., Hamilton H. W., Taylor M. D., et al. Structure-activity relationships of a series of 2-amino-4-thiazole-containing renin inhibitors. J. Med. Chem.1992, 35,2562-2572.
    [72]Venkatachalam T. K., Sudbeck E. A., Mao C., et al. Anti-HIV activity of aromatic and heterocyclic thiazolyl thiourea compounds. Bioorg. Med. Chem. Lett.2001, 11,523-528.
    [73]Badorc A., Borders M. F., Cointet P. D., et al. New Orally Active Non-Peptide Fibrinogen Receptor (GpIIb-IIIa) Antagonists:Identification of Ethyl 3-[N-[4-[4-[Amino[(ethoxycarbonyl)imino]methyl]phenyl]-1,3-thiazol-2-yl]-N-[1-[(ethoxycarb onyl)methyl]piperid-4-yl]amino]propionate (SR 121787) as a Potent and Long-A cting Antithrombotic Agent. J. Med. Chem.1997,40,3393-3401.
    [74]Yamaguchi K., Yada M., Tsuji T., et al.4-Phenylthiazole derivatives inhibit IL-6 secretion in osteoblastic cells and suppress bone weight loss in ovariectomized mice. Bioorg. Med. Chem. Lett.1999,9,957-960.
    [75]Misra R. N., Xiao H. Y., Williams D. K., et al. Synthesis and biological activity of N-aryl-2-aminothiazoles:potent pan inhibitors of cyclin-dependent kinases.Bi oorg. Med. Chem. Lett.2004,14,2973-2977.
    [76]Wipf P., Aslan D. C., Southwick E. C., et al. Sulfonylated aminothiazole as new small molecule inhibitors of protein phosphatases. Bioorg. Med. Chem. Lett.20 01,11,313-317.
    [77]Goblyos A., Santiago S. N., Pietra D., et al. Synthesis and biological evalution of 2-aminothiazoles and their amide derivatives on human adenosine receptors. Lack of effect of 2-aminothiazoles as allosteric enhancers. Bioorg. Med. Chem. 2005,13,2079-2087.
    [78]Rudolp J. Facile Access to N-Thiazolyl a-Amino Acids from a-Bromo Ketones and a-Amino Acids. Tetrahedron.2000,56,3161-3165.
    [79]Das B., Reddy V. S., Ramu R., et al. A rapid and high-yielding synthesis of thiazoles and aminothiazoles using ammonium-12-molybdophosphate. J. Mol. C atal. A Chemical. 2006,252,235-237.
    [80]Karade H., Sathe M., Kaushik M. P. An efficient method for the synthesis of 2-aminothiazoles using silica chloride as a heterogeneous catalyst. Catal. Comm un.2007,8,741-746.
    [81]Aoyama T., Murata S., Arai I., et al. One pot synthesis using supported reagents system KSCN/SiO2-RNH3OAc/AL2O3:synthesis of 2-aminothiazoles and N-all ylthioureas. Tetrahedron.2006,62,3201-3213.
    [82]Kabalka G. W., Mereddy A. R. Microwave promoted synthesis of functionalized 2-aminothiazoles. Tetrahedron Lett.2006,47,5171-5172.
    [83]King L. C., Miller F. M. The reaction of diazoketones with thioamide derivatives. J. Am. Chem. Soc.1949,71,367-368.
    [84]King L. C., Hlavacek R. J. The reaction of ketones with iodine and thiourea. J. Am. Chem. Soc.1950,72,3722-3725.
    [85]E.C.霍宁.有机合成 第三集.北京:科学出版社,1981.469.
    [86]Narasimhan B., Belsare D., Pharande D., et al. Esters, amides and substituted derivatives of cinnamic acid:synthesis, antimicrobial activity and QSAR investi gations. Eur. J. Med. Chem.2004,39,827-834.
    [87]张文婷,姜凤超.聚腺苷二磷酸核糖聚合酶抑制剂在神经保护方面的研究进展.中国药物化学杂志2007,17,115-121.
    [88]Dillon K. J., Smith G. C. M., Martin N. M. B. A Flashplate assay for the identification of PARP-1 inhibitors. J. Biomol. Screen.2003,8,347-352.
    [89]Ellman G. L., Courtney K. D., Andres V., et al. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol.1961,7,88-95.
    [90]Ingkaninan K., Temkitthawon P., Chuenchom N., et al. Screening for acetylchol inesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic. Journal of Ethnopharmacology.2003,89,261-264.
    [91]Zhang J., Zhu D., Sheng R., et al. BZYX, a novel acetylcholineterase inhibitor, significantly improved chemical-induced learning and memory impairments on rodents and protected PC 12 cells from apoptosis induced by hydrogen peroxide. Eur. J. Pharmacol.2009,613,1-9.
    [92]杜冠华,实验药理学.北京:中国协和医科大学出版社,2004.107.
    [93]刘建文,药理实验方法学.北京:化学工业出版社,2003.27,92.
    [94]Lenart B., Kinter D. B., Shull G. E., et al. Na-K-Cl Cotransport-mediated intra cellular Na+ accumulation affects Ca2+ signaling in astrocytes in an in vitro is chemic model. J. Neurosci.2004,24,9585-9597.
    [95]Vermies I., Haanen C., Nakken H. S., et al. A novel assay for apoptosis flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labeled annexin V. J. Immunol. Methods.1995,184,39-51.
    [1]Zhao Z.C., Li F., Maiese K. Oxidative stress in the brain:novel celluar targets that govern survival during neurodegenerative disease. Prog. Neurobiol.2005,5,207-246.
    [2]Lee J., Zipfel G. J., Choi D. W. The changing landscape of ischaemic brain injury mechanisms. Nature,1999,399, A7-14.
    [3]Iadeco C., Alexander M. Cerebral ischemia and inflammation. Curr. Opin. Neurol. 2001,14,89-94.
    [4]Yamashita S., Mita S., Kato S., et al. Bcl-2 expression using retrograde transport of adenoviral vectors inhibits cytochrome c-release and caspase-1 activation in motor neurons of mutant superoxide dismutase 1 (G93A) transgenic mice. Neurosci. Lett. 2003,350,17-20.
    [5]Takata K., Kitamura Y., Kakimura J., et al. Increase of Bcl-2 protein in neuronal dendritic processes of cerebral cortex and hippocampus by the antiparkinsonian drugs, talipexole and pramipexole. Brain. Res.2000,872,236-241.
    [6]Zou L. L., Xu J., Jankovic J., et al. Pramipexole inhibits lipid peroxidation and reduces injury in the substantia nigra induced by the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57BL/6 mice. Neurosci. Lett.2000, 281,167-170.
    [7]Wang Y, Huang C. J., Zhou Z., et al. Dipeptidyl aspartyl fluoromethylketones as potent caspase-3 inhibitors:SAR of the P2 amino acid. Bioorg. Med. Chem. Lett.2004,14, 1269-1272.
    [8]Cai S. X., Guan L. F., Jia S. J., et al. Dipeptidyl aspartyl fluoromethylketones as potentcaspase inhibitors:SAR of the N-protecting group. Bioorg. Med. Chem. Lett. 2004,14,5295-5300.
    [9]Han Y. X., Giroux A., Colucci J., et al. Novel pyrazinone mono-amides as potent and reversible caspase-3 inhibitors [J]. Bioorg. Med. Chem. Lett. 2005,15,1173-1180.
    [10]Kravchenko D. V., Kysil V. V., Ilyn A. P., et al.1,3-Dioxo-4-methyl-2,3-dihydro-
    1H-pyrrolo[3,4-c]quinolines as potent caspase-3 inhibitors[J]. Bioorg. Med. Chem. Lett. 2005,15,1841-1845.
    [11]Ame J. C., Spenlehauer C., de Murcia G. The PARP superfamily. Bioessays.2004,26, 882-893.
    [12]Cosi C., Guerin K., Marien M., et al. The PARP inhibitor benzamide protects against kainate and NMD A but not AMPA lesioning of the mouse striatum in vivo. Brain Res. 2004,996,1-8.
    [13]Veres B., Jr. F. G.., Varbiro, G., et al. Decrease of the inflammatory response and induction of the Akt/protein kinase B pathway by poly-(ADP-ribose) polymerase 1 inhibitor in endotoxin-induced septic shock. Biochem. Pharmacol.2003,65, 1373-1382.
    [14]Racz I., Tory K., Jr. F. G.., et al. BGP-15 a novel poly(ADP-ribose)polymerase inhibitior-protects against nephrotoxicity of cisplatin without compromising its antitumor activity. Biochem. Pharmacol.2002,63,1099-1111.
    [15]Steinhagen H., Gerisch M., Mittendorf J., et al. Substituted Uracil Derivatives as Potent Inhibitors of Poly(ADP-ribose)polymerase-1 (PARP-1). Bioorg. Med. Chem. Lett.2002, 12,3187-1390.
    [16]Griffin R. J., Srinivasan S., Bowman K., et al. Resistance-Modifying Agents.5.1 Synthesis and Biological Properties of Quinazolinone Inhibitors of the DNA Repair Enzyme Poly(ADPribose) Polymerase (PARP). J. Med. Chem.1998,41,5247-5256.
    [17]Iwashita A., Hattori K., Yamamoto H., et al. Discovery of quinazolinone and quinoxaline derivatives as potent and selective poly(ADP-ribose) polymerase-1/2 inhibitors. FEBS Lett.2005,579,1389-1393.
    [18]Kinoshita T., Nakanishi I., Warizaya M., et al. Inhibitor-induced structural change of the active site of human poly(ADP-ribose)polymerase. FEBS Lett.2004,556,43-46.
    [19]Pellicciari R., Camaioni E., Costantino G., et al. Towards new neuroprotective agents: design and synthesis of 4Hthieno[2,3-c] isoquinolin-5-one derivatives as potent PARP-1 inhibitors. Il Farmaco.2003,58,851-858.
    [20]Jr V. M. L., Cockcroft X., Dillon K. J., et al. Phthalazinones. Part 1:The design and synthesis of a novelseries of potent inhibitors of poly(ADP-ribose)poly.merase[J]. Bioorg. Med. Chem. Lett.2005,15,2235-2238.
    [21]Kamanaka Y., Kondo K., Ikeda Y, et al. Neuroprotective effects of ONO-1924H, an inhibitor of poly ADP-ribose polymerase (PARP), on cytotoxicity of PC 12 cells and ischemic cerebral damage. Life Sci.2004,76,151-162.
    [22]White A. W., Curtin N. J., Eastman B. W., et al. Potentiation of cytotoxic drug activity in human tumour cell lines by amine-substituted 2-arylbenzimidazole-4-carboxamide PARP-1 inhibitors. Bioorg. Med. Chem. Lett.2004,14,2433-2437.
    [23]Jagtap P. G, Southan G. J., Baloglu E., et al. The discovery and synthesis of novel adenosine substituted 2,3-dihydro-lH-isoindol-l-ones:potent inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1). Bioorg. Med. Chem. Lett.2004,14,81-85.
    [24]Gudkov A. V., Komarova E. A. Prospective therapeutic applications of P53 inhibitiors. Biochem. Biophys. Res. Commun.2005,331,726-736.
    [25]Leker R. R., Aharonowiz M., Greig N. H., et al. The role of p53-induced apoptosis in cerebral ischemia:effects of the p53 inhibitor pifithrin a. Exp. Neurol.2004,187, 478-486.
    [26]Pietrancosta N., Maina F., Dono R., et al. Novel cyclized Pifithrin-a p53 inactivators: synthesis and biological studies. Bioorg. Med. Chem. Lett.2005,15,1561-1564.
    [27]Nomoto M. Clinical pharmacology and neuroprotection in Parkinson's disease. Parkinsonism Relat. Disord.2003,9, S55-58.
    [28]Sultana R., Butterfield D. A. Role of oxidative stress in the progression of Alzheimer's disease. J. Alzheimers.Dis.2010,19,341-353.
    [29]Banno M., Mizuno T., Kato H., et al. The radical scavenger edaravone prevents oxidative neurotoxicity induced by peroxynitrite and activated microglia. Neuropharmacology.2005,48,283-290.
    [30]Shichinohe H., Kuroda S., Yasuda H., et al. Neuroprotective effects of the free radical scavenger Edaravone(MCI-186) in mice permanent focal brain ischemia. Brain Res. 2004,1029,200-206.
    [31]Rao K. C., Divakar S., Babu K. N., et al. Nigerloxin, a novel inhibitor of aldose reductase and lipoxygenase with free radical scavenging activity from Aspergillus niger CFR-W-105. J Antibiot(Tokyo).2002,55,789-793.
    [32]Lockhart B., Roger A., Bonhomme N., et al. In vivo neuroprotective effects of the novel imidazolyl nitrone free-radical scavenger (Z)-alpha-[2-thiazol-2-yl) imidazol-4-yl]-N-tert-butylnitrone (S34176). Eur. J. Pharmacol.2005,511,127-136.
    [33]Lebedev A. V., Ivanova M. V., Levitsky D. O. Echinochrome, a naturally occurring iron chelator and free radical scavenger in artificial and natural membrane systems. Life Sci.2005,76,863-875.
    [34]Lee E. J., Chen H. Y., Lee M. Y., et al. Cinnamophilin reduces oxidative damage and protects against transient focal cerebral ischemia in mice. Free Radic. Biol. Med.2005, 39,495-510.
    [35]Tapia A., Rodriguez J., Theoduloz C., et al. Free radical scavengers and antioxidants from Baccharis grisebachii. J. Ethnopharmacol.2004,95,155-161.
    [36]Mattson M. P., Lovell M. A., Furukawa K., et al. Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of intracellular Ca2+ concentration, and neurotoxicity and increase antioxidant enzyme activities in hippocampal neurons. J. Neurochem.1995,65,1740-1751.
    [37]Sasaki T., Hamada J., Shibata M., et al. FK506 abrogates delayed neuronal death via suppression of nitric oxide production in rats. Brain Res.2004,1009,34-39.
    [38]Sun M., Kong L. X., Wang X. D., et al. Comparison of the capability of GDNF, BDNF, or both, to protect riigrostriatal neurons in a rat model of Parkinson's disease. Brain Res. 2005,1052,119-129.
    [39]Rathbone M. P., Middlemiss P. J., Crocker C. E., et al. AIT-082 as a potential neuroprotective and regenerative agent in stroke and central nervous system injury. Expert Opin. Investig. Drugs.1999,8,1255-1262.
    [40]Mirzoeva S., Sawkar A., Zasadzki M., et al. Discovery of a 3-amino-6-phenyl-pyridazine derivative as a new synyhetic antineuroinflammatory compound. J. Med. Chem.2002,45,563-566.
    [41]Zhou Z. Y, Yang M., Fok T. F. Hematopoietic growth factor EPO has neuro-protective and neuro-trophic effects-review. Zhongguo Shi Yan Xue Ye Xue Za Zhi.2005,13, 332-337.
    [42]Czuczwar K., Czuczwar M., Cieszczyk J., et al. Neuroprotective activity of antiepileptic drugs. Przegl. Lek. 2004,61,1268-1271.
    [43]孙太欣.帕金森病多巴胺激动剂的保护性治疗.国外医学内科学分册.2004,31,450-453.
    [44]Calogeropoulou T., Avlonitis N., Minas V., et al. Novel Dehydroepiandrosterone derivatives with antiapoptotic, neuroprotective activity. J. Med. Chem.2009,52, 6569-6587.
    [45]Stone T. W., Ceruti S., Abbracchio M. P. Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. Handb. Exp. Pharmacol.2009,193,535-587.
    [46]Faux C., Hawadle M., Nixon J., et al. PTPo binds and dephosphorylates neurotrophin receptors and can suppress NGF-dependent neurite outgrowth from sensory neurons. Biochim. Biophys. Acta.2007,1773,1689-1700.
    [47]Liniger R., Popovic R., Sullivan B., et al. Effect of neuroprotective cocktails on hippocampal neuron death in an in vitro model of cerebral ischemia. J. Neurosurg. Anesthesiol.2001,13,19-25.
    [48]Onal M. Z., Li F., Tatlisumak T., et al. Synergistic effects of citicoline and MK-801 in temporary experimental focal ischemia in rats. Stroke.1997,28,1060-1065.
    [49]Wu S. J., Ng L. T., Lin C. C. Effects of antioxidants and caspase-3 inhibitor on the phenylethyl isothiocyanate-induced apoptotic signaling pathways in human PLC/PRF/5 cells. Eur. J. of Pharmacol. 2005,518,96-106.
    [50]Samoylenko V., Rahman M. M., Tekwani B., et al. Banisteriopisis caapi, a unique combination of MAO inhibitory and antioxidative constituents for the activities relevant to neurodegenerative disorders and Parkinson's disease. J. Ethnopharmacol. 2010,127,357-367.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700