用户名: 密码: 验证码:
几类激酶抑制剂的分子模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白激酶(protein kinase,PK)是细胞内最大的蛋白家族之一,在真核细胞信号转导中扮演重要的角色。蛋白激酶是一类磷酸转移酶,其作用是将ATP分子的γ磷酸基转移到底物蛋白特定的氨基酸残基上,使底物蛋白磷酸化。人类基因组内共含有518个蛋白激酶基因,约占真核生物基因的1.7%。蛋白激酶活性异常通常会引发包括癌症、糖尿病、炎症在内的许多重大疾病。超过400种人类疾病与蛋白激酶有直接或间接的关系。因此蛋白激酶已成为继G蛋白偶联受体之后的第二大药物治疗靶标。据统计,目前全世界药物在研或开发项目中约三分之一均与蛋白激酶相关。
     蛋白激酶抑制剂(protein kinase inhibitor,PKI)可用于多种疾病的治疗,其中ATP-竞争性蛋白激酶抑制剂研究得最多,这类抑制剂已被研究和开发成为治疗多种复杂性疾病的新药。目前ATP-竞争性蛋白激酶抑制的研究主要集中在新骨架类型先导化合物的设计和发现,以及选择性抑制剂和多靶点抑制剂开发等方面。
     目前,计算机辅助药物设计(computer-aided drug design,CADD)作为药物研发中的重要技术和工具,被应用于蛋白激酶抑制剂的研究中,推动了这一研究领域的长足发展。定量构效关系、分子对接、药效团、同源模建和分子动力学模拟等多种分子模拟方法,以及量子化学等多种CADD方法均被应用于蛋白激酶抑制剂的设计和发现。
     本论文采用定量构效关系、分子对接和药效团建模等多种分子模拟技术和手段,研究多种蛋白激酶抑制剂分子结构与其活性之间的关系,抑制剂与蛋白之间的相互作用以及影响化合物活性的重要药效特征。旨在获得影响抑制剂活性的重要结构和药效特征、抑制剂与蛋白激酶间相互作用的机理,从而指导抑制剂的设计、结构优化以及活性预测,辅助设计和合成更高效的靶向激酶的治疗药物。
     在论文第一章中,我们对蛋白激酶及其抑制剂研究进展、计算机辅助药物设计中的分子模拟方法,如定量构效关系、分子对接及药效团模型方法做了介绍,并描述和总结了计算机辅助药物设计在蛋白激酶抑制剂研究中的应用。
     第二章中,我们对一系列噻唑氨类Aurora-A的抑制剂进行QSAR研究。2D-QSAR模型用遗传算法—多元线性回归方法(GA-MLR)建立。结果表明除了信息指数,GETAWAY和WHIM描述符对这类化合物抑制活性均有重要贡献。3D-QSAR研究中的CoMFA和CoMSIA模型给出的三维等势面图与这类化合物的结构特征以及X—射线晶体衍射结构信息相一致,并且指出对22号化合物苯胺部分的进一步修饰应综合考虑立体、疏水和氢键性质。
     第三章中,我们对一系列Rho激酶抑制剂进行分子对接和3D-QSAR研究。对接研究获得了整个数据集化合物的活性构象,并研究了化合物在质子化与非质子化两种状态下的结合模式。CoMFA和CoMSIA分析研究了影响化合物生物活性的关键结构因素。根据分子对接以及模型的三维等势面图结果发现1-H吲唑化合物优于异喹啉化合物,并提出了对这类抑制剂的修饰方案:(1)P区苯环4位用给电子基取代;(2)P区用体积较大疏水基团取代。根据分子模拟研究得到的信息,我们设计了一系列预测活性较高1-H吲唑化合物,说明通过适当的取代可以提高这类化合物的活性。
     第四章中,应用分子对接、药效团建模和3D-QSAR方法进行一系列EphB4激酶抑制剂的分子模拟研究。分子对接结果表明这类化合物与受体ATP结合口袋形成多个氢键相互作用:A环吡啶-N原子与铰链区Met696残基形成氢键;脲基的羰基与NH分别与Lys647和Asp758残基形成氢键。药效团模型给出了影响化合物活性的重要药效特征。CoMFA和CoMSIA分析研究了影响化合物生物活性的关键结构因素,模型的三维等势面图能够为这类抑制剂的修饰提供指导。
     第五章中,我们对一系列B-RAF激酶V600E突变体的抑制剂进行分子模拟研究。对接研究表明活性最高的代表化合物40与受体ATP结合口袋形成四个氢键相互作用:A环吡啶-N原子与铰链区Cys531残基形成氢键;脲基的羰基与NH分别与Asp593和Glu500残基形成氢键。药效团模型给出了影响化合物活性的5个重要药效特征:两个氢键受体、一个氢键给体、一个疏水特征及一个芳环特征。基于公共骨架、分子对接和药效团叠合的CoMFA和CoMSIA分析表明,利用分子对接叠合的构象得到的模型具有最佳的预测能力,模型的三维等势面图能够为这类抑制剂的修饰提供指导。
     第六章中,我们将分子对接和2D-QSAR方法应用于MK-2激酶抑制剂的研究中。分子对接结果表明这类化合物与受体ATP结合口袋形成四个氢键相互作用。2D-QSAR分析研究了影响化合物生物活性的关键结构因素,实验结果表明化合物包含的芳香环、氢键性质、拓扑信息以及NH基团对这类抑制剂的活性影响很大,这为今后这类抑制剂的设计和结构修饰提供了一定指导。
     第七章中,通过对一系列AP-1和NF-κB介导的转录活化作用的抑制剂进行CoMFA和CoMSIA研究,来考察这些抑制剂分子周围立体场、静电场、氢键给体场和氢键受体场对化合物活性的影响。所得模型可以成功预测这类化合物的活性。根据模型的三维等势面图给出的影响抑制活性的结构特征,提出应综合考虑立体、静电和氢键给体场性质来对喹唑环上苯环取代基进一步修饰以提高化合物活性。
Protein kinases (PK) constitute one of the largest protein families in humans. Their function is to catalyze phosphorylation of serine, threonine, or tyrosine residues, and to regulate the majority of signal transduction pathways in cells. Thus they play important roles in cell growth, metabolism, differentiation, and apoptosis. There are 518 PKs are predicted in the human kinome based on the information from the human genome sequence, approximately 1.7% of all human genes. Deregulation of protein kinases is implicated in a number of diseases including cancer, diabetes, and inflammation. Thus, protein kinases make up the second largest group of pharmaceutically relevant protein targets. It is estimated that approximately one-third of drug discovery programs target protein kinases.
     Targeted inhibition of protein kinases has thereby become an attractive therapeutic strategy in the treatment of relevant diseases. Current drug discovery efforts typically focus on developing ATP-competitive small molecule protein kinases inhibitors (PKI), mainly selective and multi-targeted inhibitors.
     As an important technology and tool for drug design, computer-aided drug design (CADD) has been applied to PKI discovery. Molecular modeling approaches, such as quantitative structure-activity relationship (QSAR), molecular docking, pharmacophore, homology modeling, molecular dynamic simulation, and quantum chemistry methods have been applied to PKI design and discovery.
     This dissertation applied several techniques (QSAR, molecular docking and pharmacophore) to build the correlation between molecular structure features and their bioactivity, and to study the interaction between the targeted protein and their inhibitors. We aim at gaining insights into the key structural and phamacophore features affecting activity, and the interaction mechanism for inhibitor-protein binding, guiding the design, structural modification and activity prediction of PKI to aid the design and synthesize of highly active drugs targeted PK.
     In Chapter 1, we gave a general introduction of protein kinase, corresponding inhibitors, and molecular modeling methods used in this thesis, such as QSAR, molecular modeling and pharmacophore. The application of computer-aided drug design methods in PKI discovery is also described.
     In Chapter 2, QSAR study on a series of aminothiazole derivatives as Aurora-A kinase inhibitors was performed. The 2D-QSAR model was built using the genetic algorithm-multiple linear regression (GA-MLR) method. The obtained results indicated that 3D-GETAWAY and WHIM descriptors exhibited significant contributions to the inhibitory activity. The 3D-QSAR models were established by using CoMFA and CoMSIA methods. The obtained 3D contour maps were in accordance with the structural features of these inhibitors and the X-ray structure, which suggested that further modification of compound 22 on the aniline substructure should consider steric, hydrophobic and hydrogen bond properties.
     In Chapter 3, molecular docking and 3D-QSAR approches were applied to molecular modeling of a series of Rho kinase inhibitors. Docking studies were performed to obtain the active conformations for the whole dataset and normal bingding mode. The CoMFA and CoMSIA analyses gave some insights into the key structural factors affecting the bioactivity of these inhibitors. The obtained 3D contour maps along with the docking results suggested that the 1H-indazole derivatives may be superior to isoquinoline derivatives and highlight that 1) electron-donating substituents on 4-position of phenyl and 2) bulky and hydrophobic groups in the P region of the binding pocket increase potency. According to the results of our molecular modeling study, we designed a series of 1H-indazole derivatives that are possible to have high Rho kinase inhibitions.
     In Chapter 4, molecular modeling studies on a series of EphB4 kinase inhibitors were performed. Molecular docking results show that these inhibitors form four hydrogen bonds with binding pocket:pyridyl-N formed a hydrogen bond with Met696 residue of the hinge region, urea C=O and NH formed three hydrogen bonds with Lys647 and Asp758 residues. Pharmacophore model presented the most important pharmacophore features and their distributions. CoMFA and CoMSIA analyses gave some insights into the key structural factors affecting bioactivity. The obtained 3D contour maps can help further design and structural modification of these inhibitors.
     In Chapter 5, molecular docking, pharmacophore and 3D-QSAR studies are performed on a series of V600EB-RAF kinase inhibitors. Molecular docking explored the binding mode between ligands and receptor. Pharmacophore model presented five most important pharmacophore features:two hydrogen bond receptor, one hydrogen bond donor, one hydrophobic feature and one aromatic ring. CoMFA and CoMSIA analyses based on docked conformers obtained optimal predictivity and disclosed the key structural factors affecting bioactivity.
     In Chapter 6, a series of MK-2 inhibitors were analyzed using molecular modeling methods, including molecular docking and 2D-QSAR study. The docking results showed that these compounds can bind in ATP binding pocket by forming four hygrogen bonds.2D-QSAR study was used to analyze the critical factors influencing the inhibitory activity. The obtained results showed that the number of aromatic ratio, hydrogen bond properties, topological information and NH groups could greatly affect the activity. Our study can provide guidance for inhibitors design and modification.
     In Chapter 7, we analyzed a series of inhibitors of AP-1 and NF-κB mediated transcriptional activation using CoMFA and CoMSIA methods. The influence of steric, electrostatic, hydrogen bond donor and hydrogen bond acceptor field around molecules were investigated. The obtained models can be used for activity prediction of newly designed inhibitors and suggested that further structural modification should consider steric, electrostatic and hydrogen bond donor properties.
引文
[1]G. Manning, D. B. Whyte, R. Martinez, T. Hunter, S. Sudarsanam, The Protein Kinase Complement of the Human Genome. Science 298 (2002) 1912-1934.
    [2]G.D. Plowman, S. Sudarsanam, J. Bingham, D. Whyte, T. Hunter, The protein kinases of Caenorhabditis elegans:A model for signal transduction in multicellular organisms. Proc. Natl. Acad. Sci. U. S. A.96 (1999) 13603-13610.
    [3]Philip Cohen, Protein kinases—the major drug targets of the twenty-first century? Nat. Rev. Drug Disc.1 (2002) 309-315.
    [4]M.E.M. Noble, J.A. Endicott, L.N. Johnson, Protein Kinase Inhibitors:Insights into Drug Design from Structure Science. Science 303 (2004) 1800-1805.
    [5]K. Gyorgy, O. Laszlo, E. Daniel, H.-B. Balint, S.-K. Csaba, H. Zoltan, W. Frigyes, M. Jeno, S. Istvan, P. Janos, G. Zoltan, H. Doris, D. Henrik, M. Gerhard,
    K. Bert, U. Axel, Signal Transduction Therapy with Rationally Designed Kinase Inhibitors. Curr. Signal. Transduction Ther.1 (2006) 67-95.
    [6]W.M. Stadler, New targets, therapies, and toxicities:lessons to be learned. J. Clin. Oncol.1 (2006) 25-35.
    [7]H. Weinmann, R. Metternich, Drug discovery process for kinase inhibitors. Chem. Bio. Chem 6 (2005) 455-459.
    [8]G. Krauss, Biochemistry of Signal Transduction and Regulation (3rd Edition). Wiley-VCH Verlag GmbH & Co. KGaA:Weinheim,2004, pp.269-309.
    [9]J.J.-L. Liao, Molecular Recognition of Protein Kinase Binding Pockets for Design of Potent and Selective Kinase Inhibitors. J. Med. Chem.50 (2007) 409-424.
    [10]M. Vieth, J.J. Sutherland, D.H. Robertson, R.M. Campbell, Kinomics: characterizing the therapeutically validated kinase space. Drug Discov. Today 10 (2005) 839-846.
    [11]J. Dancey, E.A. Sausville, Issues and progress with protein kinase inhibitors for cancer treatment. Nature Rev. Drug Discovery 2 (2003) 296-313.
    [12]Z.A. Knight, K.M. Shokat, Features of Selective Kinase Inhibitors. Chem. Biol. 12(2005)621-637.
    [13]A. Vulpetti, R. Bosotti, Sequence and structural analysis of kinase ATP pocket residues. Il Farmaco 59 (2004) 759-765.
    [14]P. Olaf, The Gatekeeper:Friend or Foe in Identifying the Next Generation of Kinase Inhibitors. ChemMedChem 1 (2006) 1195-1196.
    [15]S.M. Free, J.W. Wilson, A Mathematical Contribution to Structure-Activity Studies. J. Med. Chem.7(1964) 395-399.
    [16]J. Lisnock, A. Tebben, B. Frantz, E.A. O'Neill, G. Croft, S.J. O'Keefe, B. Li, C. Hacker, S. de Laszlo, A. Smith, B. Libby, N. Liverton, J. Hermes, P. LoGrasso, Molecular Basis for p38 Protein Kinase Inhibitor Specificity. Biochemistry 37 (1998) 16573-16581.
    [17]S.R. Natarajan, D.D. Wisnoski, S.B. Singh, J.E. Stelmach, E.A. O'Neill, C.D. Schwartz, C.M. Thompson, C.E. Fitzgerald, S.J. O'Keefe, S. Kumar, C.E.C.A. Hop, D.M. Zaller, D.M. Schmatz, J.B. Doherty, p38 MAP kinase inhibitors. part 1:design and development of a new class of potent and highly selective inhibitors based on 3,4-dihydropyrido[3,2-d]pyrimidone scaffold. Bioor. Med. Chem. Letters 13 (2003) 273-276.
    [18]A. Vulpetti, P. Crivori, A. Cameron, J. Bertrand, M.G. Brasca, R. D'Alessio, P. Pevarello, Structure-Based Approaches to Improve Selectivity:CDK2-GSK3β Binding Site Analysis. J. Chem. Inf. Model.45 (2005) 1282-1290.
    [19]T. Duangrudee, S. Adrian, R.P. William, L.B. Tom, On the Origins of Enzyme Inhibitor Selectivity and Promiscuity:A Case Study of Protein Kinase Binding to Staurosporine. Chem. Biol. Drug Des.74 (2009) 16-24.
    [20]X.Q. Deng, M.L. Xiang, R. Jia, Progress in the design of selective ATP-competitive kinase inhibitors. Acta Pharmaceutica Sinica (药学学报) 42 (2007) 1232-1236.
    [21]S.K. Bhattacharya, E.D. Cox, J.C Kath, A.M. Mathiowetz, J. Morris, J.D. Moyer, L.R. Pustilnik, K. Rafidi, D.T. Richter, C. Su, M.D. Wessel, Achieving selectivity between highly homologous tyrosine kinases:a novel selective erbB2 inhibitor. Biochem. Biophys. Res. Commun.307 (2003) 267-273.
    [22]B. Okram, A. Nagle, F.J. Adrian, C. Lee, P. Ren, X. Wang, T. Sim, Y. Xie, X. Wang, G. Xia, G. Spraggon, M. Warmuth, Y. Liu, N.S. Gray, A General Strategy for Creating Inactive-Conformation Abl Inhibitors. Chem. Biol.13 (2006) 779-786.
    [23]D.J. Marc, R.C. Paul, J.H. Brian, Classifying protein kinase structures guides use of ligand-selectivity profiles to predict inactive conformations:Structure of lck/imatinib complex. Proteins:Struct., Funct, Bioinf.70 (2008) 1451-1460.
    [24]C.G. Wermuth, Multitargeted drugs:the end of the'onetarget-one-disease' philosophy? Drug Discov. Today 9 (2004) 826-827.
    [25]C. Le Tourneau, S. Faivre, E. Raymond, New developments in multitargeted therapy for patients with solid tumours. Cancer Treat. Rev.34 (2008) 37-48.
    [26]D.M. Barnes, A.R. Haight, T. Hameury, M.A. McLaughlin, J. Mei, J.S. Tedrow, J.D. Riva Toma, New conditions for the synthesis of thiophenes via the Knoevenagel/Gewald reaction sequence. Application to the synthesis of a multitargeted kinase inhibitor. Tetrahedron 62 (2006) 11311-11319.
    [27]S. Crean, D.M. Boyd, B. Sercus, M. Lahn, Safety of multi-targeted kinase inhibitors as monotherapy treatment of cancer:a systematic review of the literature. Curr. Drug Saf.4 (2009) 143-54.
    [28]吴文,卢骋,陈思宇,余聂芳,已上市和部分正在Ⅲ期临床开发中的多靶点激酶抑制剂抑酶谱及信号传导通路分析Acta Pharmaceutica Sinica(药学学报)44(2009)242-257.
    [29]董静,黄文姝,多靶点抗肿瘤酪氨酸激酶抑制剂的研究开发.WORLD CLINICAL DRUGS (世界临床药物)30(2009)306-311.
    [30]G.S. Papaetis, K.N. Syrigos, Sunitinib A Multitargeted Receptor Tyrosine Kinase Inhibitor in the Era of Molecular Cancer Therapies. Biodrugs 23 (2009) 377-389.
    [31]G. Sonpavde, T.E. Hutson, Pazopanib:a novel multitargeted tyrosine kinase inhibitor. Curr. Oncol. Rep.9 (2007) 115-9.
    [32]B. Nagar, W.G. Bornmann, P. Pellicena, T. Schindler, D.R. Veach, W.T. Miller, B. Clarkson, J. Kuriyan, Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res.62 (2002) 4236-4243.
    [33]M.W. Karaman, S. Herrgard, D.K. Treiber, P. Gallant, C.E. Atteridge, B.T. Campbell, K.W. Chan, P. Ciceri, M.I. Davis, P.T. Edeen, R. Faraoni, M. Floyd, J.P. Hunt, D.J. Lockhart, Z.V. Milanov, M.J. Morrison, G. Pallares, H.K. Patel, S. Pritchard, L.M. Wodicka, P.P. Zarrinkar, A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol.26 (2008) 127-132.
    [34]A. Czechowska, T. Poplawski, J. Drzewoski, J. Blasiak, Imatinib (STI571) induces DNA damage in BCR/ABL-expressing leukemic cells but not in normal lymphocytes. Chem. Biol. Interact.152 (2005) 139-150.
    [35]A.S. Advani, A.M. Pendergast, Bcr-Abl variants:biological and clinical aspects. Leuk. Res.26 (2002) 713-720.
    [36]R.B. Irby, T.J. Yeatman, Role of Src expression and activation in human cancer. Oncogene 19 (2000) 5636-5642.
    [37]K.H. Kim, Comparative molecular field analysis (CoMFA). In:Molecular Similarity in Drug Design; Dean, P.M., Ed.; Blackie Academic & Professional: Glasgow, UK,1995, pp.291-331.
    [38]B. Sylvie, W. Christopher, S. Khalil, L. Sylvia, J.-C. Bertrand, Rational Design of Multitargeted Tyrosine Kinase Inhibitors:A Novel Approach. Chem. Biol. Drug Design 73 (2009) 380-387.
    [39]唐海涛,陈国广,方正,王玮,韦萍,多靶点受体酪氨酸激酶抑制剂的研究进展.Chinese Journal of New Drugs(中国新药杂志)18(2009)502-506.
    [40]J.-P. Behr, The Lock-and-Key Principle, The State of the Art--100 Years On. John Wiley & Sons Inc.:New York,1995.
    [41]徐筱杰,侯廷军,乔学斌,章威,计算机辅助药物分子设计.化学工业出版社:北京,2004.
    [42]J. Verma, V.M. Khedkar, E.C. Coutinho,3D-QSAR in Drug Design-A Review. Curr. Top. Med. Chem.10 (2010) 95-115.
    [43]Q.S. Du, R.B. Huang, K.C. Chou, Recent advances in QSAR and their applications in predicting the activities of chemical molecules, peptides and proteins for drug design. Curr. Protein Pept. Sci.9 (2008) 248-259.
    [44]P. Buchwald, N. Bodor, Computer-aided drug design:the role of quantitative structure-property, structure-activity and structure-metabolism relationships (QSPR, QSAR, QSMR). Drugs Fut.27 (2002) 577-588.
    [45]Q.Z. Gao, L.L. Yang, Y.Q. Zhu, Pharmacophore Based Drug Design Approach as a Practical Process in Drug Discovery. Curr. Comput.-Aided Drug Des.6 (2010)37-49.
    [46]G. Wolber, T. Seidel, F. Bendix, T. Langer, Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discov. Today 13 (2008) 23-29.
    [47]O. Obrezanova, J.M.R. Gola, E.J. Champness, M.D. Segall, Automatic QSAR modeling of ADME properties:blood-brain barrier penetration and aqueous solubility. J. Comput-Aided Mol. Des.22 (2008) 431-440.
    [48]S.A. Khedkar, A.K. Malde, E.C. Coutinho, S. Srivastava, Pharmacophore Modeling in Drug Discovery and Development:An Overview. Med. Chem.3 (2007) 187-197.
    [49]R.T. Kroemer, Structure-based drug design:Docking and scoring. Curr. Protein Pept. Sci.8(2007)312-328.
    [50]K. Loving, I. Alberts, W. Sherman, Computational Approaches for Fragment-Based and De Novo Design. Curr. Top. Med. Chem.10 (2010) 14-32.
    [51]C.A. Floudas, H.K. Fung, S.R. McAllister, M. Monnigmann, R. Rajgaria, Advances in protein structure prediction and de novo protein design:A review. Chem. Eng. Sci.61 (2006) 966-988.
    [52]A. Caflisch, M. Karplus, Computational combinatorial chemistry for de novo ligand design:Review and assessment. Perspect. Drug Discovery Des.3 (1995) 51-84.
    [53]D.A. Pensak, Molecular modelling:scientific and technological boundaries. Pure. Appl. Chem.61 (1989) 601-603.
    [54]H. Kubinyi, From narcosis to hyperspace:The history of QSAR. Quant. Struct.-Act. Relat 21 (2002) 348-356.
    [55]A.F.A. Cros. cited from:S. Borman, New QSAR Techniques Eyed for Environmental Assessments, Chem.& Eng. News, February 19, pp.20±23 (1990). University of Strasbourg,1863.
    [56]H.H. Meyer, Theorie der-alkoholnarkose. Arch. Exptl. Pathol. Pharmakol.42 (1899)109-118.
    [57]E. Overton, Studien uber die Narkose, zugleich ein beitrag zur allgemeinen pharmakologie. Jena:Gustav Fischer,1901:1-195.
    [58]C. Hansch, P.P. Maloney, T. Fujita, R.M. Muir, Correlation of Biological Activity of Phenoxyacetic Acids with Hammett Substituent Constants and Partition Coefficients. Nature 194 (1962) 178-180.
    [59]C. Hansch, T. Fujita, A Method for the Correlation of Biological Activity and Chemical Structure. J. Am. Chem. Soc.86 (1964) 1616-1626.
    [60]T. Fujita, J. Iwasa, C. Hansch, A New Substituent Constant, π, Derived from Partition Coefficients. J. Am. Chem. Soc.86 (1964) 5175-5180.
    [61]L.B. Kier, L.H. Hall, An Electrotopological State Index for Atoms in Molecules. Pharm. Res.7 (1990) 801-807.
    [62]于瑞莲,胡恭任,环境化学中有机化合物毒性的QSAR研究方法.Environ. Sci. Technol. (环境科学与技术)26(2003)57-59.
    [63]W.J. Lyman, W.F. Reehl, Handbook of Chemical Property Estimation Methods. McGraw-Hill Press:New Tork,1982.
    [64]C. Hansch, Structure activity relationships. Pergmon, Elmsford:New York, 1973.
    [65]M.J. Kamlet, R.M. Doherty, J.L. Abboud, M.H. Abraham, R.W. Taft, Linear solvation energy relationships:36. Molecular properties governing solubilities of organic nonelectrolytes in water. J. Pharm. Sci.75 (1986) 338-349.
    [66]许禄,化学计量学方法.科学出版社:北京,1995.
    [67]T. Fujita, T. Ban, Structure-activity relation.3. Structure-activity study of phenethylamines as substrates of biosynthetic enzymes of sympathetic transmitters. J. Med. Chem.14 (1971) 148-152.
    [68]S.H. Unger, C. Hansch, Model building in structure-activity relations. Reexamination of adrenergic blocking activity of.beta.-halo-.beta.-arylalkylamines. J. Med. Chem.16 (1973) 745-749.
    [69]G.M. Crippen, Distance geometry approach to rationalizing binding data. J. Med. Chem.22 (1979) 988-997.
    [70]A.J. Hopfinger, A QSAR investigation of dihydrofolate reductase inhibition by Baker triazines based upon molecular shape analysis. J. Am. Chem. Soc.102 (1980)7196-7206.
    [71]R.D. Cramer Ⅲ, D.E. Patterson, J.D. Bunce, Comparative molecular field analysis (CoMFA).1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc.110 (1988) 5959-5967.
    [72]G. Klebe, U. Abraham, T. Mietzner, Molecular Similarity Indices in a Comparative Analysis (CoMSIA) of Drug Molecules to Correlate and Predict Their Biological Activity. J. Med. Chem.37(1994) 4130-4146.
    [73]M. Bohm, J. Sturzebecher, G. Klebe, Three-Dimensional Quantitative Structure-Activity Relationship Analyses Using Comparative Molecular Field Analysis and Comparative Molecular Similarity Indices Analysis To Elucidate Selectivity Differences of Inhibitors Binding to Trypsin, Thrombin, and Factor Xa. J. Med. Chem.42 (1999) 458-477.
    [74]P.S. Charifson, J.J. Corkery, M.A. Murcko, W.P. Walters, Consensus scoring:A method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. J. Med. Chem.42 (1999) 5100-5109.
    [75]B.D. Silverman, D.E. Platt, Comparative molecular moment analysis (CoMMA): 3D-QSAR without molecular superposition. J. Med. Chem.39 (1996) 2129-2140.
    [76]SYBYL. Tripos Associates, St. Louis (MO),2001.
    [77]M. Akamatsu, Current state and perspectives of 3D-QSAR. Curr. Top. Med. Chem.2(2002) 1381-1394.
    [78]郭宗儒,药物分子设计.科学出版社:北京,2006.
    [79]H. Kubinyi, QSAR and 3D QSAR in drug design.1. methodology. Drug Discov. Today 2 (1997) 457-467.
    [80]H. Kubinyi, QSAR and 3D QSAR in drug design.2. Applications and problems. Drug Discov. Today 2(1997) 538-546.
    [81]李仁利,三维以上定量构效关系.Journal of International Pharmaceutical Research(国际药学研究杂志)34(2007)241-245.
    [82]A.J. Hopfinger, S. Wang, J.S. Tokarski, B. Jin, M. Albuquerque, P.J. Madhav, C. Duraiswami, Construction of 3D-QSAR Models Using the 4D-QSAR Analysis Formalism. J. Am. Chem. Soc.119 (1997) 10509-10524.
    [83]M.G. Albuquerque, A.J. Hopfinger, E.J. Barreiro, R.B. de Alencastro, Four-Dimensional Quantitative Structure-activity Relationship Analysis of a Series of Interphenylene 7-Oxabicycloheptane Oxazole Thromboxane A2 Receptor Antagonists. J. Chem. Inf. Comput. Sci.38(1998) 925-938.
    [84]梁桂兆,梅虎,周原,李志良,计算机辅助药物设计中的多维定量构效关系模型化方法Prog.Chem(化学进展)18(2006)120-127.
    [85]姚小军,人工神经网络和支撑向量机在化学中的应用.(博士论文)兰州大学:兰州,2003.
    [86]李加忠,QSAR研究中提高模型预测能力的新方法探讨及其在药物化学中的应用.(博士论文)兰州大学:兰州,2009.
    [87]赵春燕,QSAR研究在生命分析化学和环境化学中的应用.(博士论文)兰州大学:兰州,2006.
    [88]A.R. Katritzky, V.S. Lobanov, M. Karelson, QSPR:The Correlation and quantitative prediction of chemical and physical properties from structure. Chem. Soc. Rev.(1995)279-287.
    [89]J.C. Deardena, M.T.D. Cronina, K.L.E. Kaiser, How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR). SAR QSAR Environ. Res.20(2009) 241-266.
    [90]Tripos Associates, Inc., St. Louis, Missouri, USA. (2007).SYBYL Molecular Modeling Software Version 8.0.
    [91]CORINA. http://www2.ccc.uni-erlangen.de/software/corina/index.html.
    [92]http://cactus.nci.nih.gov/services/translate/.
    [93]HyperChem 7.0. Hypercube. Inc,2002.
    [94]Chemoffice. CambridgeSoft,2008.
    [95]Molecular Operating Environment 2008.10; 2008.
    [96]ISIS Draw.http://www.mdli.com/downloads/downloadable/index.jsp
    [97]ChemSketch. http://www.acdlabs.com/products/chem_dsn_lab/chemsketch/.
    [98]Gaussian.http://www.gaussian.com/.
    [99]ADAPT, http://research.chem.psu.edu/pcjgroup/adapt.html.
    [100]A. Predictor, http://www.simulations-plus.com/.
    [101]ADRIANA.Code, http://www.molecular-networks.com/software/adrianacode/index.html.
    [102]ALMOND, http://www.moldiscovery.com/soft almond.php
    [103]GRID, http://www.moldiscovery.com/soft grid.php
    [104]JOELib, http://www.ra.cs.uni-tuebingen.de/software/joelib/index.html.
    [105]MOE, http://www.chemcomp.com/.
    [106]MOLCONN-Z. http://www.edusoft-1c.com/molconn/.
    [107]MOLGEN-QSPR, http://www.molgen.de/?src=documents/molgenqspr.html.
    [108]PowerMV, http://www.niss.org/PowerMV/.
    [109]PreADMET, http://preadmet.bmdrc.org/preadmet/index.php
    [110]Sarchitect, http://www.strandls.com/sarchitect/index.html.
    [111]CODESSA, http://www.codessa-pro.com/.
    [112]R. Todeschini, V. Consonni, A. Mauri, M. Pavan, DRAGON, Version 5.3 for Windows, Software for the Calculation of Molecular Descriptors. Talete srl, Milan, Italy.2005.
    [113]R. Todeschini, P. Gramatica, The Whim Theory:New 3D Molecular Descriptors for Qsar in Environmental Modelling. SAR QSAR Environ. Res.7 (1997)89-115.
    [114]R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, Germany. (2000).
    [115]I.G. Chong, C.H. Jun, Performance of some variable selection methods when multicollinearity is present. Chem. Intell. Lab. Syst.78 (2005) 103-112.
    [116]P.P. Mager, S. Luis, Variable Subset Selection in the Presence of Flagged Observations and Multicollinear Descriptors in QSAR. Curr. Comput.-Aided Drug Des. (2005)163-177.
    [117]K.V. Mardia, J.T. Kent, J.M. Bibby, Multivariate Analysis.1979, Ltd.London: Academic Press.
    [118]R.G. Brenton, Chemometrics Data Analysis for the Laboratory and Chemical Plant. Wiley & Sons:New York,2003.
    [119]D. Livingstone, Data analysis for chemists:application to QSAR and chemiscal product design. OUP, Oxford,1995.
    [120]A.R. Katritzky, V.S. Lobanov, M. Karelson, CODESSA Version 2.0 Reference Manual. University of Florida,1995-1997.
    [121]G.M.a.W. Furnival, Jr R.W., Regression by leaps and bounds. Technometrics 16(1974)499.
    [122]D. Rogers, A.J. Hopfinger, Application of Genetic Function Approximation to Quantitative Structure-Activity Relationships and Structure-Property Relationship. J. Chem. Inf. Comput. Sci.34 (1994) 854-966.
    [123]P. Kolb, R.S. Ferreira, J.J. Irwin, B.K. Shoichet, Docking and chemoinformatic screens for new ligands and targets. Curr. Opin. Biotechnol.20 (2009) 429-436.
    [124]C.N. Cavasotto, A.J.W. Orry, Ligand docking and structure-based virtual screening in drug discovery. Curr. Opin. Chem. Biol.7 (2007) 1006-1014.
    [125]J. Devillers, Neural networks in QSAR and drug design. Academic Press, London,1996.
    [126]V. Vapnik, The Nature of Statistical Learning Theory. Springer Verlag:1995.
    [127]V. Vapnik, Statistical Learning Theory. Wiley:1998.
    [128]N. Cristianini, J. Shawe-Taylor, Introduction to support vector machine and other kernel based learning methods. Cambridge University Press:Cambridge, 2000.
    [129]薛春霞,SVM在QSPR中的应用及基于配体的计算机辅助药物设计.(博士论文)兰州大学:兰州,2003.
    [130]J.B.T. Kruskal, Academic, In Statistical Computation. Milton, R.C., Nelder, J. A., Eds., Toward a practical method which helps uncover the structure of a set of multivariate observations by finding the linear transformation which optimizes a new index of condensation. New York,1969.
    [131]任月英,QSPR/QSAR在药物、分析化学和环境科学中的应用.(博士论文)兰州大学:兰州,2007.
    [132]R. Todeschini, V. Consonni, M. Pavan, MOBY DIGS, Version 1.2 for Windows, Software for Multilinear Regression Analysis and Variable Subset Selection by Genetic Algorithm, Talete srl, Milan, Italy. (2002).
    [133]A.J.H. Emilio Xavier Esposito, and Jeffry D. Madura, Methods for Applying the Quantitative Structure-Activity Relationship Paradigm. Methods in Molecular Biology:Chemoinformatics:Concepts, Methods, and Tools for Drug Discovery 275 131-213.
    [134]R.D. Clark, Prospective Ligand- and Target-Based 3D QSAR:State of the Art 2008. Curr. Top. Med. Chem.9 (2009) 791-810.
    [135]R. Wehrens, H. Putter, L.M.C. Buydens, The bootstrap:a tutorial. Chemometr. Intell. Lab.Syst.54 (2000) 35-52.
    [136]S. Wold, M. Sjostrom, L. Ericksson, Partial least squares projections to latent structures (PLS) in chemistry. In Encyclopedia of computational chemistry, von Rague Schleyer, P. (ed.), John Wiley & Sons, Chichester:1998; Vol.3, pp. 2006-2021.
    [137]A. Yasri, D. Hartsough, Toward an Optimal Procedure for Variable Selection and QSAR Model Building. J. Chem. Inf. Model.41 (2001) 1218-1227.
    [138]S. Wold, L. Eriksson, Statistical validation of QSAR results, in:H. van de Waterbeemd (Ed.), Chemometrics Methods in Molecular Design. VCH, Weinheim:1995; pp.309-318.
    [139]P. Gramatica, Evaluation of different statistical approaches to the validation of Quantitative Structure-Activity Relationships-ECVAM, JRC, Ispra.2004. http://ecb.jrc.it/QSAR/.
    [140]A. Golbraikh, A. Tropsha, Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. J. Comput.-Aided Mol. Des.16 (2002) 357-369.
    [141]R. Todeschini, P. Gramatica, New 3D molecular descriptors:The WHIM theory and QSAR applications. Perspec. Drug Discov. Design 9-11 (1998) 355-380.
    [142]J. Gasteiger, J. Zupan, Neural Networks in Chemistry. Angewandte Chemie-International Edition in English 32 (1993) 503-527.
    [143]P. Gramatica, V. Consonni, R. Todeschini, QSAR study on the tropospheric degradation of organic compounds. Chemosphere 38 (1999) 1371-1378.
    [144]王连生,韩朔睽,分子结构性质与活性.化学工业出版社:北京,1997.
    [145]J.Z. Li, J. Du, L.L. Xi, H.X. Liu, X.J. Yao, M.C. Liu, Validated quantitative structure-activity relationship analysis of a series of 2-aminothiazole based p56Lck inhibitors. Anal. Chim. Acta 631 (2009) 29-39.
    [146]B. Kramer, G. Metz, M. Rarey, T. Lengauer, Ligand docking and screening with FlexX. Med. Chem. Res.9(1999) 463-478.
    [147]李纯莲,药物设计中分子对接优化设计的算法和软件研究.(博士论文)大连理工大学:大连,2004.
    [148]O. Dror, A. Shulman-Peleg, R. Nussinov, H.J. Wolfson, Predicting Molecular Interactions in silico:I. A Guide to Pharmacophore Identification and its Applications to Drug Design. Curr. Medicinal Chem.11 (2004) 71-90.
    [149]H.J. Bohm, The Development of a Simple Empirical Scoring Function to Estimate the Binding Constant for a Protein Ligand Complex of Known 3-Dimensional Structure. J. Comput.-Aided Mol. Des.8 (1994) 243-256.
    [150]R.D. Head, M.L. Smythe, T.I. Oprea, C.L. Waller, S.M. Green, G.R. Marshall, VALIDATE:A New Method for the Receptor-Based Prediction of Binding Affinities of Novel Ligands. J. Am. Chem. Soc.118 (1996) 3959-3969.
    [151]T.J.A. Ewing, S. Makino, A.G. Skillman, I.D. Kuntz, DOCK 4.0:Search strategies for automated molecular docking of flexible molecule databases. J. Comput.-AidedMol. Des.15 (2001) 411-428.
    [152]D.S. Goodsell, G.M. Morris, A.J. Olson, Automated docking of flexible ligands: Applications of AutoDock. J. Mol. Recognit.9(1996) 1-5.
    [153]G.M. Morris, D.S. Goodsell, R. Huey, A.J. Olson, Distributed automated docking of flexible ligands to proteins:Parallel applications of AutoDock 2.4. J. Comput. Aided Mol. Des.10 (1996) 293-304.
    [154]C.A. Baxter, C.W. Murray, D.E. Clark, D.R. Westhead, M.D. Eldridge, Flexible docking using Tabu search and an empirical estimate of binding affinity. Protein.-Struct. Funct. Genet.33 (1998) 367-382.
    [155]M. Rarey, B. Kramer, T. Lengauer, G. Klebe, A Fast Flexible Docking Method using an Incremental Construction Algorithm. J. Mol. Biol.261 (1996) 470-489.
    [156]B. Kramer, M. Rarey, T. Lengauer, Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking. Protein.-Struct. Funct. and Genet.37(1999)228-241.
    [157]G. Jones, P. Willett, R.C. Glen, A genetic algorithm for flexible molecular overlay and pharmacophore elucidation. J. Comput.-Aided Mol. Des.9(1995).
    [158]S.L. Dixon, A.M. Smondyrev, E.H. Knoll, S.N. Rao, D.E. Shaw, R.A. Friesner, PHASE:a new engine for pharmacophore perception,3D QSAR model development, and 3D database screening:1. Methodology and preliminary results. J. Comput.-Aided Mol. Des.20 (2006) 647-671.
    [159]T.A. Halgren, R.B. Murphy, R.A. Friesner, H.S. Beard, L.L. Frye, W.T. Pollard, J.L. Banks, Glide:A new approach for rapid, accurate docking and scoring.2. Enrichment factors in database screening. J. Med. Chem.47 (2004) 1750-1759.
    [160]Glide:Schroedinger, Portland, OR. http://www.schroedinger.com.
    [161]S.F. Sousa, P.A. Fernandes, M.J. Ramos, Protein-ligand docking:Current status and future challenges. Proteins.65 (2006) 15-26.
    [162]Tripos Associates, Inc., St. Louis, Missouri, USA. (1994).SYBYL Molecular Modeling Software Version 6.x.
    [163]L.M. Schrodinger, version 9.0, Schrodinger, LLC:New York, NY.
    [164]Schrodinger User Manuals, Glide v3.0; Schrodinger, L.L.C.:New York, NY, 1994.
    [165]W.L. Jorgensen, D.S. Maxwell; J.Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc.118(1996) 11225-11236.
    [166]W.L. Delano, The PyMol Molecular Graphics System Delano Scientific, DeLano Scientific, San Carlos, CA, USA.2002.
    [167]J. Qin, B. Lei, L. Xi, H. Liu, X. Yao, Molecular modeling studies of Rho kinase inhibitors using molecular docking and 3D-QSAR analysis. Eur. J. Med. Chem. Accepted article.
    [168]A.R. Leach, V.J. Gillet, R.A. Lewis, R. Taylor, Three-Dimensional Pharmacophore Methods in Drug Discovery. J. Med. Chem.53 (2010) 539-558.
    [169]J.J. Chen, T.L. Liu, L.J. Yang, L.L. Li, Y.Q. Wei, S.Y. Yang, Pharmacophore Modeling and Virtual Screening Studies of Checkpoint
    Kinase 1 Inhibitors. Chem. Pharm. Bull.57 (2009) 704-709.
    [170]Schrodinger User Manuals, Phase v3.0; Schrodinger, L.L.C.:NewYork, NY, 2008.
    [171]陈凯先,蒋华良,嵇汝运,计算机辅助药物设计--原理、方法及应用.上海科学技术出本社:上海,2000.
    [172]Y.C. Martin, In Classical and 3D QSAR in Agrochemistry, C. Hansch, T. Fujita, Eds., American Chemical Society:Washington D.C.,1995, pp.318-29.
    [173]N.J. Richmond, C.A. Abrams, P.R.N. Wolohan, Abrahamian, P. E.; Willett, R.D. Clark, GALAHAD:1. Pharmacophore identification by hypermolecular alignment of ligands in 3D. J. Comput.-AidedMol. Des.20 (2006) 567-587.
    [174]D. Barnum, J. Greene, A. Smellie, P. Sprague, Identification of common functional configurations among molecules. J. Chem. Inf. Comput. Sci.36 (1996) 563-571.
    [175]Molecular Operating Environment; Chemical Computing Group:Montreal, Canada; http://www.chemcomp.com/.
    [176]D.A. Evans, T.N. Doman, D.A. Thorner, M.J. Bodkin,3D QSAR Methods: Phase and Catalyst Compared. J. Chem. Inf. Model.47 (2007) 1248-1257.
    [177]J.R. Woolfrey, G.S. Weston, The use of computational methods in the discovery and design of kinase inhibitors. Cur. Pharm. Des.8 (2002) 1527-1545.
    [178]H. Briem, I.D. Kuntz, Molecular similarity based on DOCK-generated fingerprints. J. Med. Chem.39 (1996) 3401-3408.
    [179]J.Z. Li, J. Qin, H.X. Liu, X.J. Yao, M.C. Liu, Z. Hu, In Silico Prediction of Inhibition Activity of Pyrazine-Pyridine Biheteroaryls as VEGFR-2 Inhibitors Based on Least Squares Support Vector Machines. QSAR Comb. Sci.27 (2008) 157-164.
    [180]G.K. Ravindra, G. Achaiah, G.N. Sastry, Molecular modeling studies of phenoxypyrimidinyl imidazoles as p38 kinase inhibitors using QSAR and docking. Eur. J. Med. Chem.43 (2008) 830-838.
    [181]T. Pencheva, O.S. Soumana, I. Pajeva, M.A. Miteva, Post-docking virtual screening of diverse binding pockets:Comparative study using DOCK, AMMOS, X-Score and FRED scoring functions. Eur. J. Med. Chem. In Press, Accepted Manuscript.
    [182]A.C. Pierce, M. Jacobs, C. Stuver-Moody, Docking Study Yields Four Novel Inhibitors of the Protooncogene Pim-1 Kinase. J. Med. Chem.51 (2008) 1972-1975.
    [183]R. Frederick, C. Mawson, J.D. Kendall, C. Chaussade, G.W. Rewcastle, P.R. Shepherd, W.A. Denny, Phosphoinositide-3-kinase (PI3K) inhibitors: Identification of new scaffolds using virtual screening. Bioorg. Med. Chem. Lett. 19(2009)5842-5847.
    [184]M.J. McGregor, A Pharmacophore Map of Small Molecule Protein Kinase Inhibitors. J. Chem. Inf. Model.47 (2007) 2374-2382.
    [185]N. Kansal, O. Silakari, M. Ravikumar, Three dimensional pharmacophore modelling for c-Kit receptor tyrosine kinase inhibitors. Eur. J. Med. Chem.45 (2010)393-404.
    [186]E. Kotsikorou, G. Sahota, E. Oldfield, Bisphosphonate Inhibition of Phosphoglycerate Kinase:Quantitative Structure-Activity Relationship and Pharmacophore Modeling Investigation. J. Med. Chem.49 (2006) 6692-6703.
    [187]M.O. Taha, Y. Bustanji, M.A.S. Al-Ghussein, M. Mohammad, H. Zalloum, I.M. Al-Masri, N. Atallah, Pharmacophore Modeling, Quantitative Structure-Activity Relationship Analysis, and in Silico Screening Reveal Potent Glycogen Synthase Kinase-3p Inhibitory Activities for Cimetidine, Hydroxychloroquine, and Gemifloxacin. J. Med. Chem.51 (2008) 2062-2077.
    [188]唐赞,蒋华良,陈凯先,秘汝运,计算机辅助药物设计正在走向成功.Life Science (生命科学)8(1996)5-9.
    [189]唐建生,激酶抑制剂的计算机辅助设计.化学通报70(2007)471-475.
    [190]K.T. Kholmurodov, D.A. Kretov, A.S. Gerasimova, N.A. Koltovaya, Molecular dynamics modeling of the substitution of serine for the conservative glycine in the G loop in the yeast cdc28-srm mutant using the crystalline lattice of human kinase CDK2. Biofizika 51 (2006) 679-691.
    [191]G.A. Verkhivker, In silico profiling of tyrosine kinases binding specificity and drug resistance using Monte Carlo simulations with the ensembles of protein kinase crystal structures. Biopolymers 85 (2007) 333-348.
    [1]D.M. Glover, M.H. Leibowitz, D.A. McLean, H. Parry, Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 81 (1995) 95-105.
    [2]J.R. Bischoff, G.D. Plowman, The Aurora/Ipl1p kinase family:regulators of chromosome segregation and cytokinesis. Trends Cell Biol.9 (1999) 454-459.
    [3]V.M. Bolanos-Garcia, Aurora kinases. Int. J. Biochem. Cell Biol.37 (2005) 1572-1577.
    [4]N. Keen, S. Taylor, Aurora-kinase inhibitors as anticancer agents. Nat. Rev. Cancer 4 (2004) 927-936.
    [5]P.D. Andrews, Aurora kinases:shining lights on the therapeutic horizon? Oncogene 24 (2005) 5005-5015.
    [6]N. Matthews, C. Visintin, B. Hartzoulakis, A. Jarvis, D.L. Selwood, Aurora A and B kinases as targets for cancer:will they be selective for tumors? Exp. Rev. Antican. Ther.6(2006) 109-120.
    [7]T. Marumoto, S. Honda, T. Hara, M. Nitta, T. Hirota, E. Kohmura, H. Saya, Aurora-A Kinase Maintains the Fidelity of Early and Late Mitotic Events in HeLa Cells. J. Biol. Chem.278 (2003) 51786-51795.
    [8]R.R. Adams, H. Maiato, W.C. Earnshaw, M. Carmena, Essential Roles of Drosophila Inner Centromere Protein (INCENP) and Aurora B in Histone H3 Phosphorylation, Metaphase Chromosome Alignment, Kinetochore Disjunction, and Chromosome Segregation. J. Cell Biol.153 (2001) 865-880.
    [9]X.Y. Li, G. Sakashita, H. Matsuzaki, K. Sugimoto, K. Kimura, F. Hanaoka, H. Taniguchi, K. Furukawa, T. Urano, Direct Association with Inner Centromere Protein (INCENP) Activates the Novel Chromosomal Passenger Protein, Aurora-C. J. Biol. Chem.279(2004) 47201-47211.
    [10]L. Sun, D. Li, X. Dong, H. Yu, J.-T. Dong, C. Zhang, X. Lu, J. Zhou, Small-molecule inhibition of Aurora kinases triggers spindle checkpoint-independent apoptosis in cancer cells. Biochem. Pharmacol.75 (2008) 1027-1034.
    [11]E.A. Harrington, D. Bebbington, J. Moore, R.K. Rasmussen, A.O. Ajose-Adeogun, T. Nakayama, J.A. Graham, C. Demur, T. Hercend, A.
    Diu-Hercend, M. Su, J.M.C. Golec, K.M. Miller, VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat. Med.10 (2004) 262-267.
    [12]D. Fancelli, J. Moll, M. Varasi, R. Bravo, R. Artico, D. Berta, S. Bindi, A. Cameron, I. Candiani, P. Cappella, P. Carpinelli, W. Croci, B. Forte, M.L. Giorgini, J. Klapwijk, A. Marsiglio, E. Pesenti, M. Rocchetti, F. Roletto, D. Severino, C. Soncini, P. Storici, R. Tonani, P. Zugnoni, P. Vianello, 1,4,5,6-Tetrahydropyrrolo[3,4-c]pyrazoles:Identification of a Potent Aurora Kinase Inhibitor with a Favorable Antitumor Kinase Inhibition Profile. J. Med. Chem.49 (2006) 7247-7251.
    [13]A.A. Mortlock, K.M. Foote, N.M. Heron, F.H. Jung, G. Pasquet, J.J.M. Lohmann, N. Warin, F. Renaud, C. DeSavi, N.J. Roberts, T. Johnson, C.B. Dousson, G.B. Hill, D. Perkins, G. Hatter, R.W. Wilkinson, S.R. Wedge, S.P. Heaton, R. Odedra, N.J. Keen, C. Crafter, E. Brown, K. Thompson, S. Brightwell, L. Khatri, M.C. Brady, S. Kearney, D. McKillop, S. Rhead, T. Parry, S. Green, Discovery, Synthesis, and in Vivo Activity of a New Class of Pyrazoloquinazolines as Selective Inhibitors of Aurora B Kinase. J. Med. Chem.50 (2007) 2213-2224.
    [14]K. Hoar, A. Chakravarty, C. Rabino, D. Wysong, D. Bowman, N. Roy, J.A. Ecsedy, MLN8054, a Small-Molecule Inhibitor of Aurora A, Causes Spindle Pole and Chromosome Congression Defects Leading to Aneuploidy. Mol. Cell Biol.27(2007)4513-4525.
    [15]P. Carpinelli, R. Ceruti, M.L. Giorgini, P. Cappella, L. Gianellini, V. Croci, A. Degrassi, G. Texido, M. Rocchetti, P. Vianello, L. Rusconi, P. Storici, P. Zugnoni, C. Arrigoni, C. Soncini, C. Alii, V. Patton, A. Marsiglio, D. Ballinari, E. Pesenti, D. Fancelli, J. Moll, PHA-739358, a potent inhibitor of Aurora kinases with a selective target inhibition profile relevant to cancer. Mol. Cancer Ther.6(2007)3158-3168.
    [16]Y.G. Lin, A. Immaneni, W.M. Merritt, L.S. Mangala, S.W. Kim, M.M.K. Shahzad, Y.T.M. Tsang, G.N. Armaiz-Pena, C. Lu, A.A. Kamat, L.Y. Han, W.A. Spannuth, A.M. Nick, C.N. Landen, Jr., K.K. Wong, M.J. Gray, R.L. Coleman, D.C. Bodurka, W.R. Brinkley, A.K. Sood, Targeting Aurora Kinase with MK-0457 Inhibits Ovarian Cancer Growth. Clin. Cancer Res.14 (2008) 5437-5446.
    [17]J.R. Pollard, M. Mortimore, Discovery and Development of Aurora Kinase Inhibitors as Anticancer Agents. J. Med. Chem.52 (2009) 2629-2651.
    [18]T.T. Talele, M.L. McLaughlin, Molecular docking/dynamics studies of Aurora A kinase inhibitors. J. Mol. Graph. Model.26 (2008) 1213-1222.
    [19]A. Poulsen, A. William, A. Lee, S. Blanchard, E. Teo, W.P. Deng, N. Tu, E. Tan, E. Sun, K.L. Goh, W.C. Ong, C.P. Ng, K.C. Goh, Z. Bonday, Structure-based design of Aurora A & B inhibitors. J. Comput.-Aided Mol. Des.22 (2008) 897-906.
    [20]X.Q. Deng, H.Y. Wang, Y.L. Zhao, M.L. Xiang, P.D. Jian, Z.X. Cao, Y.Z. Zheng, S.D. Luo, L.T. Yu, Y.Q. Wei, S.Y. Yang, Pharmacophore Modelling and Virtual Screening for Identification of New Aurora-A Kinase Inhibitors. Chem. Biol. Drug Des.71 (2008) 533-539.
    [21]S. Howard, V. Berdini, J.A. Boulstridge, M.G. Carr, D.M. Cross, J. Curry, L.A. Devine, T.R. Early, L. Fazal, A.L. Gill, M. Heathcote, S. Maman, J.E. Matthews, R.L. McMenamin, E.F. Navarro, M.A. O'Rrien, M. O'Reilly, D.C. Rees, M. Reule, D. Tisi, G. Williams, M. Vinkovic, P.G. Wyatt, Fragment-Based Discovery of the Pyrazol-4-yl Urea (AT9283), a Multitargeted Kinase Inhibitor with Potent Aurora Kinase Activity. J. Med. Chem.52 (2009) 379-388.
    [22]J. Caballero, M. Fernadez, M. Saavedra, F.D. Gonzaez-Nilo,2D Autocorrelation, CoMFA, and CoMSIA modeling of protein tyrosine kinases'inhibition by substituted pyrido[2,3-d]pyrimidine derivatives. Bioorg. Med. Chem.16 (2008) 810-821.
    [23]J. Caballero, M. Fernadez, F.D. Gonzaez-Nilo, Structural requirements of pyrido[2,3-d]pyrimidin-7-one as CDK4/D inhibitors:2D autocorrelation, CoMFA and CoMSIA analyses. Bioorg. Med. Chem.16 (2008) 6103-6115.
    [24]H.X. Liu, P. Gramatica, QSAR study of selective ligands for the thyroid hormone receptor β. Bioorg. Med. Chem.15 (2007) 5251-5261.
    [25]M.N. Morshed, M. Muddassar, F.A. Pasha, S.J. Cho, Pharmacophore Identification and Validation Study of CK2 Inhibitors Using CoMFA/CoMSIA. Chem. Biol. Drug. Des.74 (2009) 148-158.
    [26]C.B. Andersen, Y. Wan, J.W. Chang, B. Riggs, C. Lee, Y. Liu, F. Sessa, F. Villa, N. Kwiatkowski, M. Suzuki, L. Nallan, R. Heald, A. Musacchio, N.S. Gray, Discovery of Selective Aminothiazole Aurora Kinase Inhibitors. ACS Chem. Biol.3 (2008) 180-192.
    [27]R.D. Cramer Ⅲ, D.E. Patterson, J.D. Bunce, Comparative molecular field analysis (CoMFA).1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc.110 (1988) 5959-5967.
    [28]M. Bohm, J. Sturzebecher, G. Klebe, Three-Dimensional Quantitative Structure-Activity Relationship Analyses Using Comparative Molecular Field Analysis and Comparative Molecular Similarity Indices Analysis To Elucidate Selectivity Differences of Inhibitors Binding to Trypsin, Thrombin, and Factor Xa. J. Med. Chem.42 (1999) 458-477.
    [29]G. Klebe, U. Abraham, T. Mietzner, Molecular Similarity Indices in a Comparative Analysis (CoMSIA) of Drug Molecules to Correlate and Predict Their Biological Activity. J. Med. Chem.37 (1994) 4130-4146.
    [30]M. Clark, R.D. Cramer Ⅲ, N.V. Opdenbosch, Validation of the general purpose tripos 5.2 force field. J. Comput. Chem.10 (1989) 982-1012.
    [31]Sybyl version 6.9. Tripos Associates, St. Louis, (MO) (2001).
    [32]R. Todeschini, V. Consonni, A. Mauri, M. Pavan, DRAGON, Version 5.3 for Windows, Software for the Calculation of Molecular Descriptors. Talete srl, Milan, Italy. (2005).
    [33]R. Todeschini, P. Gramatica, The Whim Theory:New 3D Molecular Descriptors for Qsar in Environmental Modelling. SAR QSAR Environ. Res.7 (1997) 89-115.
    [34]R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, Germany. (2000).
    [35]H.X. Liu, E. Papa, P. Gramatica, QSAR Prediction of Estrogen Activity for a Large Set of Diverse Chemicals under the Guidance of OECD Principles. Chem. Res. Toxicol.19 (2006) 1540-1548.
    [36]J.H. Holland, Adaptation in natural and artificial system. Ann Arbor:The University of Michigan Press. (1975) 53-76.
    [37]P. Gramatica, P. Pilutti, E. Papa, Predicting the NO3 Tropospheric Degradability of Organic Pollutants by Theoretical Molecular Descriptors. Atmos. Environ.37 (2003)3115-3124.
    [38]J. Friedman, Multivariate adaptive regression spline. Technical Report No.102, Stanford University, Stanford, CA(1990).
    [39]R. Todeschini, V. Consonni, M. Pavan, MOBY DIGS, Version 1.2 for Windows, Software for Multilinear Regression Analysis and Variable Subset Selection by Genetic Algorithm, Talete srl, Milan, Italy. (2002).
    [40]L. Stahle, S. Wold, Partial least squares analysis with cross-validation for the two-class problem:A Monte Carlo study. J. Chemom.1(1987)185-196.
    [41]S. Wold, Cross validatory estimation of the number of components in factor and principal components models. Technometrics 20 (1978) 397-405.
    [42]R.D. Cramer Ⅲ, J.D. Bunce, D.E. Patterson, I.E. Frank, Crossvalidation, Bootstrapping, and Partial Least Squares Compared with Multiple Regression in Conventional QSAR Studies. Quant. Struct.-Act. Relat.7(1988) 18-25.
    [43]V. Consonni, R. Todeschini, M. Pavan, Structure/Response Correlations and Similarity/Diversity Analysis by GETAWAY Descriptors.1. Theory of the Novel 3D Molecular Descriptors. J. Chem. Inf. Comput. Sci.42 (2002) 682-692.
    [44]V. Consonni, R. Todeschini, M. Pavan, P. Gramatica, Structure/Response Correlations and Similarity/Diversity Analysis by GETAWAY Descriptors.2. Application of the Novel 3D Molecular Descriptors to QSAR/QSPR Studies. J. Chem. Inf. Comput. Sci.42 (2002) 693-705.
    [45]M.P. Gonzalez, C. Teran, M. Teijeira, M.J. Gonzalez-Moa, GETAWAY descriptors to predicting A2A adenosine receptors agonists. Eur. J. Med. Chem. 40 (2005) 1080-1086.
    [46]L. Saiz-Urra, M.P. Gonzalez, Y. Fall, G. Gomez, Quantitative structure-activity relationship studies of HIV-1 integrase inhibition.1. GETAWAY descriptors. Eur. J. Med. Chem.42 (2007) 64-70.
    [47]R. Todeschini, M. Lasagni, E. Marengo, New molecular descriptors for 2D and 3D structures. Theory. J. Chemom.8 (1994) 263-272.
    [48]R. Todeschini, P. Gramatica, R. Provenzani, E. Marengo, Weighted holistic invariant molecular descriptors. Part 2. Theory development and applications on modeling physicochemical properties of polyaromatic hydrocarbons. Chemom. Intell. Lab. Syst.27 (1995)221-229.
    [49]M.E.M. Noble, J.A. Endicott, L.N. Johnson, Protein Kinase Inhibitors:Insights into Drug Design from Structure. Science 303 (2004) 1800-1805.
    [50]A.C. Wallace, R.A. Laskowski, J.M. Thornton, LIGPLOT:A program to generate schematic diagrams of protein-ligand interactions. Prot. Eng.8 (1995) 127-134.
    [1]T. Leung, E. Manser, L. Tan, L. Lim, A Novel Serine/Threonine Kinase Binding the Ras-related RhoA GTPase Which Translocates the Kinase to Peripheral Membranes. J. Biol. Chem.270 (1995) 29051-29054.
    [2]T. Ishizaki, M. Maekawa, K. Fujisawa, K. Okawa, A. Iwamatsu, A. Fujita, N. Watanabe, Y. Saito, A. Kakizuka, N. Morii, S. Narumiya, The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J.15 (1996) 1885-1893. [3] T. Matsui, M. Amano, T. Yamamoto, K. Chihara, M. Nakafuku, M. Ito, T. Nakano, K. Okawa, A. Iwamatsu, K. Kaibuchi, Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J.15 (1996) 2208-2216. [4] K. Riento, A.J. Ridley, ROCKs:multifunctional kinases in cell behaviour. Nat. Rev. Mol. Cell Biol.4 (2003) 446-456.
    [5]O. Nakagawa, K. Fujisawa, T. Ishizaki, Y. Saito, K. Nakao, S. Narumiya, ROCK-Ⅰ and ROCK-Ⅱ, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Letters 392 (1996) 189-193.
    [6]M. Uehata, T. Ishizaki, H. Satoh, T. Ono, T. Kawahara, T. Morishita, H. Tamakawa, K. Yamagami, J. Inui, M. Maekawa, S. Narumiya, Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389 (1997) 990-994.
    [7]E. Hu, D. Lee, Rho kinase as potential therapeutic target for cardiovascular diseases:opportunities and challenges. Expert Opin. Ther. Targets 9 (2005) 715-736.
    [8]D. Schaafsma, R. Gosens, J. Zaagsma, A.J. Halayko, H. Meurs, Rho kinase inhibitors:A novel therapeutical intervention in asthma? Eur. J. Pharmacol.585 (2008) 398-406.
    [9]M. Mohri, H, Shimokawa, Y. Hirakawa, A. Masumoto, A. Takeshita, Rho-kinase inhibition with intracoronary fasudil prevents myocardial ischemia in patients with coronary microvascular spasm. J. Am. Coll. Cardiol.41 (2003) 15-19.
    [10]T. Hisaoka, M. Yano, T. Ohkusa, M. Suetsugu, K. Ono, M. Kohno, J. Yamada, S. Kobayashi, M. Kohno, M. Matsuzaki, Enhancement of Rho/Rho-kinase system in regulation of vascular smooth muscle contraction in tachycardia-induced heart failure. Cardiovasc. Res.49 (2001) 319-329.
    [11]T. Kishi, Y. Hirooka, A. Masumoto, K. Ito, Y. Kimura, K. Inokuchi, T. Tagawa, H. Shimokawa, A. Takeshita, K. Sunagawa, Rho-Kinase Inhibitor Improves
    Increased Vascular Resistance and Impaired Vasodilation of the Forearm in Patients With Heart Failure. Circulation 111 (2005) 2741-2747.
    [12]K. Itoh, K. Yoshioka, H. Akedo, M. Uehata, T. Ishizaki, S. Narumiya, An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nat. Med.5 (1999) 221-225.
    [13]K. Nagatoya, T. Moriyama, N. Kawada, M. Takeji, S. Oseto, T. Murozono, A. Ando, E. Imai, M. Hori, Y-27632 prevents tubulointerstitial fibrosis in mouse kidneys with unilateral ureteral obstruction. Kidney Int.61 (2002) 1684-1695.
    [14]H. Shimokawa, M. Rashid, Development of Rho-kinase inhibitors for cardiovascular medicine. Trends Pharmacol. Sci.28 (2007) 296-302.
    [15]R.A. Stavenger, H. Cui, S.E. Dowdell, R.G. Franz, D.E. Gaitanopoulos, K.B. Goodman, M.A. Hilfiker, R.L. Ivy, J.D. Leber, J.P. Marino, H.-J. Oh, A.Q. Viet, W. Xu, G. Ye, D. Zhang, Y. Zhao, L.J. Jolivette, M.S. Head, S.F. Semus, P.A. Elkins, R.B. Kirkpatrick, E. Dul, S.S. Khandekar, T. Yi, D.K. Jung, L.L. Wright, G.K. Smith, D.J. Behm, C.P. Doe, R. Bentley, Z.X. Chen, E. Hu, D. Lee, Discovery of Aminofurazan-azabenzimidazoles as Inhibitors of Rho-Kinase with High Kinase Selectivity and Antihypertensive Activity. J. Med. Chem.50 (2007) 2-5.
    [16]Y. Feng, Y. Yin, A. Weiser, E. Griffin, M.D. Cameron, L. Lin, C. Ruiz, S.C. Schuurer, T. Inoue, P.V. Rao, T. Schrooter, P. LoGrasso, Discovery of Substituted 4-(Pyrazol-4-yl)-phenylbenzodioxane-2-carboxamides as Potent and Highly Selective Rho Kinase (ROCK-II) Inhibitors. J. Med. Chem.51 (2008) 6642-6645.
    [17]A. Takami, M. Iwakubo, Y. Okada, T. Kawata, H. Odai, N. Takahashi, K. Shindo, K. Kimura, Y. Tagami, M. Miyake, K. Fukushima, M. Inagaki, M. Amano, K. Kaibuchi, H. Iijima, Design and synthesis of Rho kinase inhibitors (Ⅰ). Bioorg. Med. Chem.12 (2004) 2115-2137.
    [18]M. Iwakubo, A. Takami, Y. Okada, T. Kawata, Y. Tagami, H. Ohashi, M. Sato, T. Sugiyama, K. Fukushima, H. Iijima, Design and synthesis of Rho kinase inhibitors (Ⅱ). Bioorg. Med. Chem.15 (2007) 350-364.
    [19]M. Iwakubo, A. Takami, Y. Okada, T. Kawata, Y. Tagami, M. Sato, T. Sugiyama, K. Fukushima, S. Taya, M. Amano, K. Kaibuchi, H. Iijima, Design and synthesis of rho kinase inhibitors (Ⅲ). Bioorg. Med. Chem.15 (2007) 1022-1033.
    [20]R.D. Cramer Ⅲ, D.E. Patterson, J.D. Bunce, Comparative molecular field analysis (CoMFA).1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc.110 (1988) 5959-5967.
    [21]G. Klebe, U. Abraham, T. Mietzner, Molecular Similarity Indices in a Comparative Analysis (CoMSIA) of Drug Molecules to Correlate and Predict Their Biological Activity. J. Med. Chem.37 (1994) 4130-4146.
    [22]M. Bohm, J. Sturzebecher, G. Klebe, Three-Dimensional Quantitative Structure-Activity Relationship Analyses Using Comparative Molecular Field Analysis and Comparative Molecular Similarity Indices Analysis To Elucidate Selectivity Differences of Inhibitors Binding to Trypsin, Thrombin, and Factor Xa. J. Med. Chem.42 (1999) 458-477.
    [23]R. Frederick, W.A. Denny, Phosphoinositide-3-kinases (PI3Ks):Combined Comparative Modeling and 3D-QSAR To Rationalize the Inhibition of p110伪. J. Chem. Inf. Model.48 (2008) 629-638.
    [24]J. Du, B. Lei, J. Qin, H. Liu, X. Yao, Molecular modeling studies of vascular endothelial growth factor receptor tyrosine kinase inhibitors using QSAR and docking. J. Mol. Graphics Modell.27 (2009) 642-654.
    [25]K. Wichapong, M. Lindner, S. Pianwanit, S. Kokpol, W. Sippl, Receptor-based 3D-QSAR studies of checkpoint Weel kinase inhibitors. Eur. J. Med. Chem.44 (2009) 1383-1395.
    [26]SYBYL 6.9, Tripos Inc.:St. Louis(MO),2001.
    [27]M. Clark, R.D. Cramer Ⅲ, N.V. Opdenbosch, Validation of the general purpose tripos 5.2 force field. J. Comput. Chem.10 (1989) 982-1012.
    [28]J. Gasteiger, M. Marsili, Iterative partial equalization of orbital electronegativity--a rapid access to atomic charges. Tetrahedron 36 (1980) 3219-3228.
    [29]M. Jacobs, K. Hayakawa, L. Swenson, S. Bellon, M. Fleming, P. Taslimi, J. Doran, The Structure of Dimeric ROCK I Reveals the Mechanism for Ligand Selectivity. J. Biol. Chem.281 (2006) 260-268.
    [30]L. Stahle, S. Wold, Partial least squares analysis with cross-validation for the two-class problem:A Monte Carlo study. J. Chemom.1(1987) 185-196.
    [31]S. Wold, C. Albano, W.J. Dunn, U. Edlund, K. Esbenson, P. Geladi, S. Hellberg, W. Lindburg, M. Sjostrom, in:B. Kowalski (Ed.), Chemometrics:Mathematics and Statistics in Chemistry, Reidel Dordrecht, The Netherlands,1984, pp.17-95.
    [32]R.D. Cramer Ⅲ, J.D. Bunce, D.E. Patterson, I.E. Frank, Crossvalidation, Bootstrapping, and Partial Least Squares Compared with Multiple Regression in Conventional QSAR Studies. Quant. Struct.-Act. Relat.7(1988) 18-25.
    [33]W.L. Delano, The PyMol Molecular Graphics System Delano Scientific, DeLano Scientific, San Carlos, CA, USA.2002.
    [34]A.C. Wallace, R.A. Laskowski, J.M. Thornton, LIGPLOT:A program to generate schematic diagrams of protein-ligand interactions. Prot. Eng.8(1995) 127-134.
    [35]Y.T. Chen, T.D. Bannister, A. Weiser, E. Griffin, L. Lin, C. Ruiz, M.D. Cameron, S. Schuer, D. Duckett, T. Schroer, P. LoGrasso, Y. Feng, Chroman-3-amides as potent Rho kinase inhibitors. Bioorg. Med. Chem. Lett.18 (2008) 6406-6409.
    [36]A. Feurer, S. Bennabi, H. Heckroth, H. Shirock, J. Mittendorf, R. Kast, J.-P. Stasch, M. J. Gnoth, K. Munter, S. D. Lang, Figueroa Perez, H. Ehmko, WO Patent 04039796-A1,2004.
    [1]R.H. Adams, Vascular patterning by Eph receptor tyrosine kinases and ephrins. Semin. Cell Dev. Biol.13 (2002) 55-60.
    [2]H. urawska, P.C. Ma, R. Salgia, The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev.15 (2004) 419-433.
    [3]D.M. Brantley-Sieders, J. Chen, Eph receptor tyrosine kinases in angiogenesis: from development to disease. Angiogenesis 7 (2004) 17.
    [4]N. Cheng, D.M. Brantley, J. Chen, The ephrins and Eph receptors in angiogenesis. Cytokine Growth Factor Res.13 (2002) 75-85.
    [5]V.C. Dodelet, E.B. Pasquale, Eph receptors and ephrin ligands:embryogenesis to tumorigenesis. Oncogene 19 (2000) 5614-5419.
    [6]D.C. Sullivan, R.B. Bicknell, New molecular pathways in angiogenesis. J. Cancer 89 (2003) 228-231.
    [7]V. Davalos, H. Dopeso, J. Castano, A.J. Wilson, F. Vilardell, J. Romero-Gimenez, E. Espin, M. Armengol, G. Capella, J.M. Mariadason, L.A. Aaltonen, S.J. Schwartz, D. Arango, EPHB4 and survival of colorectal cancer patients. Cancer Res.66 (2006) 8943.
    [8]S.R. Kumar, J. Singh, G. Xia, V. Krasnoperov, L. Hassanieh, E.J. Ley, J. Scehnet, N.G. Kumar, D. Hawes, M.F. Press, F.A. Weaver, P.S. Gill, Receptor tyrosine kinase EphB4 is a survival factor in breast cancer. Am. J. Pathol.169 (2006) 279-293.
    [9]G. Martiny-Baron, T. Korff, F. Schaffner, N. Esser, S. Eggstein, D. Marme, H.G. Augustin, Inhibition of tumor growth and angiogenesis by soluble EphB4. Neoplasia 6 (2004) 248-257.
    [10]N. Kertesz, V. Krasnoperov, R. Reddy, L. Leshanski, S.R. Kumar, S. Zozulya, P.S. Gill, The soluble extracellular domain of EphB4 (sEphB4) antagonizes EphB4-EphrinB2 interaction, modulates angiogenesis, and inhibits tumor growth. Blood 107 (2006) 2330-2338.
    [11]L. Sun, C. Liang, S. Shirazian, Y.M. Zhou, T., J. Cui, J.Y. Fukuda, J.Y. Chu, A. Nematalla, X.Y. Wang, H. Chen, A. Sistla, T.C. Luu, F. Tang, J. Wei, C. Tang, Discovery of 5-[5-fluoro-2-oxo-1,2-dihydroindol-(3Z)-ylidenemethyl]-2,4- dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide, a novel tyrosine kinase inhibitor targeting vascular endothelial and platelet-derived growth factor receptor tyrosine kinase. J. Med. Chem.46 (2003) 1116-1119.
    [12]C. Bardelle, D. Cross, S. Davenport, J.G. Kettle, E.J. Ko, A.G. Leach, A. Mortlock, J. Read, N.J. Roberts, P. Robins, E.J. Williams, Inhibitors of the tyrosine kinase EphB4. Part 1:Structure-based design and optimization of a series of 2,4-bis-anilinopyrimidines. Bioorg. Med. Chem. Lett.18 (2008) 2776-2780.
    [13]Y. Miyazaki, M. Nakano, H. Sato, A.T. Truesdale, J.D. Stuart, E.N. Nartey, K.E. Hightower, L. Kane-Carson, Design and effective synthesis of novel templates, 3,7-diphenyl-4-amino-thieno and furo-[3,2-c]pyridines as protein kinase inhibitors and in vitro evaluation targeting angiogenetic kinases. Bioorg. Med. Chem. Lett.17 (2007) 250-254.
    [14]P. Kolb, C.B. Kipouros, D. Huang, A. Caflisch, Structure-based tailoring of compound libraries for high-throughput screening:discovery of novel EphB4 kinase inhibitors. Proteins 73 (2008) 11-18.
    [15]S.A. Mitchell, M.D. Danca, P.A. Blomgren, J.W. Darrow, K.S. Currie, J.E. Kropf, S.H. Lee, S.L. Gallion, J.-M. Xiong, D.A. Pippin, R.W. DeSimone, D.R. Brittelli, D.C. Eustice, A. Bourret, M. Hill-Drzewi, P.M. Maciejewski, L.L. Elkin, Imidazo[1,2-a]pyrazine diaryl ureas:Inhibitors of the receptor tyrosine kinase EphB4. Bioorg. Med. Chem. Lett.19 (2009) 6991-6995.
    [16]R.D. Cramer Ⅲ, D.E. Patterson, J.D. Bunce, Comparative molecular field analysis (CoMFA).1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc.110 (1988) 5959-5967.
    [17]G. Klebe, U. Abraham, T. Mietzner, Molecular Similarity Indices in a Comparative Analysis (CoMSIA) of Drug Molecules to Correlate and Predict Their Biological Activity. J. Med. Chem.37 (1994) 4130-4146.
    [18]M. Bohm, J. Sturzebecher, G. Klebe, Three-Dimensional Quantitative Structure-Activity Relationship Analyses Using Comparative Molecular Field Analysis and Comparative Molecular Similarity Indices Analysis To Elucidate Selectivity Differences of Inhibitors Binding to Trypsin, Thrombin, and Factor Xa. J. Med. Chem.42 (1999) 458-477.
    [19]SYBYL 6.9, Tripos Inc.:St. Louis(MO),2001.
    [20]M. Clark, R.D. Cramer Ⅲ, N.V. Opdenbosch, Validation of the general purpose tripos 5.2 force field. J. Comput. Chem.10 (1989) 982-1012.
    [21]G.A. Kaminski, R.A. Friesner, J. Tirado-Rives, W.L. Jorgensen, Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides. J. Phys. Chem. B 105(2001)6474-6487.
    [22]R.D. Cramer Ⅲ, J.D. Bunce, D.E. Patterson, I.E. Frank, Crossvalidation, Bootstrapping, and Partial Least Squares Compared with Multiple Regression in Conventional QSAR Studies. Quant. Struct.-Act. Relat.7 (1988) 18-25.
    [23]W.L. Delano, The PyMol Molecular Graphics System Delano Scientific, DeLano Scientific, San Carlos, CA, USA.2002.
    [1]D.T. Leicht, V. Balan, A. Kaplun, V. Singh-Gupta, L. Kaplun, M. Dobson, G. Tzivion, Raf kinases:Function, regulation and role in human cancer. BBA-Mol. Cell. Res.1773 (2007) 1196-1212.
    [2]M.J. Robinson, M.H. Cobb, Mitogen-activated protein kinase pathways. Curr. Opin. Cell Biol.9 (1997) 180-186.
    [3]P. Cohen, Protein kinasessthe major drug targets of the twenty-first century. Nat. Rev. Drug Discovery 1 (2002) 309-315.
    [4]H. Davies, G.R. Bignell, C. Cox, P. Stephens, S. Edkins, S. Clegg, J. Teague, H. Woffendin, M.J. Garnett, W. Bottomley, N. Davis, N. Dicks, R. Ewing, Y. Floyd, K. Gray, S. Hall, R. Hawes, J. Hughes, V. Kosmidou, A. Menzies, C. Mould, A. Parker, C. Stevens, S. Watt, S. Hooper, R. Wilson, H. Jayatilake, B.A. Gusterson, C. Cooper, J. Shipley, D. Hargrave, K. Pritchard-Jones, N. Maitland, G. Chenevix-Trench, G.J. Riggins, D.D. Bigner, G. Palmieri, A. Cossu, A. Flanagan, A. Nicholson, J.W.C. Ho, S.Y. Leung, S.T. Yuen, B.L. Weber, H.F. Siegler, T.L. Darrow, H. Paterson, R. Marais, C.J. Marshall, R. Wooster, M.R. Stratton, P.A. Futreal, Mutations of the BRAF gene in human cancer. Nature 417 (2002) 949-954.
    [5]P.T.C. Wan, M.J. Garnett, S.M. Roe, S. Lee, D. Niculescu-Duvaz, V.M. Good, C.M. Jones, C.J. Marshall, C.J. Springer, D-Barford, R. Marais, Cancer Genome, P. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116 (2004) 855-867.
    [6]M. Karasarides, A. Chiloeches, R. Hayward, D. Niculescu-Duvaz, Ⅰ. Scanlon, F. Friedlos, L. Ogilvie, D. Hedley, J. Martin, C.J. Marshall, C.J. Springer, R. Marais, B-RAF is a therapeutic target in melanoma. Oncogene 23 (2004) 6292-6298.
    [7]E.T. Kimura, M.N. Nikiforova, Z. Zhu, J.A. Knauf, Y.E. Nikiforov, J.A. Fagin, High Prevalence of BRAF Mutations in Thyroid Cancer:Genetic Evidence for Constitutive Activation of the RET/PTC-RAS-BRAF Signaling Pathway in Papillary Thyroid Carcinoma. Cancer Res.63 (2003) 1454-1457.
    [8]J. Vandrovcova, K. Lagerstedt-Robinsson, L. Pahlman, A. Lindblom, Somatic BRAF-V600E mutations in familial colorectal cancer. Cancer Epidem. Biomarker. Prev.15 (2006) 2270-2273.
    [9]M. Ueda, E. Toji, S. Noda, Germ line and somatic mutations of BRAF V599E in ovarian carcinoma. Int. J. Gynecol. Cancer 17 (2007) 794-797.
    [10]R. Marais, B-RAF is an oneogene and therapeutic target in human cancer. Proceedings of the American Association for Cancer Research Annual Meeting 45 (2004) 1308.
    [11]S.V. Madhunapantula, G.P. Robertson, Is B-Raf a good therapeutic target for melanoma and other malignancies? Cancer Res.68 (2008) 5-8.
    [12]J. Dumas, Anonymous, U. Khire, T.B. Lowinger, B. Riedl, W.J. Scott, R.A. Smith, J.E. Wood, H. Hatoum-Mokdad, J. Johnson, A. Redman, R. Sibley Inhibition of RAF kinase using aryl and heteroaryl substituted heterocyclic ureas. US 07625915,2009.
    [13]E.Y. Song, N. Kaur, M.-Y. Park, Y. Jin, K. Lee, G. Kim, K.Y. Lee, J.S. Yang, J.H. Shin, K.-Y. Nam, K.T. No, G. Han, Synthesis of amide and urea derivatives of benzothiazole as Raf-1 inhibitor. Eur. J. Med. Chem.43 (2008) 1519-1524.
    [14]S. Ramurthy, S. Subramanian, M. Aikawa, P. Amiri, A. Costales, J. Dove, S. Fong, J.M. Jansen, B. Levine, S. Ma, C.M. McBride, J. Michaelian, T. Pick, D.J. Poon, S. Girish, C.M. Shafer, D. Stuart, L. Sung, P.A. Renhowe, Design and Synthesis of Orally Bioavailable-Benzimidazoles as Raf Kinase Inhibitors. J. Med. Chem.51 (2008) 7049-7052.
    [15]R.A. Smith, J. Dumas, L. Adnane, S.M. Wilhelm, Recent Advances in the Research and Development of RAF Kinase Inhibitors.6 (2006) 1071-1089.
    [16]R.A. Smith, J. Barbosa, C.L. Blum, M.A. Bobko, Y.V. Caringal, R. Dally, J.S. Johnson, M.E. Katz, N. Kennure, J. Kingery-Wood, W. Lee, T.B. Lowinger, J. Lyons, V. Marsh, D.H. Rogers, S. Swartz, T. Walling, H. Wild, Discovery of heterocyclic ureas as a new class of raf kinase inhibitors:Identification of a second generation lead by a combinatorial chemistry approach. Bioorg. Med. Chem. Lett.11(2001)2775-2778.
    [17]J. Dumas, U. Khire, T.B. Lowinger, H. Paulsen, B. Riedl, W.J. Scott, R.A. Smith, J.E. Wood, H. Hatoum-Mokdad, J. Johnson, W. Lee, A. Redman Inhibition of Raf Kinase Using Substituted Heterocyclic Ureas. WO 99032106,1998.
    [18]D.C. Heimbrook, H.E. Huber, S.M. Stirdivant, D.R. Patrick, D. Claremon, N. Liverton, H. Selnick, J. Ahern, R. Conroy, R. Drakas, N. Falconi, P. Hancock, R. Robinson, G. Smith, A. Oliff, Identification of Potent, Selective Inhibitors of Raf Protein Kinase. Proc. Amer. Assoc. Cancer Res.39 (1998) Abstract 3793.
    [19]T.B. Lowinger, B. Riedl, J. Dumas, R.A. Smith, Design and Discovery of Small Molecules Targeting Raf-1 Kinase. Curr. Pharm. Des.8 (2002) 2269-2278.
    [20]J. Dumas, R.A. Smith, T.L. Lowinger, Recent developments in the discovery of protein kinase inhibitors from the urea class. Curr. Opin. Drug Discov. Dev.7 (2004) 600-616.
    [21]D. Niculescu-Duvaz, C. Gaulon, H.P. Dijkstra, I. Niculescu-Duvaz, A. Zambon, D. Menard, B.M.J.M. Suijkerbuijk, A. Nourry, L. Davies, H. Manne, F. Friedlos, L. Ogilvie, D. Hedley, S. Whittaker, R. Kirk, A. Gill, R.D. Taylor, F.I. Raynaud, J. Moreno-Farre, R. Marais, C.J. Springer, Pyridoimidazolones as Novel Potent Inhibitors of v-Raf Murine Sarcoma Viral Oncogene Homologue B1(BRAF). J. Med. Chem.52 (2009) 2255-2264.
    [22]D. Menard, I. Niculescu-Duvaz, H.P. Dijkstra, D. Niculescu-Duvaz, B.M.J.M. Suijkerbuijk, A. Zambon, A. Nourry, E. Roman, L. Davies, H.A. Manne, F. Friedlos, R. Kirk, S. Whittaker, A. Gill, R.D. Taylor, R. Marais, C.J. Springer, Novel Potent BRAF Inhibitors:Toward 1 nM Compounds through Optimization of the Central Phenyl Ring. J. Med. Chem.52 (2009) 3881-3891.
    [23]I. Niculescu-Duvaz, E. Roman, S.R. Whittaker, F. Friedlos, R. Kirk, I.J. Scanlon, L.C. Davies, D. Niculescu-Duvaz, R. Marais, C.J. Springer, Novel Inhibitors of the v-raf Murine Sarcoma Viral Oncogene Homologue B1 (BRAF) Based on a 2,6-Disubstituted Pyrazine Scaffold. J. Med. Chem.51 (2008) 3261-3274.
    [24]R. Thaimattam, P. Daga, S.A. Rajjak, R. Banerjee, J. Iqbal,3D-QSAR CoMFA, CoMSIA studies on substituted ureas as Raf-1 kinase inhibitors and its confirmation with structure-based studies. Bioorg. Med. Chem.12 (2004) 6415-6425.
    [25]T. Zhu, Y. Jiao, Y.-D. Chen, X. Wang, H.-F. Li, L.-Y. Zhang, T. Lu, Pharmacophore identification of Raf-1 kinase inhibitors. Bioorg. Med. Chem. Lett.18(2008)2346-2350.
    [26]C. Luo, P. Xie, R. Marmorstein, Identification of BRAF Inhibitors through In Silico Screening. J. Med. Chem.51 (2008) 6121-6127.
    [27]R.D. Cramer Ⅲ, D.E. Patterson, J.D. Bunce, Comparative molecular field analysis (CoMFA).1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc.110 (1988) 5959-5967.
    [28]G. Klebe, U. Abraham, T. Mietzner, Molecular Similarity Indices in a Comparative Analysis (CoMSIA) of Drug Molecules to Correlate and Predict Their Biological Activity. J. Med. Chem.37 (1994) 4130-4146.
    [29]M. Bohm, J. Sturzebecher, G. Klebe, Three-Dimensional Quantitative Structure-Activity Relationship Analyses Using Comparative Molecular Field Analysis and Comparative Molecular Similarity Indices Analysis To Elucidate Selectivity Differences of Inhibitors Binding to Trypsin, Thrombin, and Factor Xa. J. Med. Chem.42 (1999) 458-477.
    [30]SYBYL 6.9, Tripos Inc.:St. Louis(MO),2001.
    [31]M. Clark, R.D. Cramer Ⅲ, N.V. Opdenbosch, Validation of the general purpose tripos 5.2 force field. J. Comput. Chem.10 (1989) 982-1012.
    [32]G.A. Kaminski, R.A. Friesner, J. Tirado-Rives, W.L. Jorgensen, Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides. J. Phys. Chem. B 105(2001)6474-6487.
    [33]P.T.C. Wan, M.J. Garnett, S.M. Roe, S. Lee, D. Niculescu-Duvaz, V.M. Good, C.M. Jones, C.J. Marshall, C.J. Springer, D. Barford, R. Marais, P. Cancer Genome, Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116 (2004) 855-867.
    [34]R.D. Cramer Ⅲ, J.D. Bunce, D.E. Patterson, I.E. Frank, Crossvalidation, Bootstrapping, and Partial Least Squares Compared with Multiple Regression in Conventional QSAR Studies. Quant. Struct.-Act. Relat.7(1988) 18-25.
    [35]W.L. Delano, The PyMol Molecular Graphics System Delano Scientific, DeLano Scientific, San Carlos, CA, USA.2002.
    [1]G. Camussi, E. Lupia, The future role of anti-tumour necrosis factor (TNF) products in the treatment of rheumatoid arthritis. Drugs 55 (1998) 613-620.
    [2]C. Richard-Miceli, M. Dougados, Tumour necrosis factor-alpha blockers in rheumatoid arthritis-Review of the clinical experience. Biodrugs 15 (2001) 251-259.
    [3]Z. Chen, T.B. Gibson, F. Robinson, L. Silvestro, G. Pearson, B.E. Xu, A. Wright, C. Vanderbilt, M.H. Cobb, MAP kinases. Chem. Rev.101 (2001) 2449-2476.
    [4]M.R. Lee, C. Dominguez, MAP kinase p38 inhibitors:clinical results and an intimate look at their interactions with p38alpha protein. Curr. Med. Chem.12 (2005) 2979-2994.
    [5]A. Kotlyarov, A. Neininger, Y. Shi, D. Kontoyiannis, H.D. Volk, H. Holtmann, G. Kollias, M. Gaestel, Mechanisms controlling gene expression by MAPKAPK-2 and-5. Biochem. Soc. Trans.30 (2002) A116. [6] M. Hegen, M. Gaestel, C.L. Nickerson-Nutter, L.L. Lin, J.B. Telliez, MAPKAP kinase 2-deficient mice are resistant to collagen-induced arthritis. J. Immunol. 177(2006)1913-1917. [7] D.R. Anderson, S. Hegde, E. Reinhard, L. Gomez, W.F. Vernier, L. Lee, S. Liu, A. Sambandam, P.A. Snider, L. Masih, Aminocyanopyridine inhibitors of mitogen activated protein kinase-activated protein kinase 2 (MK-2). Bioorg. Med. Chem. Lett.15 (2005) 1587-1590. [8] D.R. Goldberg, Y. Choi, D. Cogan, M. Corson, R. DeLeon, A. Gao, L. Gruenbaum, M.H. Hao, D. Joseph, M.A. Kashem, C. Miller, N. Moss, M.R. Netherton, C.P. Pargellis, J. Pelletier, R. Sellati, D. Skow, C. Torcellini, Y.C. Tseng, J. Wang, R. Wasti, B. Werneburg, J.P. Wu, Z. Xiong, Pyrazinoindolone inhibitors of MAPKAP-K2. Bioorg. Med. Chem. Lett.18 (2008) 938-941.
    [9]Z.M. Xiong, D.H.A. Gao, D.A. Cogan, D.R. Goldberg, M.H. Hao, N. Moss, E. Pack, C. Pargellis, D. Skow, T. Trieselmann, B. Werneburg, A. White, Synthesis and SAR studies of indole-based MK2 inhibitors. Bioorg. Med. Chem. Lett.18 (2008) 1994-1999.
    [10]R. Todeschini, V. Consonni, A. Mauri, M. Pavan, DRAGON, Version 5.3 for Windows, Software for the Calculation of Molecular Descriptors. Talete srl, Milan, Italy. (2005).
    [11]R. Todeschini, P. Gramatica, The Whim Theory:New 3D Molecular Descriptors for Qsar in Environmental Modelling. SAR QSAR Environ. Res.7 (1997) 89-115.
    [12]R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, Germany. (2000).
    [13]J.H. Holland, Adaptation in natural and artificial system. Ann Arbor:The University of Michigan Press. (1975) 53-76.
    [14]P. Gramatica, P. Pilutti, E. Papa, Predicting the N03 Tropospheric Degradability of Organic Pollutants by Theoretical Molecular Descriptors. Atmos. Environ.37 (2003)3115-3124.
    [15]R. Todeschini, V. Consonni, M. Pavan, MOBY DIGS, Version 1.2 for Windows, Software for Multilinear Regression Analysis and Variable Subset Selection by Genetic Algorithm, Talete srl, Milan, Italy. (2002).
    [1]A.M. Manning, Transcription factors:a new frontier for drug discovery. Drug Discov. Today 1 (1996) 151-160.
    [2]C.S. Hill, R. Treisman, Transcriptional Regulation by Extracellular signals: Mechanisms and Specificity. Cell 80 (1995) 199-211.
    [3]M. Karin, Signal transduction from the cell surface to the nucleus through the phosphorylation of transcription factors. Curr. Opin. Cell. Biol.6 (1994) 415-424.
    [4]A.M. Manning, A.J. Lewis, Transcription factors, rheumatoid arthritis and the search for improved antirheumatic agents. Rheumatoid Arthritis 1 (1997) 65-73.
    [5]H. Sebban, G. Courtois, NF-kB and inflammation in genetic disease. Biochem. Pharmacol.72 (2006) 1153-1160.
    [6]M. Karin, Z.G. Liu, E. Zandi, AP-1 function and regulation. Curr. Opin. Cell. Biol.9(1997)240-246.
    [7]P.A. Bauerle, T. Henkel, Function and activation of NF-kB in the immune system. Annu. Rev. Immunol.12 (1995) 141-179.
    [8]A.C.T.M. Vossen, H.F. Savelkoul, Cytokines in clinical and experimental transplantation Mediators of Inflammation. J. Mediat. Inflamm.3 (1994) 403-408.
    [9]A.J. Lewis, Emerging Drugs:The prospect for improved medicines, Annual Executive Briefing, Ashley Publication Ltd 31 (1996).
    [10]M.S.S. Palanki, A.M. Manning, Inhibitors of AP-1 and NF-kB Mediated Transcriptional Activation:Therapeutic Potential in Autoimmune Diseases and Structural Diversity. Curr. Med. Chem 9 (2002) 219-227.
    [11]T.J. Caggiano, A. Brazzale, D.M. Ho, C.M. Kraml, E. Trybulski, C.C. Chadwick, S. Chippari, L. Borges-Marcucci, A. Eckert, J.C. Keith, T. Kenney, D.C. Harnish, Estrogen Receptor Dependent Inhibitors of NF-KB Transcriptional Activation-1 Synthesis and Biological Evaluation of Substituted 2-Cyanopropanoic Acid Derivatives:Pathway Selective Inhibitors of NF-KB, a Potential Treatment for Rheumatoid Arthritis. J. Med. Chem.50 (2007) 5245-5248.
    [12]R.K. Sharma, S. Chopra, S.D. Sharma, V. Pande, M.J. Ramos, K. Meguro, J.i. Inoue, M. Otsuka, Biological Evaluation, Chelation, and Molecular Modeling Studies of Novel Metal-Chelating Inhibitors of NF-KB-DNA Binding:Structure Activity Relationships. J. Med. Chem.49 (2006) 3595-3601.
    [13]H.Z. Jin, B.Y. Hwang, H.S. Kim, J.H. Lee, Y.H. Kim, J.J. Lee, Antiinflammatory Constituents of Celastrus orbiculatus Inhibit the NF-KB Activation and NO Production. J. Nat. Prod.65 (2002) 89-91.
    [14]R.R. Adams, H. Maiato, W.C. Earnshaw, M. Carmena, Essential Roles of Drosophila Inner Centromere Protein (INCENP) and Aurora B in Histone H3 Phosphorylation, Metaphase Chromosome Alignment, Kinetochore Disjunction, and Chromosome Segregation. J. Cell Biol.153 (2001) 865-880.
    [15]K. Tsuchida, H. Chaki, T. Takakura, J. Yokotani, Y. Aikawa, S. Shiozawa, H. Gouda, S. Hirono, Design, Synthesis, and Biological Evaluation of New Cyclic Disulfide Decapeptides That Inhibit the Binding of AP-1 to DNA. J. Med. Chem. 47 (2004) 4239-4246.
    [16]K. Tsuchida, H. Chaki, T. Takakura, H. Kotsubo, T. Tanaka, Y. Aikawa, S. Shiozawa, S. Hirono, Discovery of Nonpeptidic Small-Molecule AP-1 Inhibitors: Lead Hopping Based on a Three-Dimensional Pharmacophore Model. J. Med. Chem.49 (2006) 80-91.
    [17]G. Freire, C. Ocampo, N. Ilbawi, A.J. Griffin, M. Gupta, Overt expression of AP-1 reduces alpha myosin heavy chain expression and contributes to heart failure from chronic volume overload.. J. Mol. Cell. Cardiol.43 (2007) 465-478.
    [18]R.W. Sullivan, C.G. Bigam, P.E. Erdman, M.S.S. Palanki, D.W. Anderson, M.E. Goldman, L.J. Ransone, M.J. Suto, 2-Chloro-4-(trifluoromethyl)pyrimidine-5-N-(3',5'-bis(trifluoromethyl)phenyl)-carboxamide:A Potent Inhibitor of NF-κB and AP-1 Mediated Gene Expression Identified Using Solution-Phase Combinatorial Chemistry. J. Med. Chem.41 (1998)413-419.
    [19]M.S.S.Palanki, P.E.Erdman, L.M. Gayo-Fung, G.I. Shevlin, R.W. Sullivan, M.E. Goldman, L.J. Ransone, B.L. Bennett, A.M. Manning, M.J. Suto, Inhibitors of NF-κB and AP-1 Gene Expression:SAR Studies on the Pyrimidine Portion of 2-Chloro-4-trifluoromethylpyrimidine-5-[N-(3',5'-bis(trifluoromethyl)phenyl)car boxamide]. J. Med. Chem.43 (2000) 3995-4004.
    [20]M.S.S. Palanki, L.M. Gayo-Fung, G.I. Shevlin, P. Erdman, M. Sato, M. Goldman, L.J. Ransone, C. Spooner, Structure-Activity Relationship Studies of Ethyl 2-[(3-Methyl-2,5-dioxo(3-pyrrolinyl))amino]-4-(trifluoromethyl)pyrimidine-5-ca rboxylate:An Inhibitor of AP-1 and NF-κB Mediated Gene Expression. Bioorg. Med. Chem. Lett.12 (2002) 2573-2577.
    [21]M.S.S. Palanki, P.E. Erdman, A.M. Manning, A. Ow, L.J. Ransone, C. Spooner, C. Suto, M. Suto, Novel inhibitors of AP-1 and NF-κB mediated gene expression: structure-activity relationship studies of ethyl 4-[(3-Methyl-2,5-dioxo(3-pyrrolinyl))amino]-2-(trifluoromethyl)pyrimidine-5-ca rboxylate. Bioorg. Med. Chem. Lett.10 (2000) 1645-1648.
    [22]M.S.S. Palanki, P.E. Erdman, M. Ren, M. Suto, B.L. Bennett, A. Manning, L Ransone, C. Spooner, S. Desai, A. Ow, R. Totsuka, P. Tsao, W. Toriumi, The design and synthesis of novel orally active inhibitors of AP-1 and NF-κB mediated transcriptional activation. SAR of In vitro and In vivo studies. Bioorg. Med. Chem. Lett.13 (2003) 4077-4080.
    [23]R.D. Cramer Ⅲ, D.E. Patterson, J.D. Bunce, Comparative molecular field analysis (CoMFA).1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc.110 (1988) 5959-5967.
    [24]G. Klebe, U. Abraham, T. Mietzner, Molecular Similarity Indices in a Comparative Analysis (CoMSIA) of Drug Molecules to Correlate and Predict Their Biological Activity. J. Med. Chem.37 (1994) 4130-4146.
    [25]M. Bohm, J. Sturzebecher, G. Klebe, Three-Dimensional Quantitative Structure-Activity Relationship Analyses Using Comparative Molecular Field Analysis and Comparative Molecular Similarity Indices Analysis To Elucidate Selectivity Differences of Inhibitors Binding to Trypsin, Thrombin, and Factor Xa. J. Med. Chem.42 (1999) 458-477.
    [26]A.V. Raichurkar, V.M. Kulkarni, Understanding the Antitumor Activity of Novel Hydroxysemicarbazide Derivatives as Ribonucleotide Reductase Inhibitors Using CoMFA and CoMSIA. J. Med. Chem.46 (2003) 4419-4427.
    [27]D.S. Puntambekar, R. Giridhar, M.R. Yadav, Insights into the structural requirements of farnesyltransferase inhibitors as potential anti-tumor agents based on 3D-QSAR CoMFA and CoMSIA models. Eur. J. Med. Chem.43 (2008) 142-154.
    [28]N. Nunthaboot, S. Tonmunphean, V. Parasuk, P. Wolschann, S. Kokpol, Three-dimensional quantitative structure-activity relationship studies on diverse structural classes of HIV-1 integrase inhibitors using CoMFA and CoMSIA. Eur. J. Med. Chem.41 (2006) 1359-1372.
    [29]Sybyl version 6.9, Tripos Associates, St. Louis (MO),2001.
    [30]M. Clark, R.D. Cramer 3, N.V. Opdenbosch, Validation of the general purpose tripos 5.2 force field. J. Comput. Chem.10 (1989) 982-1012.
    [31]J. Gasteiger, M. Marsili, Iterative partial equalization of orbital electronegativity--a rapid access to atomic charges. Tetrahedron 36 (1980) 3219-3228.
    [32]S. Wold, C. Albano, W.J. Dunn, U. Edlund, K. Esbenson, P. Geladi, S. Hellberg, W. Lindburg, M. Sjostrom, Chemometrics:Mathematics and Statistics in Chemistry. Reidel Dordrecht:The Netherlands,1984; pp.17-95.
    [33]L. Stahle, S. Wold, Partial least squares analysis with cross-validation for the two-class problem:A Monte Carlo study. J. Chemom.1(1987) 185-196.
    [34]G. Bringmann, C. Rummey,3D QSAR Investigations on Antimalarial Naphthylisoquinoline Alkaloids by Comparative Molecular Similarity Indices Analysis (CoMSIA), Based on Different Alignment Approaches. J. Chem. Inf. Comput. Sci.43 (2003) 304-316.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700