用户名: 密码: 验证码:
基于甘脲的新型主体化合物的设计、合成及在分子传感和分子组装方面的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光传感器以其灵敏度高、使用方便等优点而备受人们的关注,近年来得到了迅速的发展。而基于主客体作用机制设计、制备的各种荧光传感器则是化学传感器研究的一个重要方面。这类荧光传感器的特点是由具有空腔结构的主体单元作为外来物种的接受体,主体分子和客体分子通过特异性相互作用形成主客体复合物,从而表现出对客体分子高度识别的能力,待检测物种与主体分子的作用改变了主体分子所连接发光体的微环境,引起其发光行为发生变化。因而通过检测发光体发光特性的变化就可以实现对客体分子的选择性识别和测定。本论文研究的中心工作是在传统的甘脲类主体化合物上引入荧光基团,设计和合成出一系列新型的、基于甘脲的、拥有不同立体空腔的荧光主体化合物,并研究它们对各种金属阳离子、有机或无机阴离子以及酚类中性客体分子的识别和荧光传感性能。此外,晶体工程学是分子工程学的一个重要组成部分,它涉及分子或化学基团在晶体中的组装行为、晶体的设计及结构与性能的控制。我们所合成的甘脲衍生物是一类具有特殊拓扑结构的三维立体分子,是开展分子组装研究的非常有用的模块。本文另一方面的工作是研究两个系列的两单元甘脲衍生物作为不同类型的组装合成子在自组装过程中表达出的特殊结构形态。
     具体内容如下:
     1.近年来基于一些经典的超分子主体化合物的荧光传感器工作得到了长足发展。我们按不同主体和不同的作用机制对相关的研究进展做了较详细的综述,并由此提出了本论文的设想和研究思路。
     2.将芳香乙炔通过Sonogashira偶联反应引入到含溴的三单元甘脲分子夹上,设计合成了十个新颖的三单元荧光分子夹。对其光学性能的研究发现,该类荧光分子夹对Fe~(3+)具有高选择性响应。它们与Fe~(3+)形成的复合物体系呈现荧光猝灭效应,表现出对Fe~(3+)的“on-off”开关行为,而碱金属离子、碱土金属离子及Ag~+、Hg~(2+)、Cu~(2+)、Ni~(2+)、Cd~(2+)、Zn~(2+)、Mn~(2+)、pb~(2+)、Cr~(3+)和Co~(2+)等十九种离子对荧光分子夹的荧光光谱不产生明显的影响。另一方面,这类荧光分子夹还对4-硝基苯酚分子表现出较高的选择性响应,它们可以通过氢键作用和π…π作用与4-硝基苯酚形成包结物使其荧光猝灭,而对对苯二酚等其它八种酚类衍生物均没有产生响应。通过~1H NMR,IR,Job Plot等一系列手段对形成的包结物进行了表征,并初步推断了其相互作用的可能机理。
     3.设计并合成了八种基于二乙酯基甘脲的新型两单元荧光化合物,即含两个酰胺基团为识别位点的阴离子受体,并在乙腈溶剂中研究了它们对阴离子的选择性识别作用。结果表明F~-、OAc~-和H_2PO_4~-能使该类荧光分子的荧光发射产生猝灭,荧光峰位置基本不变。但猝灭程度很小,灵敏度较低。
     4.拓扑选择性地合成出具有更大空腔的甘脲二聚桥联的四单元分子夹——C-shaped产物,在此基础上将荧光基团引入到C-shaped的产物上,得到四单元甘脲荧光分子夹,进而研究它对金属离子及酚类客体的识别作用。结果表明C-shaped的四单元荧光分子夹也对Fe~(3+)和4-硝基苯酚表现出较高的选择性,且都表现为荧光猝灭的形式。
     5.设计、合成了八个含不同芳香炔基官能团的甘脲两单元建筑模块,得到了其中五个化合物的晶体结构并对其进行了研究,从中发现了一个奇异的、通过氢键和C-H…π作用协同组装而成,由甘脲衍生物四聚体构筑的分子碗状的特形晶体堆积态。
     6.依据组装再组装的串级组装策略,我们设计、合成了一类含吡啶官能团的两单元甘脲衍生物,并成功预测和构筑了一类新颖的分子网格堆积态。
     综上所述,整个论文工作取得了系列阶段性成果,共合成42个新化合物,测定了23个化合物的晶体结构,为该研究方向的进一步拓展积累了较为丰富的经验与实验数据。
Fluorescent chemosensors have attracted much attention and got a rapid development over the years for their high sensitivity and simplicity. The design and synthesis of fluorescent chemosensor based on host-guest interaction has been an important area of chemosensors. The characteristic of this kind of fluorescence sensor is that the hosts including cavity interact with the guests and formed host-guest complex by the interactions between hosts and detected substrates, which lead to the change of luminescent micro-environment and result in the variety of luminescent capability. Therefore, the selective recognition and detection of guest species can be monitored through recording the changed light signals of the illuminant. Based on the glycoluril, we designed and synthesized a series of novel fluorescent chemsensors including different three-dimensional cavities by introducing the fluorophores into the receptor. Their recognition and sensing abilities toward various metal ions, anions and neutral guests were studied. In addition, the crystal engineering is an important section of the molecular engineering, which involves the assembly behavior of molecules or chemical groups in crystal, the design of crystal and the control of the structure and performance. The synthesized molecules with specific topological three-dimensional structure could be used as excellent building blocks in the studies of molecular assembly. Hence, the other emphasis of this thesis focuses primarily on studying the special crystal structure modality of two series of two-unit glycoluril-based derivatives in the course of assembly.
     The main contents are shown as following:
     1. In recent years, the fluorescent chemosensors based on the classical traditional supramolecular host molecules have gained the rapid development. A detailed review was carried out about their research progress with a classification according to different hosts and different photoinduced process. We put forward our design ideas and research topics based on the above review.
     2. Ten fluorescent molecular clips based on glycoluril were designed and synthesized by using Sonogashira coupling reaction to covalently attach terminal aryl alkynes to the aromatic sidewalls of bromized molecular clip and buildπ-systems that function as fluorophore moieties. Their photophysical characteristics were studied. The results demonstrated that these fluorescent molecular clips exhibited very strong fluorescence responses to Fe~(3+) and had remarkably high selectivity to Fe~(3+) over other metal ions including alkali metals, alkaline-earth metals and Ag~+, Hg~(2+), Cu~(2+), Ni~(2+), Cd~(2+), Zn~(2+), Mn~(2+), Pb~(2+), Cr~(3+) ,Co~+ et al. On the other hand, these fluorescent molecular clips had also an excellent selective recognition for 4-nitrophenol. They bound 4-nitrophenol through hydrogen bonds andπ-πstacking interactions and had no affinity with other eight hydroxybenzene derivatives such as hydroquinone. The complexes were characterized through ~1H NMR, IR and Job-plot analyses and the possible mechanism was proposed.
     3. Eight novel fluorescent anion receptors of two unit glycoluril derivatives with double ureidyl N-H used as the binding sites were designed and synthesized. Their recognition behaviors toward various anions in CH_3CN solvent were studied. Results indicated anion receptors were capable of selectively binding F~-, OAc~- and H_2PO_4~- over other anions. However, the changes of fluorescence emission were unobvious with low sensitivity.
     4. Methylene-bridged glycoluril C-shaped dimmers----four unit molecular clips with larger cavity were topologically synthesized. The fluorophores were attached to C-shaped dimmer and fluorescent four unit molecular clip was obtained. Also, its photophysical properties for recognitions of metal ions and hydroxybenzene derivatives were investigated. It was found that the chemosensor could selectively recognize Fe~(3+) and 4-nitrophenol and displayed fluorescence quenching.
     5. Eight building blocks in which different aryl alkynes moieties were linked to two unit glycoluril derivatives were synthesized and five systematic structures of single crystal were obtained. We found a novel tetrameric molecular bowl crystal packing morphology formed by hydrogen bond and C-H…πinteractions.
     6. Based on the tandem assembly strategy of assembly and biassembly, we designed and synthesized a series of two unit glycoluril derivatives bearing pyridine moieties and successfully predicted and constructed a novel type of molecular grid network.
     In summary, the stage results were obtained in this thesis. We obtained forty-two new compounds and twenty-three systematic structures of single crystal which afforded abundant experiment data for further expanding.
引文
[1]沈家骢,张希.科学前沿与未来(第1集).张焘主编.北京:科学出版社,1995,78.
    
    [2]刘育,尤长城,张衡益.超分子化学,2001,南开大学出版社。
    
    [3] Gunnlaugsson, T.; Glynn, M.; Tocci, G M.; Kruger, P. E.; Pfeffer, F. M. Anion Recognition andSensing in Organic and Aqueous Media Using Luminescent and Colorimetric Sensors. Coord.Chem. Rev. 2006,250, 3094-3117.
    
    [4] Raymo, F. M. Digital Processing and Communication with Molecular Switches. Adv. Mater. 2002,74,401-414.
    
    [5] Brown, G J.; de Silva, A. P.; Pagliari, S. Molecules That Add Up. Chem. Commun. 2002, 21,2461-2464.
    
    [6] Lavigne, J. J.; Anslyn, E. V. Sensing A Paradigm Shift in the Field of Molecular Recognition:From Selective to Differential Receptors. Angew. Chem. Int. Ed. 2001,40, 3119-3130.
    
    [7] Rurack, K.; Resch-Genger, U. Rigidization, Preorientation and Electronic Decoupling-the 'MagicTriangle' for the Design of Hignly Efficient Fluorescent Sensors and Switches. Chem. Soc. Rev.2002,57,116-127.
    
    [8] de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.;Rademacher, J. T.; Rice, T. E. Signaling Recognition Events with Fluorescent Sensors andSwitches. Chem. Rev. 1997, 97, 1515-1566.
    
    [9] Valeur, B.; Leray, I. Design Principles of Fluorescent Molecular Sensors for Cation Recognition.Coord. Chem. Rev. 2000, 205, 3-40.
    
    [10] de Silva, A. P.; Gunnlaugsson, T.; Rice, T. E. Recent Evolution of Luminescent PhotoinducedElectron Transfer Sensor. Analyst 1996, 727,1759-1762.
    
    [11] Barbara, P. F.; Jarzeba, W. Ultrafast Photochemical Intramolecular Charge Transfer and ExcitedState Solvation.Adv. Photochem. 1990, 75, 1-68.
    
    [12] Rettig, W. Photoinduced Charge Separation via Twisted Intramolecular Charge Transfer States.Top. Curr. Chem. 1994, 769, 253-299.
    
    [13] Ilichev, Y. V.; Kuhnle, W.; Zachariasse, K. A. Intramolecular Charge Transfer in Dual Fluorescent4-(Dialkylamino)benzonitriles. Reaction Efficiency Enhancement by Increasing the Size of theAmino and Benzonitrile Subunits by Alkyl Substituents. J. Phys. Chem. A 1998, 702,5670-5680.
    
    [14] Turro, N. J. Modern Molecular Photochemistry; University Science Books: Mill Valley, CA,??1991.
    
    [15] Martinez-Manez, R.; Sancenon, F. Fluorogenic and Chromogenic Chemosensors and Reagentsfor Anions. Chem. Rev. 2003,103,4419-4467.
    
    [16] Forster, T. Energiewanderung und Fluoreszenz. Naturwissenschafien 1946,33, 166-175.
    
    [17] Dessy, R. E. Chemical Sensor and Microinstrumentation , Am. Chem. Soc. Washington, DC:1989.
    
    [18] Lehn, J. M. Supramolecular Chemistry-Scope and Perspectives Molecules, Supramolecules, andMolecular Devices (Nobel lecture). Angew. Chem. Int. Ed. Engl. 1988,27, 89-112.
    
    [19] Liu, Y.; You, C. -C; Wada, T.; Inoue, Y. Molecular Recognition of Aliphatic Alcohols andCarboxylic Acid by Chromophoric Cyclodextrins. Supramol. Chem. 2000,12, 243-253.
    
    [20] Bauer, L. J.; Gutsche, C. D. Calixarenes. 15. The Formation of Complexes of Calixarenes withNeutral Organic Molecules in Solution. J. Am. Chem. Soc. 1985, 707,6063-6069.
    
    [21] Freeman, W. A.; Mock, W. L.; Shih, N. -Y. Cucurbituril. J. Am. Chem. Soc. 1981, 103,7367-7368.
    
    [22] de Silva, A. P.; de Silva, S. A. Fluorescent Signalling Crown Ethers; ' Switching On' ofFluorescence by Alkali Metal Ion Recognition and Binding in Situ. J. Chem. Soc. Chem.Commun. 1986. 1709-1710.
    
    [23] de Silva, A. P.; Gunaratne, H. Q. N.; Gnnlaugsson, T.; Nieuwenhuizen, M. Fluorescent Switcheswith High Selectivity towards Sodium Ions: Correlation of Ion-induced Conformation Switchingwith Fluorescence Function. Chem. Commun. 1996, 1967-1968.
    
    [24] Kubo, K.; Ishige, R.; Kubo, J.; Sakurai, T. Synthesis and Complexation Behavior ofN-(1-naphthylmethyl)-1,4,7,10,13-pentaoxa-16-azacyclooctadecane. Talanta 1999,48, 181-187.
    
    [25] Meadows, E. S.; De Wall, S. L.; Barbour, L. J.; Gokel, G W. 1-and 2-Naphthylmethyl Sidearmsof Isomeric Bibracchial Lariat Ethers Significantly Affect Alkali Metal Cation Complexation.Chem.Commun. 1999, 1555-1556.
    
    [26] Kubo, K.; Yamamoto, E.; Sakurai, T. Synthesis, Complexation and Fluorescence Behavior ofDiaza-12-crown-4 Carrying Two Naphthyl Pendants. Heterocycles 1998, 48, 2133-2139.
    
    [27] Kubo, K.; Ishige, R.; Sakurai, T. Synthesis and Complexation Behavior of N,N'-Bis(9-anthrylmethyl)-1,4,10,13-tetraoxo-7,16-diazacyclooctadecane. Heterocycles 1998, 48,347-351.
    
    [28] Kubo, K.; Sakaguchi, S.; Sakurai, T. Synthesis, Complexation, and Fluorescence Behavior ofArmed Crown Ethers Carrying Nnaphthyl Group. Talanta 1999, 49,735-744.
    
    [29] Akkaya, E. U.; Huston, M. E.;Czarnik, A. W. Chelation-enhanced Fluorescence of??Anthrylazamacrocycle Conjugate Probes in Aqueous Solution. J. Am. Chem. Soc. 1990, 112,3590-3593.
    
    [30] Rurack. K.; Resch-Genger, U.; Spieles, M.; Bricks, J. L. Cation-triggered 'Switching on' of theRed/Near Infra-red (NIR) Fluorescence of Rigid Fluorophore-Spacer-Receptor Ionophores.Chem.Commun. 2000,2103-2104.
    
    [31] Gunnlaugsson, T.; Bichell, B.; Nolan, C. Fluorescent PET Chemosensors for Lithium.Tetrahedron 2004, 60, 5799-5806.
    
    [32] Benco, J. S.; Nienaber, H. A.; Dennen, K.; McGimpsey, W. G A Fluoroionophore for Detectionof Potassium Ions: 9-anthryl-substituted Azacrown Ether Covalently Linked to a 1,3-alternatecalix[4]arene. J. Photochem. Photobiol. A: Chem. 2002,152, 33-40.
    
    [33] Hama, H.; Morozumi, T.; Nakamura, H. Novel Mg~(2+)-responsive Fluorescent Chemosensor Basedon Benzo-15-crown-5 Possessing 1-naphthaleneacetamide Moiety. Tetrahedron Lett. 2007, 48,1859-1961.
    
    [34] Bu, J. H.; Zheng, Q. Y.; Chen, C. F.; Huang, Z. T. New Fluorescence-Quenching Process throughResumption of PET Process Induced by Complexation of Alkali Metal Ion. Org. Lett. 2004, 6,3301-3303.
    
    [35] Bourson, J.; Borrel, M. N.; Valeur, B. Ion-responsive Fluorescent Compounds : Part 3. CationComplexation with Coumarin 153 Linked to Monoaza-15-crown-5. Anal. Chim. Acta. 1992,257,189-193.
    
    [36] Bekiaria, V.; Judeinsteinc, P.; Lianosa, P. A Sensitive Fluorescent Sensor of Lanthanide Ions. J.Lumin. 2003,104, 13-15.
    
    [37] Milgrew, M. J.; Riehle, M. O.; Cumming, D. R. S. Novel Fluoroionophores IncorporatingDiaryl-1,3,4-oxadiazole and Aza-crown Ring. Potentially Sensitive Mg~(2+) Ion Sensor. Sens.Actuators B 2007,122, 347-350.
    
    [38] Kawai, H.; Nagamura, T.; Mori, T.; Yoshida, K. Picosecond Mechanism of Metal-Ion-SensitiveFluorescence of Phenylimidazoanthraquinone with Azacrown. J. Phys. Chem. A 1999, 103,660-664.
    
    [39] Prodi, L.; Montalti, M.; Zaccheroni, N.; Bradshaw, J. S.; Izatt, R. M.; Savage, P. B.Characterization of 5-chloro-8-methoxyquinoline Appended Diaza-18-crown-6 as aChemosensor for Cadmium. Tetrahedron Lett. 2001, 42,2941-2944.
    
    [40] de Silva, A. P.; Guaratne, H. Q. N.; McCoy, C. P. A Molecular Photoionic AND Gate Based onFluorescent Signaling. Nature 1993,364,42-44.
    
    [41] De Ssantis, G; Fabbrizzi, L.; Lichelli, M.; Mangano, C; Sacchi, D.; Sardone, N. A Fluorescent??Chemosensor for the Copper(Ⅱ) Ion. Inorg. Chim. Acta. 1997,257,69-76.
    
    [42] Fabrizzi, L.; Licchelli, M.; De Santis, G; Sardone, N.; Velders, A. H. Fluorescence RedoxSwitching Systems Operating through Metal Centres: the NiIII/NiII Couple. Chem. Eur. J. 1996,2, 1243-1250.
    
    [43] Fabrizzi, L.; Licchelli, M.; Pallavicini, P. Transition Metals as Switches. Acc. Chem. Res. 1999,32, 846-853.
    
    [44] Valeur, B.; Bourson, J.; Pouget, J. in: A.W. Czarnik (Ed.), Fluorescent Chemosensors for lon andMolecule Recognition, ACS Symposium Series 538, American Chemical Society, Washington,DC, 1993, p. 25.
    
    [45] Rettig, W.; Lapouyade, R. Probe Design and Chemical Sensing, in: J.R. Lakowicz (Ed.), Topicsin Fluorescence Spectroscopy, Vol. 4, Plenum, New York, 1994, p. 109.
    
    [46] Valeur, B.; Badaoui, F.; Bardez, E.; Bourson, J.; Boutin, P.; Chatelain, A.; Devol, I.; Larrey, B.;Lefévre, J. P.; Soulet, A. in: J.-P. Desvergne, A.W. Czarnik (Eds.), Chemosensors of Ion andMolecule Recognition, NATO ASI Series, Kluwer, Dordrecht, 1997, p. 195.
    
    [47] L(o|¨)hr, H. G; V(o|¨)gtle, F. Chromo- and Fluoroionophores. A New Class of Dye Reagents. Acc.Chem. Res. 1985,18,65-72.
    
    [48] Alfimov, M. V.; Gromov, S. P. Applied Fluorescence, in: W. Rettig (Ed.), Chemistry, Biology andMedicine, Springer, Berlin, 1999.
    
    [49] Bourson, J.; Valeur, B. Ion-responsive Fluorescent Compounds. 2. Cation-steered IntramolecularCharge Transfer in a Crowned Merocyanine. J. Phys. Chem. 1989, 93, 3871-3876.
    
    [50] Letard, J. F.; Lapouyade, R.; Rettig, W. Synthesis and Photophysical Study of 4-(N-monoaza-15-crown-5) Stilbenes forming TICT States and Their Complexation with Cations. Pure Appl.Chem. 1993, 65, 1705-1712.
    
    [51] Ushakov, E. N.; Gromov, S. P.; Fedorova, O. A.; Alfimov, M. V. Crown-containing Styryl Dyes.19. Complexation and Cation-induced Aggregation of Chromogenic Aza-15-crown-5-ethers.Russ. Chem. Bull. 1997, 46,463-471.
    
    [52] Rurack, K.; Bricks, J. L.; Kachkovski, A.; Resch, U. Complexing Fluorescence ProbesConsisting of Various Fluorophores Linked to l-aza-15-Crown-5. J. Fluoresc. 1997, 7,63S-66S.
    
    [53] Mateeva, N.; Enchev, V.; Antonv, L.; Deligeorgiev, T.; Mitewa, M. Spectroscopic Study on theComplexation of an Aza-15-Crown-5 Containing Chromofluoroionophore with Ba~(2+) and Ca~(2+)Cations. J. Incl. Phenom. 1995, 20, 323-333.
    
    [54] Jonker, S. A.; Van Dijk, S. I.; Goubitz, K.; Reiss, C. A.; Schuddeboom, W; Verhoeven, J. W.Solid-State Structure and Spectroscopy of Chromoionophoric Acridinium Derivatives. Mol.Cryst.??Liq. Cryst. 1990,183,273-282.
    
    [55] Kollmannsberger, M.; Rurack, K.; Resch-Genger, U.; Daub, J. Ultrafast Charge Transfer inAmino-Substituted Boron Dipyrromethene Dyes and Its Inhibition by Cation Complexation: ANew Design Concept for Highly Sensitive Fluorescent Probes. J. Phys. Chem. A 1998, 102,10211-10220.
    
    [56] Létard, J. F.; Delmond, S.; Lapouyade, R.; Braun, D.; Rettig, W. New Intrinsic Fluoroionophoreswith Dual Fluorescence: DMABN-Crown4 and DMABN-Crown5. Rec. Trav. Chim. Pays-Bas.1995,114, 517-527.
    
    [57] Collins, G E.; Choi, L. -S.; Callahan,J. H. Effect of Solvent Polarity, pH, and MetalComplexation on the Triple Fluorescence of 4-(N-1,4,8,11-tetraazacyclotetradecyl)benzonitrile. J.Am. Chem. Soc. 1998,120, 1474-1478.
    
    [58] Addleman, R. S.; Bennett, J.; Tweedy, S. H.; Elshani, S.; Wai, C. M. Response of aBenzoxainone Derivative Linked to Monoaza-15-crown-5 with Divalent Heavy Metals. Talanta1998,46,573-581.
    
    [59] Cazaux, L.; Faher, M.; Lopez, A.; Picard, C; Tisnes, P. Styrylbenzodiazinones 3. Chromo-andFluoroionophores Derived from Monoaza-15-crown-5. Photophysical and ComplexingProperties. J. Photochem. Photobiol. A: Chem. 1994, 77,217-225.
    
    [60] Kasner, S. E.; Ganz, M. B. Regulation of Intracellular Potassium in Mesangial Cells: aFluorescence Analysis using the Dye, PBFI.Am. J. Physiol. 1992,262, F462-F467.
    
    [61] Minta, A.; Tsien, R. Y. Fluorescent Indicators for Cytosolic Sodium. J. Biol. Chem. 1989, 264,19449-19457.
    
    [62] Crossley, R.; Goolamanli, Z.; Gosper, J.; Sammes, P. G Synthesis and Spectral properties of NewFluorescent Probes for Potassium. J. Chem. Soc. Perkin Trans. 2 1994,513-520.
    
    [63] Li, H. P.; Xie, H. Z.; Wang, P. F.; Wu, S. K. The Complexation of Flavone Derivatives withAlkali and Alkaline Earth Metal Cations Studied by Spectroscopic Methods. New J. Chem. 2000,24, 105-108.
    
    [64] Zhou, L. L.; Sun, H.; Li, H. P.; Wang, H.; Zhang, X. H.; Wu, S. K.; Lee, S. T. A NovelColorimetric and Fluorescent Anion Chemosensor Based on the Flavone Quasi-crownEther-Metal Complex. Org. Lett. 2004,6, 1071-1074.
    
    [65] Liu, Y.; Duan, Z. Y; Zhang, H. Y; Jiang, X. L.; Han, J. R. Selective Binding and InverseFluorescent Behavior of Magnesium Ion by Podand Possessing Plural Imidazo[4,5-f]-1,10-phenanthroline Groups and Its Ru(Ⅱ) Complex. J. Org. Chem. 2005, 70,1450-1455.
    
    [66] Chen, C. T.; Huang, W. P. A Highly Selective Fluorescent Chemosensor for Lead Ions. J. Am.??Chem. Soc. 2002,124, 6246-6247.
    
    [67] Rurack, K.; Resch-Genger, U.; Bricks, J. L.; Spieles, M. Cation-triggered 'Switching on' of theRed/Near Infra-red (NIR) Fluorescence of Rigid Fluorophore-Spacer-Receptor Ionophores.Chem. Commun. 2000,2103-2104.
    
    [68] Rurack, K..; Resch-Genger, U. Rigidization, Preorientation and Electronic Decoupling-the 'MagicTriangle' for the Design of Hignly Efficient Fluorescent Sensors and Switches. Chem. Soc. Rev.2002,57,116-127.
    
    [69] Rurack, K.; Kollmannsberger, M.; Resch-Genger, U.; Daub, J. A Selective and SensitiveFluoroionophore for Hg~Ⅱ, Ag~Ⅰ, and Cu~Ⅱ with Virtually Decoupled Fluorophore and ReceptorUnits. J. Am. Chem. Soc. 2000,122, 968-969.
    
    [70] Descalzo, A. B.; Marinez-Má(?)ez, R.; Radeglia, R.; Rurack, K.; Soto, J. Coupling Selectivitywith Sensitivity in an Integrated Chemosensor Framework: Design of a Hg~(2+)-Responsive Probe,Operating above 500 run. J. Am. Chem. Soc. 2003,125, 3418-3419.
    
    [71] Ataman, D.; Akkaya, E. U. Selective Chromogenic Response via Regioselective Binding ofCations: A Novel Approach in Chemosensor Design. Tetrahedron Lett. 2002, 43, 3981-3983.
    
    [72] Parker, D.; Willams, J. A. G Luminescence Behaviour of Cadmium, Lead, Zinc, Copper, Nickeland Lanthanide Complexes of Octadentate Macrocyclic Ligands Bearing NaphthylChromophores. J. Chem. Soc. Perkin. Trans.2 1995, 7,1305-1314.
    
    [73] Kudo, K.; Kato, N.; Sakurai, T. Synthesis and Complexation Behavior of Diaza-18-crown-6Carrying Two Pyrenylmethyl Groups. Bull. Chem. Soc. Jpn. 1997, 70,3041-3046.
    
    [74] Kakizawa, Y.; Akita, T.; Nakamura, H. Syntheses and Complexing Behavior of New FluorescentReagents for Alkaline Earth Metal Ions. Chem. Lett. 1993,10, 1671-1674.
    
    [75] Kawakami, J.; Fukushi, A.; Ito, S. Complexing Behavior of New Naphthalene DerivativesHaving Amide Groups as Fluorescent Chemosensors for Alkali and Alkaline Earth Metal Ions.Chem. Lett. 1999, 9, 955-956.
    
    [76] Marquis, D.; Desvergne, J. P.; Bouas-Laurent, H. Photoresponsive Supramolecular Systems:Synthesis and Photophysical and Photochemical Study of Bis-(9,10-anthracenediyl)coronandsAAOnOn. J. Org. Chem. 1995, 60, 7984-7996.
    
    [77] Suzuki, Y.; Morozumi, T.; Nakamura, H.; Shimomura, M.; Hayashita, T.; Bartsch, R. A. NewFluorimetric Alkali and Alkaline Earth Metal Cation Sensors Based on Noncyclic Crown Ethersby Means of Intramolecular Excimer Formation of Pyrene. J. Phys.Chem. B 1998, 102, 7910-7917.
    
    [78] Licchelli, M.; Biroli, A. O.; Poggi, A. A Prototype for the Chemosensing of Ba~(2+) Based on??Self-Assembling Fluorescence Enhancement. Org. Lett. 2006,8,915-918.
    
    [79] Yuan, M.; Li, Y.; Li, J.; li, C; Liu, X.; Lv, J.; Xu, J.; Liu, H.; Wang, S.; Zhu, D. A Colorimetricand Fluorometric Dual-Modal Assay for Mercury Ion by a Molecule. Org. Lett. 2007, 9,2313-2316.
    
    [80] Litwiler, K. S.; Catena, G C; Bright, F. V. Simple Fiber-optic Sensor Based on Immobilizedβ-cyclodextrin. Anal. Chim. Acta. 1990,237,485-490.
    
    [81] Alarie, J. P.; Vo-Dinh, T. A. Fiber-optic Cyclodextrin-based Sensor. Talanta 1991,38,529-534.
    
    [82] Yang, R. H.; Wang, K. M.; Xiao, D.; Yang, X. H. A Selective Sensing Membrane for theDetermination of Tetracycline with Heptakis (2,6-di-O-isobutyl)-β-cyclodextrin as the Substrate.Microchem. J. 2000, 64,213-220.
    
    [83] Frankewich, P. K.; Thimmaiah, K. N.; Hinze, W. L. Evaluation of the Relative Effectiveness ofDifferent Water-soluble .beta.-cyclodextrin Media to Function as Fluorescence EnhancementAgents. Anal. Chem. 1991, 63,2924-2933.
    
    [84] Harata, K.; Uekama, K.; Otagirl, M.; Hirayama, F. Conformation of Permethylated Cyclodextrinsand the Host-guest Geometry of Their Inclusion Complexes. J. Inclusion Phenom. 1984, 1,279-293.
    
    [85] Hoshino, M.; Imamura, M.; Ikehara, K.; Hama, Y. Fluorescence Enhancement of BenzeneDerivatives by Forming Inclusion Complexes with Beta-Cyclodextrin in Aqueous Solutions. J.Phys.Chem. 1981,85, 1820-1823.
    
    [86] Cox, G S.; Turro, N. J. Methyl Salicylate Fluorescence as a Probe of the Geometry ofComplexation to Cyclodextrins. Photochem.Photobiol. 1984, 40, 185-188.
    
    [87] Turnbull, J. H.; Walker, G R. Chem. Abstr. 1981, 95, 70419d.
    
    [88] Orstan, A.; Ross, J. B. Investigation of the Beta-Cyclodextrin-Indole Inclusion Complex byAbsorption and Fluorescence Spectroscopies. J. Phys. Chem. 1987, 91,2739-2745.
    
    [89] Szabo, A. G; Karjcarski, D. T.; Cavatorta, P.; Masoti, L.; Barecllona, M. L. Excited State pKaBehaviour of Dapi. A Rationalization of the Fluorescence Enhancement of Dapi in Dapi-nucleicAcid Complexes. Photochem.Photobiol. 1986,44, 143-150.
    
    [90] Carcta Sanchez, F.; Hernandez Lopez, M.; Marquez Gomez, J. C. Fluorimetric Determination ofScandium Using the Cyclodextrin-1,4-dihydroxyanthraquinone Inclusion Complex. Analyst1987,112, 1037-1040.
    
    [91] Wu, D.; Hurtubise, R. J. Fluorescence Properties of 1-naphthol, 2-naphthol and 1,2,3,4-tetrahydronaphthol in Aqueous Alcohol Solvents with and without β-cyclodextrin. Talanta1993, 40, 901-907.
    
    [92] Gong, Z. L.; Zhang, Z. J. Cyclodextrin-based Optosensor for the Determination of Riboflavin inPharmaceutical Preparations Analyst 1996,121, 1119-1122.
    
    [93] Hamal, S. Effects of Cyclodextrins on the Fluorescence of Diphenyl Phosphate in AqueousSolution. Bull. Chem. Soc. Jpn. 1986, 59, 2979-2982.
    
    [94] Padda, G K.; Smith, D. S. Retinol: A Fluorescent Probe for Membrane Lipids. FEBS. Lett. 1970,9, 287-289.
    
    [95] Shuang, S. M.; Guo, S. Y.; Li, L. Cai, M. Y. Beta-cyclodextrin Derivatives as FluorescenceEnhancers of the Drug, Hesperidin.Anal. Lett. 1998,31, 1357-1366.
    
    [96] Catena, G C; Bright, F. V. Thermodynamic Study on the Effects of beta.-cyclodextrin Inclusionwith Anilinonaphthalenesulfonates. Anal. Chem. 1989, 61, 905-909.
    
    [97] Gong, Z. L.; Zhang, Z. J. Cyclodextrin-based Optosensor for the Determination of Quinine.Fresenius J. Anal. Chem. 1997, 357, 1093-1101.
    
    [98] Wang, J.; Warner, I. M. Studies of the Naproxen:β-Cyclodextrin Inclusion Complex. Microchem.J. 1993, 48, 229-239.
    
    [99] Diaz, A. N.; Fera, L. S.; Sanchez, F. G Thermodynamic Parameters for the Molecular Inclusion Reaction of Dulcin with β-cyclodextrin.Spectrofluorimetric Determination of Dulcin. Talanta 1994,47,509-514.
    
    [100] Jules, O.; Scypinki, S.; Love, L. J. C. Spectrophotometric Determination of Boron in Plants after Separation as Trimethyl Borate by Microdiffusion. Anal. Chim. Acta. 1985,169,349-353.
    
    [101] Galian, R. E.; Veglia, A. V.; de Rossi, R. H. Cyclodextrin Enhanced Fluorimetric Method for theDetermination of Tryptamine. Analyst 1998,123, 1587-1591.
    
    [102] Maafi, M.; Mahedero, M. C; Aaron, J. J. Fluorimetric Properties of a 2-Hydroxypropyl-β-Cyclodextrin: 9-Methyl-benzo[a]phenothiazine Inclusion Complex in Aqueous Media. Analytical Usefulness. Talanta 1997, 44,2193-2199.
    
    [103] Escandar, G M. Spectrofluorimetric Determination of Piroxicam in the Presence and Absenceof β-cyclodextrin. Analyst 1999,124, 587-591.
    
    [104] Walliman, P.; Marti, T.; Furer, A.; Diederich, F. Steroids in Molecular Recognition. Chem. Rev.1997, 97, 1567-1608.
    
    [105] Hamasaki, R.; Ueno, A .; Toda, F. Molecular Recognition Indicators of Modified Cyclodextrins Using Twisted Intramolecular Charge Transfer Fluorescence. Bull. Chem. Soc. Jpn. 1994, 67, 516-523.
    
    [106] Suzuki, I.; Sakurai, Y.; Ohkubo, M.; Ueno, A.; Osa, T. Extremely Promoted Guest Binding Ability of γ-Cyclodextrin Bearing a Pyrene Derivative on the Secondary Hydroxyl Side. Chem.??Lett. 1992,2005-2008.
    
    [107] Wang, Y.; Ikeda, T.; Ueno, A. Dansyl-beta-cyclodextrins as Fluorescent Sensors Responsive toOrganic-compounds. Bull. Chem. Soc. Jpn. 1994,67,1598-1607,
    
    [108] Hamada, F.; Ichicawa, K.; Ito, R.; Hamai, S.; Suzuki, I.; Osa, T.; Ueno, A. J Inclusion Phenom.Mol. Recognit. Chem. 1995,20,43-43.
    
    [109] Ueno, A .; Minato, S.; Osa, T. Detection of Organic Compounds by Guest-responsive Monomerand Excimer Fluorescence of 6A,6B-, 6A,6C-,and 6A,6D-bis(2-naphthylsulfonyl)-beta-cyclodextrins Anal. Chem. 1992, 64,2562-2565.
    
    [110] Mcalpine, S. R.; Garcia-Garibay, M. A. Studies of Naphthyl-Substituted β-Cyclodextrins.Self-Aggregation and Inclusion of External Guests. J. Am..Chem. Soc. 1998,120,4269-4275.
    
    [111] Jullien, L.; Canceill, J.; Valear, B. Multichromophoric Cyclodextrins. 4. Light Conversion byAntenna Effect. J. Am. Chem. Soc. 1996,118, 5432-5442.
    
    [112]Fukushima, M.; Osa, T.; Ueno, A. Photoswitchable Multi-response Sensor ofAzobenzene-modified γ-Cyclodextrin for Detecting Organic Compounds. Chem. Lett. 1991,709-712.
    
    [113] Hamasaki, K.; Ikeda, H.; Nakamura, A.Fluorescent Sensors of Molecular Recognition.Modified Cyclodextrins Capable of Exhibiting Guest-Responsive Twisted IntramolecularCharge Transfer Fluorescence. J. Am. Chem. Soc. 1993,115, 5035-5040.
    
    [114] Hamasaki, K.; Ueno, A.; Tode, F. A Fluorescent α-cyclodextrin as a Sensor for DetectingAliphatic Alcohols by Dual Fluorescence Arising from Normal Planar and TwistedIntramolecular Charge Transfer Excited States. J. Chem. Soc. Chem. Commun. 1993,331-333.
    
    [115] Ueno, A.; Chen, Q.; Suzuki, I. Detection of Organic Compounds by Guest-responsive CircularDichroism Variations of Ferrocene-appended Cyclodextrins. Anal. Chem. 1992, 64,1650-1655.
    
    [116] Ueno, A.; Minto, S.; Osa T, T. Host-guest Sensors of 6A,6B-, 6A,6C-, 6A,6D-, and6A,6E-bis(2-naphthylsulfenyl)-.gamma.-cyclodextrins for Detecting Organic Compounds byFluorescence Enhancements. Anal. Chem. 1992, 64,1154-1157.
    
    [117] Ueno, A.; Suzuki, I.; Osa, T. Host-Guest Sensory System for Detecting a Variety of OrganicCompounds by Variations in Pyrene Excimer and Monomer Fluorescence Intensities. Chem.Lett. 1989, 1059-1062.
    
    [118] Carradini, R.; Dossena, A.; Galavama, G Fluorescent Chemosensor for Organic Guests andCopper(Ⅱ) Ion Based on Dansyldiethylenetriamine-Modified β-Cyclodextrin. J. Org. Chem.1997, 62,6283-6289.
    
    [119] Ueno, A.; Minato, S.; Suzuki, I. Host-Guest Sensory System of Dansyl-Modifled??β-Cyclodextrin for Detecting Steroidal Compounds by Dansyl Fluorescence. Chem. Lett. 1990,605-608.
    
    [120] Narang, U.; Dunbar, R. A.; Bright, F. V. Chemical Sensor-based on an Artificial ReceptorElement Trapped in a Porous Sol-gel Glass Matrix. Appl. Spectrosc. 1993,47,1700-1703.
    
    [121] Wang, Y.; Ikeda, T. Fluorescein Modified β-cyclodextrin as a Charge-changeable ReceptorTetrahedron Lett. 1993, 34, 4971-4974.
    
    [122] Aoyagi, T.; Nakamura, A.; Ikeda, H. Alizarin Yellow-Modified β-Cyclodextrin as aGuest-Responsive Absorption Change Sensor. Anal.Chem. 1997,69,659-663.
    
    [123] Kardoa, Y; Ito, M.; Ser, T. Controlled Electron Transfer Between Cyclodextrin-SandwichedPorphyrin and Quinones. J. Am. Chem. Soc. 1993,115,7003-7004.
    
    [124] Herkstroeter, W. C; M artic, P. A.; Evans, T. R.; Farid, S. Cyclodextrin Inclusion Complexes of1-pyrenebutyrate. The Role of Coinclusion of Amphiphiles. J. Am. Chem. Soc. 1986, 108,3275-3280.
    
    [125] Schurte, J. M.; Ndou,T. T; de la Pena, A. M.; Mukundan, S.; Warner, Jr. I. M. Influence ofAlcohols on the Beta-Cyclodextrin/acridine Complex. J. Am. Chem. Soc. 1993,115,292-298.
    
    [126] Yang, R. H.; Wang, K. M.; Xiao, D. Yang, X. H. A Host-guest Optical Sensor for AliphaticAmines Based on Lipophilic Cyclodextrin. Fresenius J. Anal. Chem. 2000, 367,429-429.
    
    [127] Asfari, Z.; B(o|¨)hmer, V.; Harrowfield, J.; Vicens, J. Calixarenes 2001, Kluwer, Dordrecht,Netherlands, 2001.
    
    [128]刘育,张衡益,李莉,王浩,纳米超分子化学——从合成受体到功能组装体,化学工业出 版社,北京,2004,pp.117-147.
    
    [129] Lhotak, P. Calixarene-based Receptors for Anion Sensing. Top. Curr. Chem. 2005,255, 65-96.
    
    [130] Lee, S. H.; Kim, S. H.; Kim, S. K.; Jung, J. H.; Kim, J. S. Fluorescence Ratiometry ofMonomer/Excimer Emissions in a Space-Through PET System. J. Org. Chem. 2005, 70,9288-9295.
    
    [131] Gutsche, C. D.; Calixarenes Revisited, Cambridge, The Royal Society of Chemistry, 1998.
    
    [132] Chen, L.; Xu, H.; Li, Y. Recent Development of Chemical Sensors Based-on Calixarenes. Chin.J. Anal. Chem. 2000, 28, 232-239.
    
    [133] Casnati, A.; Pochini, R.; Ungaro, R.; Ugozzoli, F.; Arnaud, F.; Fanni, S.; Schwing, M. J.;Egberink, R. J. M.; de Jong, F.; Reinhoudt, D. N. Synthesis, Complexation, and MembraneTransport Studies of 1,3-Alternate Calix[4]arene-crown-6 Conformers: A New Class of CesiumSelective Ionophores. J. Am. Chem. Soc. 1995,117,2767-2777.
    
    [134] Dung, N. T. K.; Ludwing, R. Solvent Extraction of Heavy Metal with Macrocyclic Ligands??Based on Calix[4]arenes. New J. Chem. 1999,2, 603-607.
    
    [135] Ji, H. F.; Dabestani, R.; Brown, G. M.; Hettich, R. L. Synthesis and sensing Behavior ofCyanoanthracene Modified 1,3-Alternate Calix[4]benzocrown-6: A New Class of Cs~+ Selectiveoptical Sensors. J. Chem. Soc., Perkin Trans. 2 2001,585-591.
    
    [136] Ji, H. E; Brown, G M.; Dabestani, R. Calix[4]arene-based Cs~+ Elective Optical Sensors. Chem.Commun. 1999,609-610.
    
    [137]Ji, H. F.; Dabestani, R.; Hettich, R. L.; Brown, G. M. Optical Sensing of Cesium Using1,3-Alternate Calix[4]-mono- and Di(anthrylmethyl)aza-crown-6. Photochem. Photobiol. 1999,70, 882-886.
    
    [138] Ji, H. -F.; Dabestani, R.; Brown, G M. A Supramolecular Fluorescent Probe, Activated byProtons To Detect Cesium and Potassium Ions, Mimics the Function of a Logic Gate. J. Am.Chem. Soc. 2000,122, 9306-9307.
    
    [139] Aoki, I.; Sakaki, T.; Shinkai, S. A New Metal Sensory System Based on IntramolecularFluorescence Quenching on the Ionophoric calix[4]arene Ring. J. Chem. Soc, Chem. Commun.1992, 730-732.
    
    [140] Unob, F.; Asfari, Z.; Vicens, J. An Anthracene-based Fluorescent Sensor for Transition MetalIons Derived from Calix[4]arene. Tetrahedron Lett. 1998,39,2951-2954.
    
    [141] Kim, J. S.; Shon, O. J.; Rim, J. A.; Kim, S. K.; Yoon, J. Pyrene-Armed Calix[4]azacrowns asNew Fluorescent Ionophores: "Molecular Taekowndo" Process via Fluorescence Change. J.Org. Chem. 2002, 67,2348-2351.
    
    [142] Kim, S. K.; Lee, J. K.; Lim, J. M.; Kim, J. W.; Kim, J. S. Pb~(2+) Sensing Chemo-sensor:Thiacalix[4]crown-based Lumino-ionophore. Bull. Korean Chem. Soc. 2004,25, 1247-1250.
    
    [143]Yoon, J.; Kim, S. K.; Singh, N. J.; Kim, K. S. Imidazolium Receptors for the Recognition ofAnions. Chem. Soc. Rev. 2006,35, 355-360.
    
    [144] Lee, S. H.; Kim, S. H.; Kim, S. K.; Jung, J. H.; Kim, J. S.Fluorescence Ratiometry ofMonomer/Excimer Emissions in a Space-Through PET System. J. Org. Chem. 2005, 70,9288-9295.
    
    [145] Leray, I.; Valeur, B.; O'Reilly, F.; Jiwan, J. L. H.; Soumillion, J. P.; Valeur, B. A NewCalix[4]arene-based Fluorescent Sensor for Sodium Ion. Chem. Commun. 1999, 795-796.
    
    [146] Leray, I.; Lefevre, J. P.; Delouis, J. F.; Delaire, J.; Valeur, B. Synthesis and Photophysical andCation-Binding Properties of Mono- and Tetranaphthylcalix[4]arenes as Highly Sensitive andSelective Fluorescent Sensors for Sodium. Chem. Eur. J. 2001, 7,4590-4598.
    
    [147] Métivier, R.; Leray, I.; Valeur, B. A Highly Sensitive and Selective Fluorescent Molecular??Sensor for Pb(Ⅱ)Based on A Calix[4]arene Bearing Four Dansyl Groups. Chem. Commun.2003, 996-997.
    
    [148] Malval, J. P.; Leray, I.; Valeur, B. A Highly Selective Fluorescent Molecular Sensor forPotassium Based on A Calix[4]bisazacrown Bearing Boron-dipyrromethene Fluorophores. NewJ. Chem. 2005,29,1089-1094.
    
    [149] Narita, M.; Higuchi, Y.; Hamada, F.; Kumagai, H. Metal Sensor of Water SolubleDansyl-modified Thiacalix[4]arenas. Tetrahedron Lett. 1998,39, 8687-8690.
    
    [150] Iwamoto, K.; Araki, K.; Fujishima, H.; Shinkai, S. Fluorogenic Calix[4]arene. J. Chem. Soc.Perkin Trans. 1 1992, 1885-1887.
    
    [151] Metivier,R.; Leray, I.; Valeur, B. Lead and Mercury Sensing by Calixarene-BasedFluoroionophores Bearing Two or Four Dansyl Fluorophores. Chem. Eur. J. 2004, 10,4480-4490.
    
    [152] Choi, J. K.; Kim, S. H.; Yoon, J.; Lee, K.-H.; Bartsch, R. A.; Kim, J. S. A PCT-Based,Pyrene-Armed Calix[4]crown Fluoroionophore. J. Org. Chem. 2006, 71, 8011-8015.
    
    [153] Kim, J. S.; Kim, H. J.; Kim, H. M.; Kim, S. H.; Lee, J. W.; Kim, S. K.; Cho, B. R. Metal IonSensing Novel Calix[4]crown Fluoroionophore with a Two-Photon Absorption Property. J. Org.Chem. 2006, 71, 8016-8022.
    
    [154] Kim, S. K.; Bok, J. H.; Bartsch, R. A.; Lee, J. Y.; Kim, J. S. A Fluoride-Selective PCTChemosensor Based on Formation of a Static Pyrene Excimer. Org. Lett. 2005, 7, 4839-4842.
    
    [155] Lee, S. H.; Kim, H. J.; Lee, Y. O.; Vicens, J.; Kim, J. S. Fluoride Sensing with a PCT-basedcalix[4]arene. Tetrahedron Lett. 2006, 47, 4373-4376.
    
    [156] Aoki, I.; Kawabata, H.; Nakashima, K.; Shinkai, S. Fluorescent Calix[4]arene Which Repondsto Solvent Polarity and Metal Ions. J. Chem. Soc. Chem. Commun. 1991,1771-1773.
    
    [157] Jin, T.; Ichikawa, K.; Koyama, T. A Fluorescent Calix[4]arene as An IntermolecularExcimer-forming Na~+ Sensor in Nonaqueous Solution. J. Chem. Soc. Chem. Commun. 1992,499-501.
    
    [158] Bodenant, B.; Weil, T.; Businelli-Pourcel, M.; Fages, R; Barbe, B.; Pianet, I.; Laguerre, M.Synthesis and Solution Structure Analysis of a Bispyrenyl BishydroxamateCalix[4]arene-Based Receptor, A Fluorescent Chemosensor for Cu~(2+) and Ni~(2+) Metal Ions. J.Org. Chem. 1999, 64, 7034-7039.
    
    [159] Kim, S. K.; Kim, S. H.; Kim, H. J.; Lee, S. H.; Lee, S. W.; Ko, J.; Bartsch, R. A.; Kim, J. S.Indium(Ⅲ)-Induced Fluorescent Excimer Formation and Extinction in Calix[4]arene-Fluorionophores. Inorg. Chem. 2005,44,7866-7875.
    
    [160] Kim, S. K.; Lee, S. H.; Lee, J. Y.; Lee, J. Y.; Bartsch, R. A.; Kim, J. S. An Excimer-Based,Binuclear, On-Off Switchable Calix[4]crown Chemosensor. J. Am. Chem. Soc. 2004, 126,16499-16506.
    
    [161]Takeshita, M.; Shinkai, S. A Selective Fluorometric Sensing System for Guanidinium Ion in thePresence of Primary Ammonium Ions. Chem. Lett. 1994, 1349-1352.
    
    [162] Schazmann, B.; Alhashimy, N.; Diamond, D. Chloride Selective Calix[4]arene Optical SensorCombining Urea Functionality with Pyrene Excimer Transduction. J. Am. Chem. Soc. 2006,128, 8607-8614.
    
    [163] Kim, H. J.; Kim, S. K.; Lee, J. Y; Kim, J. S. Fluoride-Sensing Calix-luminophores Based onRegioselective Binding. J. Org. Chem. 2006, 71, 6611-6614.
    
    [164] Jin, T. A New Na~+ Sensor Based on Intramolecular Fluorescence Energy Transfer Derived fromCalix[4]arene. Chem. Commun. 1999,2491-2492.
    
    [165] Lee, S. H.; Kim, S. K.; Bok, J. H.; Lee, S. H.; Yoon, J.; Lee, K.; Kim, J. S. Calix[4]crown inDual Sensing Functions with FRET. Tetrahedron Lett. 2005, 46, 8163-8167.
    
    [166] Freeman, W. A.; Mock, W. L.; Shih, N-. Y. Cucurbituril. J. Am. Chem. Soc. 1981, 103,7367-7368.
    
    [167] Wanger, B. D.; Stojanovic, N,; Day, A. I.; Blanch, R. J. Host Properties of Cucurbit[7]uril:Fluorescence Enhancement of Anilinonaphthalene Sulfonates. J. Phys. Chem. B 2003, 107,10741-10746.
    
    [168] He, X. Y; Li, G; Chen, H-. L. A New Cucurbituril-based Metallo-rotaxane. Inorg Chem.Commu. 2002, 5, 633-936.
    
    [169] Miyahara, Y; Abe, K.; Inazu, T. "Molecular" Molecular Sieves: Lid-Free Decamethylcucur-bit[5]uril Absorbs and Desorbs Gases Selectively. Angew. Chem. Int. Ed. Engl. 2002, 41,3020-3023.
    
    [170] Islobe, H.; Sato, S.; Nakamura, E. Synthesis of Disubstituted Cucurbit[6]uril and Its RotaxaneDerivative. Org. Lett. 2002,4, 1287-1289.
    
    [171] Jon, S. Y; Selvapalam, N.; Oh, D. H.; Kang, J. K.; Kim, S. Y; Jeon, Y J.; Lee, J. W.; Kim, K.Facile Synthesis of Cucurbit[n]uril Derivatives via Direct Functionalization: ExpandingUtilization of Cucurbit[n]uril. J. Am. Chem. Soc. 2003,125,10186-10187.
    
    [172] Wagner, B. D.; MacRae, A. I. The Lattice Inclusion Compound of 1,8-ANS and Cucurbituril: AUnique Fluorescent Solid. J. Phys. Chem. B 1999,103, 10114-10119.
    
    [173] Mohanty, J.; Nau, W. M. Ultrastable Rhodamine with Cucurbituril. Angew. Chem. Int. Ed. 2005,44,3750-3754.
    
    [174] Mohanty, J.; Bhasikuttan, A. C; Nau, W. M.; Pal, H. Host-Guest Complexation of Neutral Red with Macrocyclic Host Molecules: Contrasting pK_a Shifts and Binding Affinities for Cucurbit[7]uril and β-Cyclodextrin. J. Phys. Chem. B 2006,110, 5132-5138.
    
    [175] Kim, H. J.; Heo, J.; Jeon, W. S.; Lee, E.; Kim, J.; Sakamoto, S.; Yamaguchi, K.; Kim, K. Selective Inclusion of a Hetero-Guest Pair in a Molecular Host: Formation of Stable Charge-Transfer Complexes in Cucurbit[8]uril. Angew. Chem. Int. Ed. 2001, 40,1526-1529.
    
    [176] Lagona, J.; Wagner, B. D.; Isaacs, L. Molecular-Recognition Properties of a Water-Soluble Cucurbit[6]uril Analogue.J. Org. Chem. 2006, 71,1181-1190.
    
    [1] Sijbesma, R. P.; Nolte, R. J. M. Molecular Clips and Cages Derived from Glycoluril. Top. Curr. Chem. 1995, 775,25-56.
    
    [2] Rowan, A. E.; Elemans, J. A. A. W.; Nolte, R. J. M. Molecular and Supramolecular Objects fromGlycoluril.Acc. Chem. Res. 1999,32, 995-1006.
    
    [3] Elemans, J. A. A. W.; Rowan, A. E.; Nolte, R. J. M. Self-assembly Architectures from Glycoluril.Ind. Eng. Chem. Res. 2000, 39, 3419-3428.
    
    [4] Smeets, J. W. H.; Dalen, L. van; Kaats-Richter, V. E. M.; Nolte, R. J. M. FunctionalizedBasket-shaped Hosts. Synthesis and Complexation Studies with (Alkali) Metal and Ammoniumand Diammonium Ions. J. Org. Chem. 1990,55,454-461.
    
    [5] Rebek, J. Jr. Molecular Recognition and Assembly. Acta Chem. Scand. 1996, 50, 707-716.
    
    [6] Rebek, J. Jr. Reversible Encapsulation and Its Consequences in Solution. Acc. Chem. Res. 1999,32,278-286.
    
    [7] Hof, F.; Craig, S. L.; Nuckolls, C; Rebek, J. Jr. Molecular Encapsulation. Angew. Chem. Int. Ed.2002,47,1488-1508.
    
    [8] Palmer, L. C; Rebek, J. Jr. The Ins and Outs of Molecular Encapsulation. Org. Biomol. Chem.2004,2,3051-3059.
    
    [9] Freeman, W. A.; Mock, W. L.; Shih, N.-Y. Cucuribituril. J. Am. Chem. Soc. 1981,103, 7367-7368.
    
    [10] Mock, W. L. Cucurbituril. In Comprehensive supramolecular chemistry; V(o|¨)gtle, F. ElsevierPress: New York, 1997, Vol. 2, p477-493.
    
    [11] Gerasko, O. A.; Fedin, V. P. Supramolecular Chemistry of Cucurbituril. Russ. Chem. Rev. 2002, 77,741-761.
    
    [12] Kim, K.; Selvapalam, A.; Hyunoh, D. Cucurbiturils----a New Family of Host Molecules. J. Incl.Phenom. Macrocyclic. Chem. 2004, 50, 31-36.
    
    [13] Kim, J.; Jung, I. S.; Kim S.-Y; Lee, E.; Kang, J.-K.; Sakamoto, S.; Yamaguchi, K.; Kim, K. NewCucurbituril Homologues: Syntheses, Isolation, Characterization, and X-ray Crystal Structures ofCucurbit[n]uril (n = 5, 7, and 8). J. Am. Chem. Soc. 2000, 722, 540-541.
    
    [14] Day, A. I.; Arnold, A. P.; Blanch, R. J.; Snushall, B. Controlling Factors in the Synthesis ofCucurbituril and its Homologues. J. Org. Chem. 2001, 66, 8094-8100.
    
    [15] Lee, J. W.; Selvapalam, N.; Kim, H.-J.; Kim, K. Cucurbituril Homologues and Derivatives: New??Opportunities in Supramolecular Chemistry. Acc. Chem. Res. 2003,36, 621-630.
    
    [16] Sasmal, S.; Sinha, M. K.; Keinan, E. Facile Purification of Rare Cucurbiturils by AffinityChromatography. Org. Lett. 2004, 6, 1225-1228.
    
    [17] Burnett, C. A.; Witt, D.; Fettinger, J. C; Isaacs, L. Acyclic Congener of Cucurbituril: Synthesisand Recognition Properties. J. Org. Chem. 2003, 68, 6184-6191.
    
    [18]韩宝航,刘育.葫芦脲:分子识别与组装.有机化学 2003,23,139-149.
    
    [19] Conn, M. M.; Rebek, J. Jr. Self-assembling Capsules. Chem. Rev. 1997, 97, 1647-1668.
    
    [20] Kim, K.Mechanically Interlocked Molecules Incorporating Cucurbituril and TheirSupramolecular Assemblies. Chem. Soc. Rev. 2002,31,96-107.
    
    [21] Elemans, J. A. A. W.; Rowan, A. E.; Nolte, R. J. M. Hierarchical Self-assembly of AmphiphilicMetallohosts to Give Discrete Nanostructures. J. Am. Chem. Soc. 2002,124,1532-1540.
    
    [22] K(o|¨)lbel, M.; Menger, F. M. Materials Based on Glycoluril. Adv. Mater. 2001,13, 1115-1119.
    
    [23] Lee, E.; Kim, J.; Heo, J.; Whang, D.; Kim, K. A Two-dimensional Polyrotaxane with LargeCavitives and Channels: A Novel Approach to Metal-organic Open-frameworks by UsingSupramolecular Building Blocks. Angew. Chem. Int. Ed. 2001, 40, 399-402.
    
    [24] Thordarson, P.; Bijsterveld, J. E. A.; Rowan, A. E.; Nolte, R. J. M. Epoxidation of Polybutadieneby a Topologically Linked Catalyst. Nature 2003,424,915-918.
    
    [25] Kang, J.; Rebek, J. Jr. Acceleration of a Diels-Alder Reaction by a Self-assembled MolecularCapsule. Nature 1997, 385, 50-52.
    
    [26] Krasia, T, C; Steinke, J. H. G. Formation of Oligotriazoles Catalysed by Cucurbituril. Chem.Commun. 2002, 22-23.
    
    [27] Reek, J. N. H.; Elemans, J. A. A. W.; Nolte, R. J. M. Synthesis, Conformational Analysis, andBinding Properties of Molecular Clips with Two Different Side Walls. J. Org. Chem. 1997, 62,2234-2243.
    
    [28] Reek, J. N. H.; Priem, A. H.; Engelkamp, H.; Rowan, A. E.; Elemans, J. A. A. W; Nolte, R. J. M.Binding Features of Molecular Clips. Separation of the Effects of Hydrogen Bonding andInteractions. J. Am. Chem. Soc. 1997,119,9956-9964.
    
    [29] Liu, Q. S.; Gong, S. L.; Ding, Y.; Chen, Y. Y; Wu, X. J. New Molecular Clips from Diphenyl Glycoluril and Catechol: Preparation, Structure and Conformation Studies, Binding Properties. Synlett. 2004,13, 2385-3287.
    
    [30] Burnett, C. A.; Lagona, J.; Wu, A.; Shaw, J. A.; Coady, D.; Fettinger, J. C; Day, A. I.; Isaacs, L. Preparation of Glycoluril Monomers for Expanded Cucurbit[n]uril Synthesis. Tetrahedron 2003,??59, 1961-1970.
    
    [31] Himes, V. L.; Hurrard, C. R.; Mighell, A. D. 3a, 6a-Dimethylglycouril {3a, 6a-dihydro-3a, 6a-dimethylimidazole[4,5-d]imidazole-2,5(1H, 6H)-dione}.Acta Cryst. B34, 3102-3104.
    
    [32] Lai, Y.-H.; Yap, A. H.-T. Synthesis and Rigid Conformers of 14,15-dimethyl-2,11-dithia[3.3](1,3)(1,4)cyclophane and 12,13-dimethyl[2.2] (1,3)(1,4)cyclophane. J. Chem. Soc, PerkinTrans. 21993, 1373-1377.
    
    [33] Ashton, P. R.; Girreser, U.; Giuffrida, D.; Kohnke, F. H.; Mathias, J. P.; Raymo, F. M.; Slawin,A. M. Z.; Stoddart, J. F.; Williams, D. J. Molecular Belts. 2. Substrate-directed Syntheses ofBelt-type and Cage-type Structures. J. Am. Chem. Soc. 1993,115, 5422-5429.
    
    [34] Takahashi, S.; Kuroyama, Y.; Sonogashira, K.; Hagihara, N. A Convenient Synthesis ofEthynylarenes and Diethynylarenes. Synthesis 1980,627-629.
    
    [35] Crisp, G. T.; Jiang, Y. L. A Convenient Route to Condensed-Ring Aromatic Acetylenes. SynthCommun. 1998, 28, 2571-2576.
    
    [36]Ciana, L. D.; Haim, A. Synthesis of 1,4-Bis(4-pyridyl)butadiyne. J. Heterocyclic. Chem. 1984,21,607-608.
    
    [37] Isaacs, L.; Witt, D.; Fettinger, J. C. Design, Synthesis and Self-association Behavior of WaterSoluble Self-complementary Facial Amphiphiles. Chem. Commun. 1999,2549-2550.
    
    [38] Sonogashira, K.; Tohda, Y; Hagihara, N. A Convenient Synthesis of Acetylenes: CatalyticSubstitutions of Acetylenic Hydrogen with Bromoalkenes, Iodoarenes and Bromopyridines.Tetrahedron Lett. 1975,16, 4467-4470.
    
    [39] Demas, J. N.; Crosby, G. A. Measurement of Photoluminescence Quantum Yields. J. Phys.Chem. 1971, 75,991-1024.
    
    [40] Job, P. Studies on the Formation of Complex Minerals in Solution and on their Stability. Ann.Chim. 1928,9, 113-203.
    
    [1] Stryer, L. Biochemistry. 4th Ed., W. H. Freeman and Co. New York, 1995.
    
    [2] Gunnlaugsson, T.; Davis, A. P.; Glynn, M. Fluorescent Photoinduced Electron Transfer (PET)Sensing of Anions Using Charge Neutral Chemosensors. Chem. Commun. 2001,2556-2557.
    
    [3] Gunnlaugsson, T.; Davis, A. P.; O'Brien, J. E.; Glynn, M. Fluorescent Sensing of Pyrophosphateand Bis-carboxylates with Charge Neutral PET Chemosensors. Org. Lett. 2002, 4,2449-2452.
    
    [4] Kim, S. K.; Yoon, J. A New Fluorescent PET Chemosensor for Fluoride Ions. Chem. Commun.2002,770-771.
    
    [5] Nisllizawa, S.; Teramae, N. Preparation of Phenylboronic Acid-Modified Capillary and Separationof Nucleosides by Capillary Electrophoresis. Anal. Sci. 1997,13,485-488.
    
    [6] Hennrich, G.; Sonnenschein, H.; Resch-Genger, U. Fluorescent Anion Receptors withIminoylthiourea Binding Sites-Selective Hydrogen Bond Mediated Recognition of CO_~(2-),HCO_3~- and HPO_4~(2-). Tetrahedron Lett. 2001, 42,2805-2808.
    
    [7] de Silva, A. P.; Gunaratne, H. Q. N.; Mcveigh, C; Maguire, G. E. M.; Maxwell, P. R. S.;O'Hanlon, E. Fluorescent Signalling of the Brain Neutotransmitter γ-aminobutyric Acid andRelated Amino Acid Zwitterions. Chem. Commun. 1996,2191-2192.
    
    [8] Kang, J.; Kim, J. Bromide Selective Fluorescent Anion Receptor with Glycoluril MolecularScaffold. Tetrahedron Lett. 2005, 46,1759-1762.
    
    [9] Yashima, E.; Huang, S.; Matsushima, T.; Okamoto, Y. Synthesis and Conformational Study ofOptically Active Poly(phenylacetylene) Derivatives Bearing a Bulky Substituent. Macromolecules1995,25,4184-4193.
    
    [10] Takahashi, S.; Kuroyama, Y.; Sonogashira, K.; Hagihara, N. A Convenient Synthesis ofEthynylarenes and Diethynylarenes. Synthesis 1980,627-629.
    
    [11] Wu, A. X.; Chakraborty, A.; Witt, D.; Lagona, J.; Damkaci, F.; Ofori, M. A.; Chiles, J. K.; Fettinger, J. C; Isaacs, L. Methylene-Bridged Glycoluril Dimers: Synthetic Methods. J. Org. Chem. 2002, 67, 5817-5830.
    
    [12] Mei, M.; Wu, S. Fluorescent Sensor for α,ω-Dicarboxylate Anion. New J. Chem. 2001, 25, 471-475.
    
    [13]余天祥,杨先金,杨发福,何永炳。杯[4]双硫脲化合物的合成及其对H_2PO_4~-的络合作用。 武汉大学学报(自然科学版)。1999,45,36-38。
    
    [1] Walba, D. M. Crystal and Solution Structures of 25,27-diethoxycarbinymethoxy-26,28-dimethoxyt -butylcalix[4]arene. Tetrahedron 1985, 41,3161-3168.
    
    [2] Wilcox, C. S.; Greer, L. M.; Lynch, V. Synthesis of Chiral Molecular Clefts. New Armatures forBiomimetic Systems. J. Am. Chem. Soc. 1987,109, 1865-1867.
    
    [3] Klarner, F. G; Panitzky, J.; Blaser, D.; Boese, R. Synthesis and Supramolecular Structures ofMolecular Clips. Tetrahedron 2001,57, 3673-3687.
    
    [4] Klarner, F. G; Kahlert, B. Molecular Tweezers and Clips as Synthetic Receptors. MolecularRrecognition and Dynamics in Receptor-substrate Complexes. Acc. Chem. Res. 2003, 36,919-932.
    
    [5] Prins, L. J.; Reinhoudt, D. N.; Timmerman, P. Noncovalent Synthesis Using Hydrogen Bonding.Angew. Chem. Int. Ed. 2001, 40, 2382-2426.
    
    [6] Hunter, C. A.; Lawson, K. R.; Perkins, J.; Urch, C. J. Aromatic interactions. J. Chem. Soc, PerkinTrans. 2 2001,651-669.
    
    [7] Sinnokrot, M. O.; Valeev, E. F.; Sherrill, C. D. Estimates of the Ab Initio Limit for π-πInteractions: The Benzene Dimer. J. Am. Chem. Soc. 2002,124, 10887-10893.
    
    [8] Burley, S. K.; Petsko, G A. Aromatic-aromatic Interaction: a Mechanism of Protein StructureStabilization. Science 1985,229,23-28.
    
    [9] Gallivan, J. P.; Doughert, D. A. A Computational Study of Cation-π interactions vs Salt Bridges inAqueous Media: Implications for Protein Engineering. J. Am. Chem. Soc. 2000,122, 870-870.
    
    [10] Jeffrey, G A.; Saenger, W. Hydrogen Bonding in Biological Structures; Springer: Berlin, 1994.
    
    [11] Atwood, J. L.; Davies, J. E. D.; MacNicol, D. D.; V(o|¨)gtle, F.; Suslick, K. S. Comprehensive Supramolecular Chemistry; Elsevier: Oxford, 1996.
    
    [12] Palmer, L. C; Rebek, J. Jr. The Ins and Outs of Molecular Encapsulation. Org. Biomol. Chem.2004,2,3051-3059.
    
    [13] Burnett, C. A.; Witt, D.; Fettinger, J. C; Isaacs, L. Acyclic Congener of Cucurbituril: Synthesisand Recognition Properties. J. Org. Chem. 2003, 68,6184-6191.
    
    [14] Zhou, B.; Cao, L.; Yin, G; Gao, M.; Wu, A. X-Ray Structure and Binding Properties ofMolecular Clips Based on Diethoxycarbonyl Glycoluril. Can. J. Chem. 2007,55, 586-591.
    
    [15] Isaacs, L.; Witt, D.; Lagona, J. Self-association of Facially Amphiphilic Methylene BridgedGlycoluril Dimmers. Org. Lett. 2001, 3, 3221-3224.
    
    [16] Wu, A. X.; Chakraborty, A.; Fettinger, J. C; Flowers, R. A.; Isaacs, L. Molecular Clips thatundergo Heterochiral Aggregation and Self-sorting. Angew. Chem. Int. Ed. 2002, 41,4028-4031.
    
    [17] Wu, A. X.; Isaacs, L. Self-sorting: The Exception or the Rule? J. Am. Chem. Soc. 2003, 125,4831-4835.
    
    [18] Wu, A. X.; Chakraborty, A.; Witt, D.; Lagona, J.; Damkaci, F.; Ofori, M. A.; Chiles, J. K.;Fettinger, J. C; Isaacs, L. Methylene-Bridged Glycoluril Dimers: Synthetic Methods. J. Org.Chem. 2002, 67, 5817-5830.
    
    [1] Li, N.; Maluendes, S.; Blessing, R. H.; Dupuis, M.; Moss, G R.; Detitta, G T. High-ResolutionX-ray Diffraction and ab Initio Quantum Chemical Studies of Glycoluril, a Biotin Analog. J. Am.Chem. Soc. 1994,116, 6494-6507.
    
    [2] Xu, S.; Gantzel, P. K.; Clark, L. B. Glycoluril. Acta Crystallogr. 1994, C50, 1988-1889.
    
    [3] Johnson, D. W.; Palmer, L. C; Hof, F.; Iovine, P. M.; Jr. Rebek, J. New SupramolecularOrganization for a Glycoluril: Chiral Hydrogen-Bonded Ribbons. Chem. Commun. 2002,2228-2229.
    
    [4] Wu, A.-X; Fettinger, J. C; Isaacs, L. Glycoluril Derivatives form Hydrogen Bonded Tapes ratherthan Cucurbit[n]uril Congeners. Tetrahedron 2002,58,9769-9777.
    
    [5] Johnson, D. W.; Hof, F.; Palmer, L. C; Martin, T.; Obst, U.; Jr. Rebek, J. Glycoluril RibbonsTethered by Complementary Hydrogen Bonds. Chem. Comm. 2003, 1638-1639.
    
    [6] Wang, Z.-G; Zhou, B.-H.; Chen, Y.-F.; Yin, G.-D.; Li, Y.-T.; Wu, A.-X.; Isaacs, L. SubstituentEffects Control the Self-Association of Molecular Clips in the Crystalline State. J. Org. Chem.2006, 71,4502-4508.
    
    [7] Chen, Y.-F.; She, N.-F.; Meng, X.-G; Yin, G-D.; Wu, A.-X.; Isaacs, L. Chiral Molecular ClipsControl Orthogonal Crystalline Organization. Org. Lett. 2007, 9, 1899-1902.
    
    [8] She, N.-F.; Guo, H.-Z.; Wang, Z.-G; Wu, A.-X.. Diethyl 6,9-dibromo-1,4-dioxo-1,2,3,4,5,10-hexahydro-2,3,4a,10a-tetraazabenzo[g]-cyclopenta[cd]azulene-2a, 10b-dicarboxylate. Acta. Cryst.2005, E61, o2549-o2550.
    
    [1]吴毓林,麻生明,戴立信等.现代有机合成化学进展.北京:化学工业出版社,2005.
    
     [2] Crystal engineering: From Molecules and Crystals to Materials, A NATO Advanced Study Instituteand an Euroconference, Erice, Italy, 1999.
    
    [3] Sijbesma,R.P.; Beijer,F. H.; Brunsveld, L. Reversible Polymers formed fromSelf-complementary Monomers using Quadruple Hydrogen Bonding. Science 1997, 278,1601-1604.
    
    [4] Saenger, W. Principles of Nucleic Sructure, Spring-verlag: New York, 1984, p253.
    
    [5] Philip, D.; Stoddart, J. F. Self-Assembly in Natural and Unnatural Systems. Angew. Chem. Int. Ed.Engl. 1996,55,1154-1196.
    
    [6] Brunsveld, L.; Folmer, B. J. B.; Meijer, E. W. Supramolecular Polymers. Chem. Rev. 2001, 101,4071-4098.
    
    [7] Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W. About Supramolecular Assemblies of π-ConjugatedSystems. Chem. Rev. 2005,105, 1491-1546.
    
    [8] Beletskkaya, I. P.; Cheprakov, A. V. The Heck Reaction as a Sharpening Stone of PalladiumCatalysis. Chem. Rev. 2000,100, 3009-3066.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700