用户名: 密码: 验证码:
1、三核二甲川菁染料的合成、性质及其与DNA相互作用的研究 2、新型电子钎焊免清洗型助焊剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分为两部分,涉及到(i)三核二甲川菁染料的合成、性质及其与DNA相互作用的研究;(ii)新型电子钎焊免清洗型助焊剂的研究。
     第一部分三核二甲川菁染料的合成、性质及其与DNA相互作用的研究
     三核二甲川菁染料具有波长范围可调、荧光性能良好、对DNA亲和性强等优点,近些年来在生物化学领域得到了较好的应用。本论文设计、合成一系列三核二甲川菁染料,研究其光谱性能,探讨其作为DNA荧光探针染料的可能性。主要研究内容有以下三个方面:
     1.介绍了荧光染料的分类、结构特点及应用范围。介绍了三核二甲川菁染料的结构特点、性质特征以及近些年来三核二甲川菁染料的合成、应用进展。
     2.合成了六种三核二甲川菁染料,其中四种为新化合物,利用1H NMR、13C NMR、IR、MS、UV-Vis、元素分析等手段确定了它们的结构。培养了染料3f的单晶,用X-射线单晶衍射技术表征了其分子结构,解析了其晶体堆积方式。根据反应条件讨论了芳杂醛的反应活性,结果为:呋喃甲醛>N-甲基-2-吡咯甲醛>β-吲哚甲醛。研究了染料在不同溶剂中的紫外-可见吸收和荧光光谱性质,结果发现:染料在甲醇中的最大吸收波长位于397-473nm,表现出较高的摩尔消光系数(4.2×104-6.2×104L mol-1 cm-1),其荧光发射波长位于508-559nm之间,具有85-120nm的斯托克位移值,荧光量子产率为0.0027-0.0538;六种染料的最大吸收波长随着溶剂极性的增大均发生蓝移,染料荧光强度随极性增大而减小
     3.利用紫外-可见吸收光谱和荧光光谱研究了染料与DNA在生理条件下的相互作用,结果发现:染料3a,3b,3c和3d对DNA均具有较好的亲和性,尤其是染料3b和3d,染料3b与DNA结合后,荧光强度大增,荧光量子产率增大了31.6倍,染料3d在缓冲溶液中几乎没有荧光,但当与DNA结合后发出了较强的荧光,量子产率为0.0187。这两种染料可以作为潜在的DNA荧光探针染料。
     第二部分新型电子钎焊免清洗型助焊剂的研究
     助焊剂是一类促进焊接过程顺利进行的物质。随着无铅焊料的应用,开发适用于无铅焊料的免清洗型助焊剂成为电子行业需要解决的重要问题。本论文介绍了助焊剂的组成、分类以及发展趋势。主要研究内容有以下两个方面:
     1.研究了各种助焊剂成分对扩展率的影响,用正交试验方法优化了最重要的影响因素。结果表明,活化剂中丙二酸对助焊剂扩展率影响最小,丁二酸最大。在高沸点溶剂中,N-甲基吡咯烷酮对扩展率影响最小,三乙醇胺最大
     2.研制了一种适合99.3Sn-0.7Cu焊料的免清洗型助焊剂配方,使用本文研制的助焊剂在印刷电路版上进行焊接,焊接效果良好,焊点饱满,没有出现虚焊、漏焊、锡珠等不良情况。
This paper contains two parts:(ⅰ) Synthesis, properties of trinucleus dimethine cyanine dyes and their interaction with DNA;(ⅱ) Study on a novel no-clean electronic soldering flux.
     Partⅰ:Synthesis, properties of trinucleus dimethine cyanine dyes and their interaction with DNA
     Trinucleus dimethine cyanine dyes have advantages of adjustable wavelength range. favorable fluorescence performance and good affinity for DNA. In this paper the trinucleus dimethine cyanine dyes were synthesized and their spectra properties were studied. The possibility of the dyes as the potential fluorescence probe is discussed.
     1. In this paper, the classification, structure features and application of flurencent dyes were presented. The structures and properties of trinucleus dimethine cyanine dyes were summarized. And the preparation and application progress of trinucleus dimethine cyanine dyes in recent years were also introduced.
     2. In this paper, six trinucleus dimethine cyanine dyes, four of which were novel, were synthesized. The products were identified by 1H NMR,13C NMR, IR, MS, UV-Vis spectroscopy and elemental analysis. The crystal structures and packing modes of 3f were analyzed by X-ray diffraction, which revealed molecular conformation, intra- and intermolecular interactions in solid state of the dyes. According to the irradiation time, the reaction activity for heterocyclic aromatic aldehydes was discussed. It could be found that the sequence of the reaction acitivity of heterocyclic aromatic aldehydes was:furaldehyde> 1-methylpyrrole-2-carboxaldehyde> indole-3-carboxaldehyde. The dyes absorbed in the region 397-473 nm and had molar extinction coefficients of 4.2×104-6.2×104L mol-1 cm-1 in methanol. Their fluorescence maxima, fluorescence quantum yields and Stokes shifts were located in the range of 508-559 nm,0.0027-0.0538 and 85-120 nm in methanol, respectively. Theλmax shows blue-shifted with the increase of the solvent dielectric constant, and the fluorescence quantum yields were decreased with the increase of solvent dielectric constant.
     3. The absorption and fluorescence properties of prepared trinucleus dimethine cyanine dyes in the DNA presence were investigated, which showed that 3b and 3d had good affinity for DNA. Significant enhancement of the fluorescence intensity was observed for dyes 3b,3d. The quantum yields of DNA-dyes 3b increased by 31.6 times compared with quantum yield of free dyes. Free dye 3d could not be detected significantly fluorescence in buffer. but DNA-dye 3d showed strong fluorescence performance and its fluorescence quantum yield is 0.0187. Therefore, dyes 3b and 3d are potential DNA fluorescent probe.
     Part ii:Study on a novel no-clean electronic soldering flux
     Soldering flux is used to remove the oxidation from the metal and facilitate the solder and metal to be joined. With the wide use of lead free solders, it becomes more important to develop a no-clean flux for lead free solders. The paper presents the classification, composition and trend of solder flux.
     1. The essential ingredient of flux was studied by measuring the spreading property of 99.3Sn-0.7Cu alloy on copper substrate. The components of the flux were optimized by using the analytical method of variance in the orthogonal design. The results showed that succinic acid was the best activator while the malonic acid was the worst. It was found that triethanolamine has the greatest influence on expansion rate among high boiling point solvents while N-methyl-2-pyrrolidone has the smallest.
     2. The new no-clean flux in this paper could meet the requirement of 99.3Sn-0.7Cu solder, which was the most common electronic solder. The performance of the new flux on printed circuit board was satisfied. The solder joints were good and had no defects such as false welding, lack of weld and tin ball.
引文
[1]刘爱平.细胞生物学荧光技术原理和应用[M].合肥:中国科学技术大学出版社.2007.
    [2]Tian M., Wu X. L., Zhang B., et al. Synthesis of chlorinated fluoresceins for labeling proteins[J]. Bioorganic & Medicinal chemistry.2008.18 (6):1977-1979.
    [3]Wu X. L., Tian M., He H. Z., et al. Synthesis and biological applications of two novel fluorescent proteins-labeling probes[J]. Bioorganic & Medicinal Chemistry Letters.2009. 19 (11):2957-2959.
    [4]Graber M. L., Dilillo D. C., Friedman B. L., et al. Characteristics of fluoroprobes for measuring intracellular pH[J]. Analytical Biochemistry.1986.156 (1):202-212.
    [5]Martin V. V., Rothe A., Gee K. R. Fluorescent metal ion indicators based on benzoannelated crown systems:A green fluorescent indicator for intracellular sodium ions[J]. Bioorganic & Medicinal Chemistry Letters.2005.15 (7):1851-1855.
    [6]Yang X. F., Ye S. J., Bai Q., et al. A fluorescein-based fluorogenic probe for fluoride ion based on the fluoride-induced cleavage of tert-butyldimethylsilyl ether[J]. Journal of Fuorescence,2007.17(1):81-87.
    [7]Kikuchi K., Komatsu K., Nagano T. Zinc sensing for cellular application[J]. Current opinion in chemical biology,2004,8 (2):182-191.
    [8]Song F., Gamer A. L., Koide K. A highly sensitive fluorescent sensor for palladium based on the allylic oxidative insertion mechanisim[J]. Journal of the American Chemical Society,2007,129(1):12354-12355.
    [9]Yoon S. Miller E. W., He Q., et al. Chang Christopher J. A bright and specific fluorescent sensor for mercury in water, cells, and tissue[J]. Angewandte Chemie-InternationalEdition,2007,46(35):6658-6661.
    [10]Lim M. H., Lippard S. J. Metal-based turn-on fluorescent probes for sensing nitric oxide[J]. Accounts of Chemical Research,2007,40 (1):41-51.
    [11]Leytus S. P., Patterson W. L., Mangel W. F. New class of sensitive and selective fluorogenic substrates for serine proteinases:Amino acid and dipeptide derivatives of rhodamine[J]. Biochemical Journal.1983.215 (2):253-260.
    [12]Liu J., Bhalgat M., Zhang C., et al. Fluorescent molecular probes V:A sensitive caspase-3 substrate for fluorometric assays[J]. Bioorganic & Medicinal Chemistry Letters,1999;9 (22):3231-3236.
    [13]Kupcho K., Hsiao K., Bulleit B., et al. A homogeneous, nonradioactive high-throughput fluorogenic protein phosphatase assay[J]. Journal of Biomolecular Screening,2004,9 (3): 223-231.
    [14]Lavis L. D., Chao T. Y., Raines R. T. Fluorogenic label for biomolecular imaging[J]. American Chemical Society Chemical Biology.2006.1 (4):252-260.
    [15]Streu C. Meggers E. Ruthenium-induced allylcarbamate cleavage in living cells[J]. Angewandte Chemie-International Edition,2006,118 (34):5773-5776.
    [16]Martin V. V., Rothe A., Diwu Z., et al. Fluorescent sodium ion indicators based on the 1.7-diaza-15-crown-5 system[J]. Bioorganic & Medicinal Chemistry Letters,2004,14 (21):5313-5316.
    [17]Minta A., Kao J. P., Tsien R. Y. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores[J] Journal of Biological Chemistry.1989.264 (14):8171-8178.
    [18]Koide Y. Urano Y. Kenmoku S, et al. Design and synthesis of fluorescent probes for selective detection of highly reactive oxygen species in mitochondria of living cells[J]. Journal of the American Chemical Society.2007,129 (34):10324-10325.
    [19]Cosa G., Focsaneanu K. S., McLean J. R. N., et al. Photophysical properties of fluorescent DNA-dyes bound to single-and double-stranded DNA in aqueous buffered solution[J]. Photochemistry and Photobiology,2001.73 (6):585-599.
    [20]Darzynkiewicz Z. Bruno S, Del Bino G. et al. Features of apoptotic cells measured by flow cytometry[J]. Cytometry,1992.13:795-808.
    [21]Loudet A., Burgess K. BODIPY dyes and their derivatives:Syntheses and spectroscopic properties[J]. Chemical Reviews,2007.107 (11):4891-4932.
    [22]Karolin J., Johansson L. B. A., Strandberg L., et al. Fluorescence and absorption spectroscopic properties of dipyrrometheneboron difluoride (BODIPY) derivatives in liquids, lipid membranes, and proteins[J]. Journal of the American Chemical Society. 1994.116(17):7801-7806.
    [23]Martin V. V., Rothe A., Gee K. R. Fluorescent metal ion indicators based on benzoannelated crown systems:A green fluorescent indicator for intracellular sodium ions[J]. Bioorganic & Medicinal Chemistry Letters.2005.15 (7):1851-1855.
    [24]Gabe Y., Urano Y., Kikuchi K., et al. Highly sensitive fluorescence probes for nitric oxide based on boron dipyrromethene chromophore-rational design of potentially useful bioimaging fluorescence probe[J]. Journal of the American Chemical Society,2004.126 (10):3357-3367.
    [25]Yoon S., Miller E. W., He Q., et al. Chang Christopher J. A bright and specific fluorescent sensor for mercury in water, cells, and tissue[J]. Angewandte Chemie-International Edition,2007,46 (35):6658-6661.
    [26]WANG L. Y., ZHANG X. G., JIA Y. Q., et al. Solvent-free Rapid Synthesis of Styryl Dyes with Benzimidazole Nucleus Using Microwave Irradiation[J]. Chinese Chemical Letters,2003.14(11):1116-1118.
    [27]Wang L. Y., Zhang X. G., Li F. M., et al. Microwave-Assisted Solvent-Free Synthesis of Some Styryl Dyes with Benzimidazole Nucleus[J]. Synthetic Communications.2004,34 (12):1-7.
    [28]Wang L. Y., Zhang X. G., Shi Y. P., et al. Microwave-assisted solvent-free synthesis of some hemicyanine dyes[J]. Dyes and Pigments,2004,62 (1):21-25.
    [29]Wang L. Y., Chen Q. W., Zhai G. H., et al. Investigation of the structures and absorption spectra for some hemicyanine dyes with pyridine nucleus by TD-DFT/PCM approach[J]. Journal of Molecular Structure:Theochem.2006.778 (1-3):15-20.
    [30]范芳丽,乔泽邦,陈沁闻.et al.2-取代吡啶半菁染料的无溶剂微波合成及光谱性质的理论研究[J].有机化学.2006,26(10):1389-1393.
    [31]李春兰.王兰英.孙国峰. et al.吲哚菁染料的研究进展[J].有机化学,2006,26(4):442-453.
    [32]Zhang X.-H., Wang L.-Y., Zhai G.-H., et al. Microwave-assisted Solvent-free Synthesis of Some Dimethine Cyanine Dyes. Spectral Properties and TD-DFT/PCM Calculations[J]. Bulletin of Korean Chemical Society,2007,28 (12):2382-2388.
    [33]Wang L.-Y., Chen Q.-W., Zhai G-H., et al. Theoretical study on the structures and absorption properties of styryl dyes with quinoline nucleus[J]. Dyes and Pigments,2007, 72(3):357-362.
    [34]WANG L.-Y., LI F.-M., Yi H., et al. Synthesis and Properties of Novel Hemicyanine Dyes-β-Cyclodextrin[J]. Chinese Journal of Chemistry,2007,25 (8):1192-1195.
    [35]Zhang X.-H., Wang L.-Y., Nan Z.-X., et al. Microwave-assisted solvent-free synthesis and spectral properties of some dimethine cyanine dyes as fluorescent dyes for DNA detection[J]. Dyes and Pigments,2008,79 (2):205-209.
    [36]Zhang X. H., Wang L. Y., Zhai G. H., et al. X-ray and DFT studies of the structure and spectral property of 2-[2-(4-dimethylaminophenyl)ethenyl]-1-methyl-pyridinium iodide[J]. Journal of Molecular Structure,2008.881 (1-3):117-122.
    [37]Zhang X.-H., Wang L.-Y., Zhai G.-H., et al. The absorption, emission spectra as well as ground and excited states calculations of some dimethine cyanine dyes[J]. Journal of Molecular Structure:Theochem,2009,906 (1-3):50-55.
    [38]Fu Y.-L., Huang W., Li C.-L., et al. Monomethine cyanine dyes with an indole nucleus: Microwave-assisted solvent-free synthesis, spectral properties and theoretical studies[J]. Dyes and Pigments,2009.82 (3):409-415.
    [39]Huang W., Wang L.-Y. Fu Y.-L., et al. Study on Thermodynamics of Three Kinds of Benzindocarbocyanine Dyes in Aqueous Methanol Solution[J]. Bulletin of Korean Chemical Society,2009.30 (3):556-560.
    [40]Su. J. J., Wang L. Y., Zhang X. H., et al. Synthesis. Absorption and Fluorescence Spectral Characteristics of Trinucleus Dimethine Cyanine Dyes as Fluorescent Probes for DNA Detection[J]. Journal of the Brazilian Chemical Society.2011.22 (1),73-79.
    [41]皮格拉夫基德著,刘敦译.照相化学(第四分册)[M].北京:中国电影出版社,1984.
    [42]Fichera M., Fortuna C. G., Impallomeni G., et al. Studies on the Interactions of the New 2,6-Bis[2-(heteroaryl)vinyl]-1-methylpyridinium Cations with the Decamer d(CGTACGTACG)2[J]. European Journal of Organic Chemistry,2002,2002 (1): 145-150.
    [43]Barresi V., Condorelli D. F., Fortuna C. G., et al. In Vitro Antitumor Activities of 2,6-di-[2-(Heteroaryl)vinyl]pyridines and Pyridiniums[J]. Bioorganic & Medicinal Chemistry,2002,10 (9):2899-2904.
    [44]Alessandro A., Luca B., Renato B., et al. Novel heterocycle-based two-photon absorbing dyes[J]. Organic letters.2002.4 (9):1495-1498.
    [45]张冰.刘智波.陈树琪.et al新型卟啉衍生物反饱和吸收研究[J].物理学报.2007.56(9):5252-5257.
    [46]黎爱珍.李有君.朱伟玲. et al偶氮苯光致异构反饱和吸收的光学双稳态开关的理论研究[J].大学物理,2008.37(5):33-36.
    [47]李德川.王明建,方香云.et al有机材料反饱和吸收特性分析[J].应用光学,2009.30(1):172-176.
    [48]Shindy H. A., El-Maghraby M. A., Eissa F. M. Synthesis, photosensitization and antimicrobial activity of certain oxadiazine cyanine dyes[J]. Dyes and Pigments,2006, 70(2):110-116.
    [49]Yang F., Xu X. L., Gong Y. H., et al. Synthesis and nonlinear optical absorption properties of two new conjugated ferrocene-bridge-pyridinium compounds[J]. Tetrahedron,2007.63 (37):9188-9194.
    [50]樊能迁.有机合成文典[M].北京:北京理工大学出版社.1992.
    [51]Edward M. K., Joseph A. S., William M. S., et al. Patton Pyridinium Complexes.111. Charge-Transfer Bands of Polyalkylpyridinium Iodides[J]. Journal of the American Chemical Society,1960.82 (9):2188-2191.
    [52]Casey K. G., Quitevis E. L. Effect of solvent polarity on nonradiative processes in xanthene dyes:Rhodamine B in normal alcohols[J]. Journal of Physical Chemistry,1988, 92 (23):6590-6594.
    [53]常建华.董绮功,波谱原理及解析[M].第一版;北京:科学出版社,2001.
    [54]樊美公,光化学基本原理与光子学材料科学[M].北京:科学出版社,2001.
    [55]Peng X., Song F., Lu E., et al. Heptamethine Cyanine Dyes with a Large Stokes Shift and Strong Fluorescence:A Paradigm for Excited-State Intramolecular Charge Transfer[J]. Journal of American Chemical Society,2005,127 (12):4170-4171.
    [56]Brenno A. D. Neto; Alexandre A. M. Lapis; Fabiana S. Mancilha; et al. New Sensitive Fluorophores for Selective DNA Detection[J]. Organic Letters,2007,9 (20):4001-4004.
    [57]柯以侃,董慧茹.分析化学手册[M],化学工业出版社,1999.
    [58]Reda M., El-Shishtawy, Abdullah M. et al. Synthesis of a new β-naphthothiazole 部分 参考文献monomethine cyanine dye for the detection of DNA in aqueous solution[J]. Spectrochimica Acta Part A,2010.75 (5):1605-1609.
    [59]Pham. W.;Lai.W. F.; Weissleder, R.;et al. High efficiency synthesis of a bioconjugatable near-infrared fluorochrome[J]. Bioconjugate Chem.2003.14 (5):1048-1051.
    [60]张雯,崔月芝,王世杰.et al.多支结构的呲嗪衍生物的合成及其双光子吸收性质[J].化学学报,2009.67(16):1880-1884.
    [61]Sheldrick G. M.. SHELXS-97. Program for Solution Crystal Structure, University ofGottingen.Germany,1997.
    [62]Sheldrick G. M.. A short history of SHFI.X. Acta Crystallographica section A 2008. A64:112-122.
    [63]Sheldrick G. M.. SHELXL-97. Program for Solution Crystal Structure and Refinement. University of Gottingen. Germany.1997,
    [64]Anikovsky M. Y.. Tatikolov A. S., Shvedova L. A., et al. Photochemical investigation of the triplet state of 3.3'-diethylthiacarboyanine iodide in the presence of DNA[J]. Russian Chemical Bulletin.2001.50 (7):1190-1193.
    [65]Carlsson. C.; Larsson, A.;Jonsson. M.; et al. Optical and Photophysical Properties of the Oxazole Yellow DNA Probes YO and YOYO[J]. The Journal of Physical Chemistry,1994,98(40):10313-10321.
    [66]Anikovsky. M.Y.; Tatikolov, A. S.; Shvedove. L. A.; et al. Photochemical investigation of the triplet state of 3.3"-diethylthiacarbocyanine iodide in the presence of DNA[J]. Russian Chemical Bulletin,2001,50 (7):1190-1993.
    [67]Neto, B. A. D., Lapis, A. A. M., Mancilha, F. S. et al. New Sensitive Fluorophores for Selective DNA Detection[J].Organic Letters,2007,9 (20):4001-4004.
    [68]Neto, B. A. D.; Lapis. A. A. M. Recent Developments in the Chemistry of Deoxyribonucleic Acid (DNA) Intercalators:Principles, Design, Synthesis, Applications and Trends[J]. Molecules,2009,14(5):1725.
    [1]田中和吉著.孟令国,黄琴香译.电子产品焊接技术[M].北京:电子工业出版社.1984.
    [2]邹僖,钎焊[M].北京:机械工业出版社.1981.
    [3]斯拉文斯基.元素的物理化学性质[M].北京:冶金工业出版社,1957.
    [4]金德宣,微电子焊接技术[M].北京:电子工业出版社,1990.
    [5]马鑫,何鹏,电子组装中的无铅软钎焊技术[M].哈尔滨:哈尔滨工业大学出版社.2006.
    [6]Akira T.. Norihisa I., Yuzi O., et al. Soldering flux, soldering paste and soldering method using the same[P]. US:5919317.1999-7-6.
    [7]雷永平.李国伟.夏志东. et al无铅焊料丝用松香型无卤素免清洗助焊剂[P].中国:200710177467,2008-04-09.
    [8]Guilian G. Lakhi N. G. Fluxing media for non-VOC, no-clean soldering[P]. US: 5958151,1999-9-28.
    [9]张鸣玲,廖高兵.免清洗无铅焊料助焊剂[P].中国:200410026717.2005-01-12.
    [10]李圣波.低固含量免清洗助焊剂[P].中国:97106057.1999-03-03.
    [11]Naoki I., Masanori T.. Masami A., et al. Soldering Flux[P]. US:5907007,1999-5-25.
    [12]Masayasu Y.o, Takumi S., Kensuke N. Soldering flux and solder paste composition[P]. US:20080053571.2007-9-5.
    [13]黄艳,谢明贵.李龙章,et al.电子工业用焊膏[P].中国:200410022403,2005-01-26.
    [14]Takaura K., Tsuruta K., Kawankago. H.SOLDER PASTE[P]. WO:2005084877, 2005-9-15.
    [15]雷永平,祝蕾,林健,et al.低银SnAgCu无铅焊膏用新型环保型助焊剂[P].中国:200910086205.5.2009-10-28.
    [16]潘慧凯,林峰.一种环保型无铅焊料水基助焊剂及其制备方法[P].中国:200710301491.3.2008-7-9.
    [17]王文明,徐菊英,王国银.免清洗无铅焊料助焊剂[P].中国:200810025124,2008-09-24.
    [18]徐安莲.罗泳,邓小安.防霉抗菌型低腐蚀性水基助焊剂[P].中国:200810026633.2008-08-13.
    [19]金德宣.张晓梅,微电子焊接与封装[M].成都:电子科技大学出版社.1996.
    [20]Zhiming Z., Miguel A. Capote. Polymerizable fluxing agents and fluxing adhesive compositions therefrom[P]. US:5985043.1999-11-16.
    [21]Hiroaki T., Toru S., Kenichi N., et al. Flux for soft soldering[P]. US:5817190, 1998-10-6.
    [22]黄永定,SMT技术基础与设备[M].北京:电子工业出版社.2007.
    [23]许宝库.国内外松香型助焊剂及松香基焊料的发展动态[J].皮革化工,2000,17(2):22-23.
    [24]肖尚明.焊膏配用焊剂的研制[J].电子工艺技术,1998,19(2):58-59.
    [25]项小宇.潘玉良.ES系列活性助焊剂的研制[J].江苏化工.1998.26(5):16-17.
    [26]徐静文,王敏霞,严路彤.国外助焊剂的新近展[J].电子材料.1993.7:11-13.
    [27]吕俊凡.新型免洗水性助焊剂研究[J].广西机械,1997.4:11-12.
    [28]周伶.水溶性有机助焊剂[J].山西电子技术.2002.3:43-45.
    [29]吴国齐.宣英男.一种低固含量无卤化物水基型免洗助焊剂[P].中国:200810029908.2008-12-24.
    [30]徐金华,马鑫.陈胜等.低碳环保型水基助焊剂[P].中国:201010234682.2010-11-24.
    [29]李来丙.电子工业产品助焊剂的研究进展[J].表面贴装技术.2004.8:62-70.
    [30]李海霞,李大光.管海凤.免清洗助焊剂在电子类产品中的应用[J].精细与专用化学品,2004.12(7):3-6.
    [31]陈其垠.舒万良.免清洗助焊剂MNCT的研制[J].电子工艺技术.1999.20(6):245-246.
    [32]杨嘉骥,孙淼,袁文,et al一种用于无铅焊的低固含量免清洗助焊剂[P].中国:200710063288,2007-07-18.
    [33]张凤兰.宋红石.岳涛.免清洗助焊剂及其制备方法[P].中国:200710057350,2007-10-24.
    [34]钟立新.一种无卤素消光助焊剂[P].中国:200810027111.2008-12-31.
    [35]陈跃华,吴以舜.一种无铅焊锡用助焊剂[P].中国:200810211959.2009-01-28.
    [36]赵麦群.卢加飞.吕娟.et al.锡锌系无铅合金焊膏及其制备方法[P].中国200810231811.7.2009-3-11.
    [37]雷永平.周水馨.林建等.Sn-Ag-Cu无铅焊料用松香型膏状助焊剂[P].中国:200810226734.2009-04-08.
    [38]廖龙根.一种无卤助焊剂[P].中国:200810219496,2009-04-22.
    [39]GRAY D. E. American Institute of Physics Handbook[M], New York:McGraw-Hill. 1957.
    [40]S.Nurmi. J.Sundelin. E.Ristolainen. et al. The effect of solder paste composition on the reliability of SiiAgCu joints[J]. Microelectronics Reliability.2004,44 (3):485-494.
    [41]Zeng K., NTu K., Six cases of reliability study of Pb-free solder Joints in electronic packaging technology[J]. Materials Science and Engineering,2002.38 (2):55-105.
    [42]顾霭云.赵东明.曹白杨.从有铅向无铅焊接过渡阶段应注意的问题[J].华北航天工业学院学报,2005.15(30):1-6.
    [43]吴念祖.吴坚.无铅焊接技术及其在应用中存在的问题[J].电子与封装,2005.5(5):17-21.
    [44]GB/T9491-2002,焊锡用液态焊剂(松香基)[S].北京:中国标准出版社,2003.
    [45]肖尚明.焊膏配用焊剂的研制[J].电子工艺技术.1998.19(2):58-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700