用户名: 密码: 验证码:
草除灵高效降解菌的分离鉴定、降解特性及降解途径的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从农药厂污水处理池的活性污泥中分离得到一株能以草除灵为唯一碳源生长的菌株。根据其表型特征、生理生化特性,结合菌株的16S rRNA基因序列同源性分析,将此菌株初步鉴定为Methyloversatilis sp.,命名为cd-1。
     菌株cd-1液体培养时呈絮状生长,在温度为30℃、pH 8.0的R2A培养基中生长最好;利用有机氮源和有机碳源生长较好;菌株对通气量没有特殊要求;该菌株不耐盐,NaCl浓度对菌株生长影响很大,NaCl浓度在0g/L~5g/L时生长最好;菌株cd-1对氯霉素和氨苄青霉素有抗性,对供试的其他抗生素均敏感。
     菌株cd-1在温度为30℃、pH为8.0时降解草除灵最好;接种量为2%时,菌株在草除灵浓度为100mg·L-1的无机盐液体培养基培养48h后,草除灵残留浓度仅为0.85mg·L-1,降解率达到99%;接种量由0.5%提高到8%,可以迅速加快草除灵的降解;当草除灵浓度为25 mg·L-1时,16h时草除灵残留浓度仅为1.44 mg·L-1,草除灵浓度提高到400 mg·L-1时,48h时草除灵浓度仍高达284.56mg·L-1,说明高浓度会对菌株产生毒害作用,抑制菌株对草除灵的降解;菌株利用有机氮源降解草除灵最快;通气量对菌株降解草除灵没有影响;加入蛋白胨、酵母粉和LB溶液可以提高菌株对草除灵的降解率。在土壤中接种降解菌cd-1可以加快草除灵的降解,土著微生物与外源投加的降解菌以协同作用的方式降解草除灵,提高了土壤中草除灵的降解速率。
     通过MS/MS和GC-MS联合检测,研究了草除灵在高效降解菌株cd-1作用下的降解途径,总共检测到了3个新的代谢产物。通过质谱图分析及代谢产物累积转换关系,鉴定3个代谢产物分别为benazolin、7-chloro-3-Methylbenzo[d]thiazol-2(3H)-one和2-chloro-6-(methyle-neamino)benzenethiol。初步确定代谢途径,先由benazolin-ethyl转化为benazolin,接着由benazolin转化为7-chloro-3-methylbenzo[d]thiazol-2(3H)-one,最终转化为2-chloro-6-(methyle-neamino)benzenethiol。
     为了便于菌株的实际应用,还对菌株的固定化进行了研究。采用海藻酸钠包埋法固定高效降解菌,结果表明海藻酸钠浓度为3%,CaCl2浓度为3%,固化时间为12h时,制得的固定化小球机械强度最好,对草除灵的降解效果也最好。固定化细菌的降解速度比游离态细菌的降解速度慢,但是固定化细菌抗pH和温度变化能力比游离态细菌强,对pH和温度的忍受范围更广。固定化降解菌在合适的重复使用次数内有较高的稳定性和反应活性,可用于固定化微生物反应器的构建。
A highly efficient benazolin-ethyl degrading strain was isolated from pesticide wastewater treatment pool,this strain could use benazolin-ethyl as the sole carbon source for growth.It was identified as Methyloversatilis sp. according to its physiological and biochemical properties, and 16S rRNA gene sequence analysis,and the strain was designated as cd-1.
     The optimum growth condition was temperature 30℃and pH 8.0 in R2A culture medium. In liquid cultures, cells of stain cd-1 tended to clump together, and forming white flakes, and using organic carbon source and organic nitrogen source grew best; Ventilation had on effect on the growth of the strain; Concentration of NaCl had great impact on the growth of stain cd-1, when the concentration of NaCl was 0~5g/L,the strain grows best; Strain cd-1 was resistant to chloramphenicol and ampicillin.
     Results showed that the strain degraded benazolin-ethyl best at 30℃and pH 8.0.When the inoculation rate was 2% and the concentration of benazolin-ethyl was 100mg·L-1, the residue concentration of benazolin-ethyl was only 0.85mg·L-1 in salts liquid medium after 48h by the strain cd-1, the degradation of benazolin-ethyl could reach 99%; Improving inoculation rate from 0.5% to 8% speeded up the degradation of benazolin-ethyl; When the concentration of benazolin-ethyl was 25mg·L-1, the residue concentration was only 1.44mg·L-1 after 16h by the strain cd-1, and when the concentration of benazolin-ethyl was up to 400mg·L-1, the residue concentration was still 284.56mg·L-1 after 48h, showing that increasing concentration of benazolin-ethyl produced toxic effects on the strain,inhibited the degradation of benazolin-ethyl;The strain was easy to use organic nitrogen, and degraded benazolin-ethyl the fastest; Ventilation had no effect on the degradation of benazolin-ethyl;Added peptone, yeast extract and LB solution was beneficial to the degradation of benazolin-ethyl.Degradation in soil inoculated with bacteria cd-1 could accelerate the degradation of benazolin-ethyl,because the indigenous microbiology and the exogenous degradation bacteria degraded benazolin-ethyl in a synergy way, and improved the soil degradation rate of benazolin-ethyl.
     The degradation pathway of benazolin-ethyl in the effect of the benazolin-ethyl degrading strain cd-1 cd-1 had been learned, and three new metabolites had been detected by MS/MS and GC-MS combined detection. Benazolin、7-chloro-3-Methylbenzo[d] thiazol-2(3H)-one and 2-chloro-6-(methyle-neamino)benzenethiol were successfully detected and identified based on mass spectrum analysis and transformation between metabolite accumulation.A biochemical degradation pathway of benazolin-ethyl was proposed, benazolin-ethyl first changed into benazolin,and then benazolin changed into 7-chloro-3-methylbenzo[d]thiazol-2(3H)-one,last changed into 2-chloro -6-(methyle-neamino) benzenethiol。
     In order to facilitate the practical application of the strain, the immobilization of the strain was also studied. Used sodium alginate embedding the benazolin-ethyl degrading strain cd-1,results showed that mechanical strength of immobilized beads best and the degradation of benazolin-ethyl effect was best when the concentration of sodium alginate was 3%, the concentration of CaCl2 was 3% and immobilized time was 12h.The degradation rate of immobilized bacteria was slower than the free bacteria, but immobilized bacteria could tolerance pH and temperature in a wider range.Immobilized degrading bacteria could keep high stability and reactivity in a suitable number of reuse, and coula be used for immobilized reactor building.
引文
[1]杜文明,徐克涵,周明义.农药的危害与无公害农药的开发和利用[J].河北林业科技,2003(6):49-50.
    [2]王赛妮,李蕴成.我国农药使用现状、影响及对策[J].现代预防医学,2007,34(20):3853-3855.
    [3]黄箐,乔传令.昆虫解毒酶解毒机理及其在农药污染治理中的应用[J].农业环境保护,2002,2(13):285-287.
    [4]宋桂娇.我国农药使用存在的问题及应对措施[J].植物保护,2007,11(213):24-25.
    [5]林玉锁,龚瑞忠.农药环境管理与污染控制[J].环境导报,2000,3:4-6.
    [6]陈东海,操庆国.中国农药废水处理技术现状[J].北方环境,2004,29(6):43-46.
    [7]覃克勋.除草剂污染对草食动物的危害[J].行业论坛,2009(9):59.
    [8]华小梅,单正军.我国农药的生产使用状况及其污染环境因子分析[J].环境科学进展,1996,4(2):33-45.
    [9]胡宏韬,程金平.除草剂污染地下水的生物治理模拟实验研究[J].农业环境科学学报,2005,24(增刊):144-147.
    [10]林玉锁等.农药与生态环境保护[M].北京:化学工业出版社,2000.
    [11]矫彩山,王中伟,彭美媛,等.我国农药废水的处理现状及发展趋势[J].环境科学与管理,2006,31(7):111-114.
    [12]叶蓓蓉,姚日生,边侠玲.农药生产废水处理技术与研究进展[J].工业用水与废水,2009,40(4):23-26.
    [13]邱宇平,陈金龙,张全兴.农药生产废水处理方法与资源化技术[J].环境污染治理技术与设备,2003,4(9):63-67.
    [14]迟春娟,施跃锦,张嗣炯.液-液萃取处理高氯难降解有机废水[J].浙江工业大学学报,2001,29(2):204-212.
    [15]张全兴,徐伟,荆和祥,等.树脂吸附-生物接触氧化法处理多菌灵及其中间体工业废水的研究[J].污染防治技术,1992,5(3):35-43.
    [16]胥维昌.我国农药废水处理现状及展望[J].化工进展.2000,19(5):18-23.
    [17]朱乐辉,王榕,吕国庆,等Fenton试剂预处理农药废水实验[J].农药,2008,47(2):109-111,117.
    [18]邵科隆,周集体,吕红,等.臭氧氧化预处理难降解农药废水的研究[J].环境工程学报,2009,3(7):1259-1262.
    [19]姜振军,吴维哗,王本庭.催化湿式氧化技术处理氯酯磺草胺生产废水的研究[J].山东化工,2009,39(3):50-53,58.
    [20]杨晓燕,陈雷,陆雪梅,等.微电解-芬顿法预处理吡虫啉农药生产废水[J].南京工业大学学报(自 然科学版),2008,30(3):30-33.
    [21]张雪红.水解酸化-活性污泥法处理卤代杂环类农药中间体废水的研究[J].上海化工,2010,35(7):1-4.
    [22]高凤钗,张晓平,葛健英,等.生物接触氧化法处理粉锈宁农药废水的研究[J].化工环保,1987,7:74-44.
    [23]曾建新,谢文蔚,纪逸之.预处理+厌氧水解+SBR处理农药废水[J].化学工业与工程技术2009,30(2):55-57.
    [24]孟连军,张建新,陆少鸣.微碱解-厌氧水解-SBR好氧生化法处理有机磷农药废水[J].化工环保,2001,21(2):88-91.
    [25]鄢丹,黄山,刘康怀.Ti02光催化氧化处理敌敌畏生产废水研究[J].工业用水与废水,2009,40(4):27-29.
    [26]董俊明.Ti02/Ge02复合膜光催化氧化降解农药废水的研究[J].环境工程学报,2007,1(3):75-79.
    [27]陈文,左军,刘庆红.光催化氧化法去除低浓度有机磷农药废水的综述[J].现代农业科学,2008,15(4):1-2.
    [28]Jennifer D, Schramm, Inez H. Ultrasonic irradiation of dichlorvos:decomposition mechanism [J]. Water Research,2001,35 (3):665-674.
    [29]Sridevi G, James C W, Thomas J. Sonochemical degradation of aromatic organic pollutants [J]. Waste Management,2002,22 (3):261-366.
    [30]Inez H, Ulrike P T. Ultrasonic irradiation of carbofuran:decomposition kinetics and reactor characterization [J]. Water Research,2001,35 (6):1445-1452.
    [31]Guangming Z, Inez H. Ultrasonic degradation of trichloroacetonitrile, chloropicrin and bromobenzene:design factors and matrix effects [J].Advances in Environmental Research,2000,4 (3):219-224.
    [32]孙红杰,张志群.超声降解甲胺磷农药废水[J].中国环境科学,2002,3(2):120-126.
    [33]王宏青,聂长明,徐伟昌,等.灭多威的超声降解研究[J].应用声学,2001,4(2):56-61.
    [34]岳新莲,焦天阳.超声波-臭氧协同预处理含酚农药废水的研究[J].金陵科技学院学报,2008,24(2):85-88.
    [35]王君,潘志军,张朝红,等.超声波处理农药废水的研究进展与应用前景[J].现代农药,2005,4(5):22-25.
    [36]严桂英,蒋斌.超临界水氧化技术及在环境保护中的应用[J].污染防治技术,2005,18(3):32-35.
    [37]林春绵,方建平,袁细宁,等.超临界水氧化法降解氧乐果的研究[J].中国环境科学,2008,20(4):305-308.
    [38]程洁红,李慧蓉.高效降解菌处理多菌灵农药生产废水的研究[J].上海环境科 学,2003,22(10):690-694.
    [39]瞿建宏,吴伟.除草剂生产废水经微生物降解前后的毒理效应[J].中国环境科学,2002,22(4):297-300.
    [40]张隽,黄星,邱吉国,等.氟铃脲降解菌FLN-1的分离鉴定及降解特性[J].环境科学学报,2009,29(6):1178-1183.
    [41]Pattanasupong A, Nagase H, Inoue M, et al.Ability of a microbial consortium to remove pesticide, carbendazim and 2,4-dichlorophenoxyacetic acid[J]. World Journal of Microbiology & Biotechnology,2004,20(5):517-522.
    [42]王彬彬,熊丽,郑永良,等.甲基对硫磷高效降解菌的分离鉴定及降解酶基因的克隆表达[J].环境科学学报,2008,28(10):1969-1975.
    [43]邓晓,李勤奋,侯宪文,等.乐果降解菌LGX1的筛选及其降解特性研究[J].生态环境学报,2010,19(5):1034-1039.
    [44]廖敏,张海军,谢晓梅.拟除虫菊酯类农药残留降解菌产气肠杆菌的分离、鉴定及降解特性研究[J].环境科学,2009,30(8):2445-2451.
    [45]丁伟,白鹤,程茁,等.咪唑乙烟酸降解菌的分离、鉴定及其降解特性研究[J].环境科学,2008,29(5):1359-1362.
    [46]段海明,王开运,乔康,等.两株毒死蜱降解细菌的分离鉴定及其降解特性[J].环境科学学报,2009,29(4):723-731.
    [47]苏少泉.除草剂在土壤中的降解与使用[J].现代农药,2004,3(1):5-8.
    [48]闫春秀,赵长山,刘亚光.微生物降解长残效除草剂的研究进展[J].东北农业大学学报2005,36(5):650-654.
    [49]滕春红,苏少泉.除草剂在土壤中的微生物降解及污染土壤的生物修复[J].农药,200645(8):505-507
    [50]肖艳松,谭琳,陈桂华,等.磺酰脲类除草剂的微生物降解[J].农药研究与应用,2007,11(3):15-19.
    [51]姚东瑞,陈杰,宋小玲.磺酰脲类除草剂残留与降解研究进展[J].农药,1997,36(7):32-36.
    [52]Joshi M M, Brown H M, Romesser J A. Degradation of chlorsulfuron by soil microorganisms[J]. Weed Sci,1985,33:888-893.
    [53]赵爽,叶菲.咪唑啉酮类除草剂的应用及降解[J].植物保护,2009,35(2):15-19.
    [54]王学东,王慧利,樊德方.咪唑烟酸在土壤中的微生物降解及其代谢物分析[J].环境科学研究,2004,17(6):42-45,53.
    [55]苏少泉.除草剂概论[M].北京:科学出版社,1989,206.
    [56]Barriuso E and S Houo t. Rap id m ineralizat ion of the s-t rizaine ring of at razine in relat ion to so ilmanagement [J].So il B io logy and B iochem istry,1996,28:1341-1348
    [57]潘学冬,虞云龙,花日茂.均三氮苯类除草剂微生物降解与转化[J].安徽农业大学学报,2001,28(3):246-250
    [58]徐军,邱星辉,曹宏,等.氯乙酰胺类除草剂微生物降解研究进展[J].应用与环境生物学报2004,10(3):389-393.
    [59]Martin M, Ferre E, Alonso R. Bioremeiation of soil contaminated by propachlor using native bacteria. International Biodeterioration Biodegradation,1995,35 (1-3):213-225.
    [60]张百臻.农药分析(第四版)[M].北京:化学工业出版社,2005.
    [61]李希平.选择性除草剂一高特克[J].杂草科学,1991,1,23-24.
    [62]春季施草除灵要慎重[J].农药市场信息,2006,5:33.
    [63]李美玲,周小刚,高菡等.草除灵除草效果及对油菜安全性研究[J].农药,1998,37(9):41-42.
    [64]单正军,朱忠林,蔡道基.高特克在油菜及土壤中的残留降解[J].农业环境保护,1999,18(2):59-61.
    [65]杨赓,施娟娟,李明等.草除灵废水可生物降解性及共基质代谢作用快速测定研究[J].现代农药,2002,2:30-33.
    [66]沈翔,李勇,张书贵,等.葡萄糖共基质代谢对除草剂草除灵废水的可生物降解特性的影响[J].安徽工程科技学院学报,2004,19(3):12-15.
    [67]Pimental D. Environmental and ecomonic effects of reducing pesticide use [J]. Bioscience, 1991,41:402-409.
    [68]Courteix A, Bergel A. Horseradish peroxidase-catalyzed hydroxylation of phenol:I. Thermodynamic analysis [J]. Enzyme and Microbial Technology,1995,17(12):1087-1093.
    [69]Sogorb M A,Vilanova E. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis[J]. Toxicology Letters,2002,128 (1-3):215-228.
    [70]Brookes B F,Leafe E L. Structure and plant growth-regulating activity of some 2-benzothiazolyloxyacetic acids and 2-oxobenzothiazolin-3-ylacetic acids [J]. Nature,1963, 198(4880):589-590.
    [71]蔡颢.草除灵乙醋小试研究报告[J].安徽化工,1997,88(4):13-14.
    [72]胡大波,刘福强,凌盼盼,等.农药废水的处理技术进展与展望[J].环境科技,2009,22(2):63-66.
    [73]Sogorb M A,Vilanova E. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis[J]. Toxicology Letters,2002,128 (1-3):215-228.
    [74]吴学玲,金德才,赵维良,等.4株邻苯二甲酸二丁酯降解菌的分离鉴定及其相关降解基因的克隆[J].环境科学,2009,30(9):2722-2726.
    [75]张谨华,李鹏丽,王婧人,等.苯酚降解菌DF51的分离鉴定、降解特性及其固定化的研究[J].中国 农学通报,2009,25(24):410-415.
    [76]郑永良,刘德立,刘世旺,等.甲胺磷农药降解菌的筛选鉴定及其降解效能研究[J].华中师范大学学报(自然科学版),2007,41(1):95-98.
    [77]朱顺妮,樊丽,倪晋.仁两株喹啉降解菌代谢途径的分析[J].中国环境科学,2008,28(5):456-460.
    [78]张宏波,林爱军,刘爽,等.芘高效降解菌的分离鉴定及其降解特性研究[J].环境科学,2010,31(1):243-247.
    [79]贾燕,尹华,叶锦韶,等.假单胞菌N7的萘降解特性及其降解途径研究[J].环境科学,2008,29(3):756-762.
    [80]叶明,陈九山,姚晓庆.一株草甘膦降解菌分离鉴定及其降解特性研究[J].环境科学与技术,2009,32(3):39-41.
    [81]林加奖,甘莉,陈祖亮.一株高效十四烷降解菌的筛选及降解条件优化[J].环境科学与技术,2009,32(9):13-16.
    [82]Kelly I D, Smith S. Chromatographic purification and identification of polar metabolites of benazolin-ethyl from soybean [J]. International Journal of Environmental Analytical Chemistry,1986,25(1-3):135-149.
    [83]Schnitzler F,Lavorenti A,Berns A E,et al. The influence of maize residues on the mobility and binding of benazolin:Investigating physically extracted soil fractions [J]. Environmental Pollution,2007,147(1):4-13.
    [84]顾孔珍,钱纯,罗岳平.用R2A培养基提高饮用水中细菌总数检出率[J].净水技术,2004,23(1):42-44.
    [85]东秀珠,蔡妙英等.常见细菌系统鉴定手册[M].北京:科学出版社,2001.267-273.
    [86]Miller S A, Dykes D D, Polesky H F. A simple salting out procedure for extracting DNA from human nucleated cells[J]. Nucleic Acids Research,1988,16(3):1215.
    [87]Stackebrandt E, Goodfellow M. Nuecleic acid techniques in bacterial systematics[M]. UK:John Wiley & Sons,1991.371-375.
    [88]魏翔.草除灵的液相色谱分析[J].山东化工,2003,32(1):30-32.
    [89]Morohoshi T, Yamashita T, Kato J, et al. A Method for screening polyphosphate-accumulating mutants which remove phosphate efficiently from synthetic Wastewater[J]. Journal of Biosciencaend Bioengineering,2003,95(6):637-640.
    [90]周群英.环境工程微生物学[M].(第二版).北京:高等教育出版社,2000,89-90.
    [91]翟晓萌,李道棠.海藻酸钠固定化包埋微生物处理有机微污染源水[J].环境科学,2000,(6):80-84.
    [92]柴立元,唐宁,闵小波,等.硫酸盐还原菌包埋固定化技术处理含铬废水[J].中南大学学报(自 然科学版),2005,36(6):965-970.
    [93]赵美云,雷中方.海藻酸钠包埋高效菌种强化处理聚酯废水的试验研究[J].工业水处理,2006,26(6):20-23.
    [94]包蔚,杨兴明,吴洪生,等.海藻酸钠固定化包埋对氨氧化细菌除氨效果的影响[J].土壤学报,2009,46(6):1083-1088.
    [95]李超敏,韩梅,张良,等.细胞固定化技术-海藻酸钠包埋法的研究进展[J].安徽农业学,2006,34(7):1281-1282,1284.
    [96]Don H P, Jin M C, Hwa W R, et al. Hydrogen sulfide removal utilizing immobilized Thiobacillus sp. IW with Ca-alginate bead.Biochemical Engineering Journal,2002,11:167-173.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700