用户名: 密码: 验证码:
天山上地幔对流与造山运动数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大陆动力学是当今固体地球科学研究的主导方向之一,其核心问题是大陆构造变形及其动力学机制.造山带是大陆变形最强烈、地表形态最明显的构造,它所涉及的地表地质结构、地球物理场特征、深部作用过程以及地表作用,一直是人们关注的热点.造山动力学研究对推动大陆构造变形及其动力学机制研究具有不可替代的作用.
     天山造山带远离板块边界,是现今世界上最为活跃的陆内造山带,被公认为研究陆内造山的天然实验场.刘启元(2004)提出了天山造山带动力学的10个关键科学问题.其中,塔里木板块的水平挤压与地幔对流作用对天山造山带的影响作用,以及二者之间相互关系是最核心的问题.
     现今天山造山带的活动不属于原始的碰撞造山过程,而是在被剥蚀夷平的古老造山带上的“复活”过程.同时,深部地球物理探测显示,地幔对流可能对天山造山带的复活起到了相当重要的作用.因此,确定中国境内天山造山带下方地幔中是否存在对流,是天山陆内造山动力学研究需要首先解答的关键问题.随之,如果存在地幔对流,那么对流的形态如何?地幔对流对造山过程产生了什么影响?塔里木板块的水平挤压与地幔对流构成了怎样的相互关系?塔里木板块的水平挤压作用是否足以造就现今天山的变形?古老的天山造山带内部结构与物性在造山复活过程中起到了怎样的作用?这些问题都有待于在资料解释和定量分析的基础上进行深入探讨.
     针对上述问题,本文首先确立了大陆构造变形及动力学定量研究的数学模型.采用热-流体连续介质的动量守恒方程、能量守恒方程和质量守恒方程,并引入了流体热力学的状态方程描述地幔对流和造山动力学过程.
     实现了求解这些方程的“ALE FEM+MIC”方法,即“任意拉格朗日-欧拉(ALE)描述的有限单元方法(FEM)”和“网格-粒子(MIC)”技术相结合的数值求解新技术.在热-蠕变耦合的方程中,基本未知量是速度场和温度场.未知量通过ALE描述的有限单元方法求解.同时,方法中引入了“网格-粒子”技术,即在有限单元内部设置若干代表物质的“粒子”,通过粒子的移动跟踪物质的运动和变形.有限单元方法求解动量方程和连续性方程时采用了速度场和压力场等阶插值的压力场稳定化Petrov-Galerkin(PSPG)方法,求解能量方程时采用了流线迎风Petrov-Galerkin(SUPG)方法.ALE描述通过定义合理的网格移动方式跟踪计算区域边界的变化.网格-粒子算法中采用双线性插值与有限单元插值函数对应.有限单元计算与网格-粒子计算相对独立,两种方法计算的数据通过有限单元节点传递.ALE FEM+MIC方法使得包含边界变化的极其强烈的变形流动问题和强烈不连续边界条件问题均可以正常描述.算例表明计算程序具有较好的计算精度和数值稳定性.
Continental dynamics is one of the frontier fields in present earth sciences. The key problems of continental dynamics are the tectonic deformation and their mechanisms. As orogenic belts have strong deformation and apparent surface figures, orogenic dynamics research is an important branch of continental dynamics.
     The Tianshan orogenic belt is a typical active intracontinental mountain belt, far from either the locus of collision between continents or a subduction zone. It is recognized as an outstanding natural laboratory of intra-continental deformation research. 10 key problems are presented by Liu Qiyuan (2004) about the Tianshan orogenic dynamics. The kernel problems of these are the influence of the horizontal compression of the Tarim plate and the mantle convection to the orogeny of Tianshan, as well as the relationship between these two different forces.
     The activity of the Tianshan at present is not an original orogenic process of collision. It is a rejuvenation of an old orogenic belt which has been denuded and leveled off. Geophysical studies show that maybe mantle convection has played an important role in the uplift of Tianshan. So, it is the first problem to determine whether the mantle convection exists or not. If exists, how about the pattern and what is the influence of the mantle convection on the Tianshan orogenic process? What is the relationship between the horizontal compression of the Tarim plate and the mantle convection? What is the influence of the structures and properties of the ancient Tianshan? It is necessary to address these problems based on data interpretation and quantitative analysis.
     Aiming at these issues, a mathematical model is established for the quantitative study of continental deformation and dynamics. The governing equations include the conservation equations of mass, momentum and energy, as well as the state equation.
     The“ALE FEM + MIC”numerical method is accomplished which means the Arbitrary Lagrangian- Eulerian Finite Element Method combining with the Marker-in-cell technique. In particular, the unknown parameters (velocity and temperature) are calculated using the ALE FEM. The cell-markers in each element carry the material composition and history variables during the flowing process. The momentum and continuity equations are solved in terms of the pressure-stabilizing Petrov-Galerkin (PSPG) method with the equal-order interpolation of the velocity and pressure, and the energy equation is solved using the streamline upwind Petrov-Galerkin (SUPG) method. By means of ALE, the computational region can be tracked with moving boundaries. In the MIC algorithm, the bilinear interpolation corresponds to the interpolation function in the finite elements. The FEM and MIC algorithm are independent each other. The data in these two processes communicate through the nodal points. With the ALE FEM + MIC, the problems can be described for the variable boundary and extremely strong flow, as well as discontinuous boundary conditions. The numerical tests show that the precision and stability of the computational codes
引文
陈杰,尹金辉,曲国胜,张克旗. 2000. 塔里木盆地西缘西域组的底界、时代、成因与变形过程的初步研究. 地震地质, 22(增): 104-116.
    陈杰, 丁国瑜, Burbank D W, 等. 2001. 中国西南天山山前的晚新生代构造与地震活动. 中国地震, 17(2): 134-155.
    陈开平, 马瑾. 1995. 印度与欧亚大陆碰撞构造变形数值分析. 地震地质, 17(3): 277-284.
    陈哲夫, 梁云海. 1991. 新疆多旋回构造与板块运动. 新疆地质, 9(2): 95-107.
    邓起东,冯先岳,尤惠川, 等. 1991. 新疆独山子-安集海活动逆断裂-褶皱带的变形特征及其形成机制. 活动断裂研究, 1: 17-36.
    邓起东,冯先岳,张培震, 等. 2000. 天山活动构造. 北京, 地震出版社.
    丁国瑜, 卢演俦. 1986. 对我国现代板内运动状况的初步探讨. 科学通报, 18: 1424-1415.
    冯先岳. 1985. 论新疆地震地质特征. 地震地质,7(2): 35-44.
    傅容珊, 黄建华. 1993. 利用地球物理观测反演地幔对流模型. 地球物理学报, 36(3): 298-307.
    傅容珊,黄建华,刘文忠,常筱华. 1994. 区域重力异常和上地幔小尺度对流相关方程及对流拖曳力场. 地球物理学报,37(5): 638-646.
    傅容珊,常筱华,黄建华,刘文忠. 1994. 区域重力异常和上地幔小尺度对流模型. 地球物理学报,37(增刊): 249-258.
    傅容珊,黄建华,徐耀民,等. 1998. 青藏高原-天山地区岩石层构造运动的地幔动力学机制. 地球物理学报, 41(5): 658-668.
    高锐. 1997. 青藏高原岩石圈结构与地球动力学的 30 个为什么?. 地质评论,43(5): 460-469.
    高锐,肖序常,高弘, 等. 2002. 西昆仑-塔里木-天山岩石圈深地震探测综述. 地质通报, 21(1): 11-18.
    高祥林,罗焕炎,Neugebauer H J. 1987. 大陆碰撞动力学的三维数值模拟. 地震地质, 9(2): 65-73.
    郭飚,刘启元,陈九辉, 等. 2006. 中国境内天山地壳上地幔结构的地震层析成像. 地球物理学报,(已接收).
    郭令智,施央申,卢华复, 等. 1992. 印藏碰撞的两种远距离构造效应. 现代地质学研究文集(上), 南京,南京大学出版社, 1-8
    贺日政,高锐,李秋生, 等. 2001. 新疆天山(独山子)-西昆仑(泉水沟)地学断面地震与重力联合反演地壳构造特征. 地球学报, 22(6): 553-558.
    黄建华,常筱华,傅容珊. 1996. 西北地区上地幔物质流动及岩石层动力学. 地震学报, 18(2): 194-199.
    李强,刘瑞丰,杜安陆. 1994. 新疆及其毗邻地区地震层析成像. 地球物理学报, 37(3): 311-320
    李秋生,卢德源,高锐, 等. 2001. 新疆地学断面(泉水沟-独山子)深地震测深成果综合研究.地球学报, 22(6): 534-540.
    李顺成,刘启元,陈九辉, 等. 2005. 横跨天山的宽频带流动地震台阵观测. 地球物理学进展,20(4):955-960.
    李昱,刘启元,陈九辉, 等. 2006. 中国境内天山地壳上地幔 S 波速度结构. 中国科学,D 辑,(已接收).
    刘和甫, 梁慧社, 蔡立国, 等. 1994. 天山两侧前陆冲断系构造样式与前陆盆地演化. 地球科学-中国地质大学学报, 19(6): 727-741.
    刘洁,刘启元,宋惠珍. 2006. 非均匀介质热蠕变流动数值求解. 地球物理学报, 49(4): 1029-1036.
    刘启元. 2004. 关于天山陆内造山带动力学问题,张中杰主编,中国大陆地球深部结构与动力学研究,北京,科学出版社,792-799.
    刘志宏,卢华复,贾承造, 等. 2000. 库车再生前陆逆冲带造山运动时间、断层滑移速率的厘定及其意义. 石油勘探与开发, 27(1): 12-15.
    鲁新便, 田春来. 1995. 新疆天山及邻区地电垂深大剖面地质结构构造研究. 见: 新疆地质学会秘书处编, 新疆第三届天山地质矿产学术讨论会论文集. 乌鲁木齐: 新疆人民出版社, 135-143.
    鲁新便, 张云智, 王新维, 等. 1998. 天山西段岩石圈深部结构及其与南北盆地构造关系. 新疆地质, 16(4): 337-342.
    马杏垣(主编). 1989. 中国岩石圈动力学图集. 北京:中国地图出版社.
    宁杰远, 臧绍先. 1999. 对俯冲带深震成因的探讨. 地震学报, 21(5): 523-532.
    宁杰远, 臧绍先. 2001. 俯冲带波速结构的数值模拟. 地球物理学报, 44(2): 190-198.
    牛之俊, 王敏, 孙汉荣, 等. 2005. 中国大陆现今地壳运动速度场的最新观测结果. 科学通报, 50(8): 839-840.
    彭斯震. 1995. 吐鲁番盆地的活动构造学与地震危险性. 国家地震局地质研究所博士学位论文.
    彭树森. 1993. 大地形变测量所反应的天山最新构造运动. 内陆地震, 7(2): 136-141.
    曲国胜,陈杰,陈新发, 等. 2001. 塔里木盆地阿图什-八盘水磨反冲构造系统研究. 地震地质,23(l): l-14.
    任金卫, 马宗晋. 2003. 东亚地区现代地壳运动特征与构造变形. 地学前缘, 10(增): 58-65.
    邵学钟,张家茹,范会吉, 等. 1996. 天山造山带地壳结构与构造—乌鲁木齐-库尔勒地震转换波测深剖面. 地球物理学报, 39(3): 336-346.
    石耀霖,范桃园. 2001. 大洋岩石层拖曳窄条陆壳俯冲的极限尺度分析-以新西兰南岛和大别山超高压变质带为例. 地球物理学报, 44(6): 754-760.
    滕吉文, 刘福田, 全幼黎, 等. 1994. 中国西北造山带与沉积盆地地区的地壳和地幔的层析成像. 中国固体地球物理进展, 北京: 海洋出版社, 66-80.
    王飞,王椿镛,张东宁. 1999. 大别造山带构造演化的数值模拟. 地震学报,21(5): 478-486.
    王良书,李成,刘福田, 等. 2000. 中国东、西部两类盆地岩石圈热-流变学结构. 中国科学(D 辑),30(增): 116-121.
    王琪,丁国瑜,乔学军, 等. 2000. 天山现今地壳快速缩短与南北地块的相对运动. 科学通报, 45(14): 1543~1547
    汪新文, 陈发景, 李光, 陶国强. 1994. 塔北库车拗陷的变形特征及其与油气关系. 石油与天然气地质, 15(1): 40-50.
    肖序常, 汤耀庆, 李锦铁, 等. 1990. 试论新疆北部大地构造演化. 见: 新疆地质科学(第 1 辑). 北京: 地质出版社. 47-68.
    肖序常, 汤耀庆, 冯益民, 等. 1992. 新疆北部及其邻区大地构造. 北京: 地质出版社.
    肖序常, 刘训, 高锐, 等. 2004. 新疆南部地壳结构和构造演化. 北京: 商务印书馆.
    新疆地质矿产局. 1978. 中国天山地质构造. 北京: 地质出版社.
    熊熊. 1997. 地幔动力学与青藏高原隆升. 中国科学院测量与地球物理研究所博士学位论文.
    熊熊, 许厚泽, 许建桥, 等. 1998. 大陆弹性岩石层有效弹性厚度对岩石层形变和大地水准面的动力影响. 地壳形变与地震, 18(4): 1-10.
    胥颐. 1995. 天山地壳非均匀性与地震分布. 内陆地震, 9(3): 242-249.
    胥颐. 1996a. 天山地震活动区的深部构造特征. 新疆地质, 14(2): 135-142.
    胥颐. 1996b. 重力均衡与天山的构造运动. 内陆地震, 10, 3, 209-216,
    胥颐. 1996c. 北天山地震带的航磁异常与深部构造. 内陆地震, 10(4): 305-310.
    胥颐, 朱介寿, 刘志坚, 等. 1994. 新疆天山及邻区地壳上地幔三维速度结构. 地震学报, 16(4): 480-487.
    胥颐,刘福田,刘建华, 等,2000,中国西北大陆造山带及毗邻盆地的地震层析成像,中国科学(D辑),30(2):113-122
    胥颐, 刘福田, 刘建华, 等. 2001. 中国西北大陆碰撞带的深部特征及其动力学意义. 地球物理学报, 44(1): 40-47.
    杨庚,钱祥麟,李茂松, 等. 1996. 塔里木北缘库车盆地冲断构造平衡地质剖面研究. 地球科学-中国地质大学学报, 21(3): 295-299.
    杨晓平. 1994. 新疆北天山活动逆断裂-褶皱带的变形机制和东震重复周期研究. 国家地震局地质研究所博士学位论文.
    杨主恩, 张先康, 赵瑞斌, 等. 2005. 天山中段的深浅构造特征. 地震地质, 27(1): 11-19.
    叶正仁,安镇文. 2000. 板块激发的地幔对流对于全球热流分布的作用. 中国科学(D 辑),30(1): 53-58.
    叶正仁,王健. 2003. 上地幔变黏度小尺度对流的数值研究. 地球物理学报, 46: 335-339.
    叶正仁,白武明,滕春凯. 1993. 地幔对流的数值模拟及其与表面观测的关系. 地球物理学报, 36: 27-36.
    殷有泉. 1987. 固体力学非线性有限元引论. 北京:北京大学出版社和清华大学出版社.
    袁复礼. 1956. 新疆天山北部山前坳陷带及准噶尔盆地陆台地质初步报告. 地质学报, 36(2): 133-144.
    臧绍先,宁杰远,陈文玉, 等. 1994. 两种地幔对流模式下俯冲带的热结构. 地球物理学报, 37(4): 448-455.
    臧绍先,宁杰远,景志成. 2001. 俯冲带流变性质的研究. 中国科学(D 辑),31(91): 705-711.
    张东宁,许忠淮. 1994. 青藏高原现代构造应力状态及构造运动的三维弹粘性数值模拟.中国地震, 10(2): 136-143.
    张培震, 邓起东, 徐锡伟, 等. 1993. 新疆玛纳斯褶皱-逆断裂带晚第四纪变形和地壳缩短. 活动断裂研究, 3 期, 18-32.
    赵俊猛. 1998. 天山造山带与准噶尔盆地岩石圈结构及其动力学过程. 中国地震局地质研究所博士学位论文.
    赵俊猛, 刘国栋, 卢造勋, 等. 2001. 天山造山带与准噶尔盆地壳幔过渡带及其动力学含义. 中国科学(D 辑), 31(4): 272-282.
    赵瑞斌, 卢静芳, 杨主恩, 曲国胜. 2003. 天山构造带新生代构造变形二维有限元模拟. 新疆地质, 21: 151-156.
    周雪漪(编著). 1995. 计算水力学. 北京: 清华大学出版社.
    Abdrakhmatov K Y, Aldazhanov S A,Hager B H,et al. 1996. Relatively recent construction of the Tien Shan inferred from GPS measurements of present-day crustal deformation rates. Nature, 384:450~453.
    Allen M B, Zhang C, Guo J H. 1990. Evolution of the Turpan basin, Chinese central Asia. Tectonics, 12(4): 889-896.
    Allen M B, Windley B F, Zhang C, et al. 1991. Basin evolution within and adjacent to the Tienshan Range, NW China. J. Geol. Soc. London, 148, 369-378.
    Allen MB, Vincent SJ, Wheeles PJ. 1999. Late Cenozoic tectonics of the Kepingtage thrust zone: Interactions of the Tien Shan and Tarim Basin, Northwest China. Tectonics, 18: 639-654.
    Arnold J, Jacoby W R, Schmeling H, et al. 2001. Continental collision and the dynamoic and thermal evolution of the Variscan orogenic crustal root — numerical models. J. Geodynam., 31: 273-291.
    Avouac J P, Tapponnier P, Bai M, et al. 1993. Active thrusting and folding along the Northern Tien Shan and late Cenozoic rotation of the Tarim relative to Dzungarian and Kazakhstan. J. Geophys. Res., 98: 6755-6804
    Barachander S, Yuen D A, and Reuteler D. 1995. Localization of toroidal motion and shear heating in 3D high Rayleigh-number convection with temperature-dependent viscosity. Geophys. Res. Lett., 22: 477-480.
    Batt G E, Braun J. 1997. On the thermo-mechanical evolution of compressional orogens. Geophys. J. Int., 28: 364-382.
    Beaumont C, Quinlan G. 1994. A geodynamic framework for interpreting crustal-scale seismic- reflectivity patterns in compressional orogens. Geophysical Journal International, 116: 754-783.
    Beaument C, Fullsack P, Hamilton J. 1992. Erosional control of active compressional orogens. In: McClay K.R., eds., Thrust tectonics. London: Chapman and Hall, 1-18.
    Beaumont C, Fullsack P, Hamilton J. 1994. Styles of crustal deformation in compressional orogens caused by subduction of the underlying lithosphere. Tectonophysics, 232: 119-132.
    Beaumont C, Kamp PJJ, Hamilton J, Fullsack P. 1996. The continental collision zone, South Island, New Zealand: Comparison of geodynamical models and observations. J. Geophys. Res., 101(B2): 3333- 3359.
    Beaumont C, Ellis S, Pfiffner A. 1999. Dynamics of sediment subduction-accretion at convergent margins: short tem modes, long-term deformation, and tectonic implications. J. Geophys. Res., 104: 17573- 17601.
    Beaumont C, Munoz J A, Hamilton J, Fullsack P. 2000. Factors controlling the Alpine evolution of the central Pyrenees inferred from a comparison of observations and geodynamical models. J. Geophys. Res., 105(B4): 8121-8145.
    Beaumont C, Jamieson R A, Medvedev S, Nguyen M H. 2004. Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan Orogen. J. Geophys. Res., 109, B06406, 1-29.
    Beloussov V V, et al. 1980. Structure of the lithosphere beneath the deep seismic sounding profile: Tien Shan – Pamirs – Karakorum – Himalayas. Tectonophysics, 70: 193-221.
    Belytschko T, Liu W K, Moran B. 2000. Nonlinear finite element for continua and structure. New York: Wiley.
    Birch F. 1960. The velocity of compressional waves in rocks to 10 kilobars, 1. J. Geophys. Res., 65: 1083~1102
    Birch F. 1961. The velocity of compressional waves in rocks to 10 kilobars, 2. J. Geophys. Res., 66: 2199~2224
    Bird P. 1979. Continental delamination and the Colorado plateau. J. Geophys. Res. 84: 7561-7571.
    Bird P, Piper K. 1980. Plane-stress finite element models of tectonic flow in southern California. Physics of the Earth and Planetary Interiors, 21: 158-175.
    Blankenbach B, Busse F, Christensen U, et al. 1989. A benchmark comparison for mantle convetion codes. Geophys. J. Int., 98: 23-38.
    Bobrov A M, Jacoby W, Trubitsyn V P. 1999. Effects of Rayleigh number, length and thickenss of continent on time of mantle flow reversal. Geodynamics, 27: 133-145.
    Booker J R. 1976. Thermal convection with strongly temperature-dependent viscosity. J. Fluid Mech., 76: 741-754.
    Brace W F, Kohlstedt D L. 1980. Limits on lithospheric stress imposed by laboratory experiments. J. Geophys. Res., 85: 6248-6252.
    Brackbill J U, Ruppel H M. 1986. FLIP: a method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. J. Comput. Phys., 65: 314~343.
    Brackbill J U, Kothe D B, Ruppel H M. 1988. FLIP: a low dissipation, particle-in-cell method for fluid flow. Comput. Phys. Commun., 48: 25~38.
    Brackbill J U. 1991. FLIP MHD: a partical-in-cell method for magnetohydrodynamics. J. Comput. Phys., 96: 163~192
    Braun J. 1993. Three-dimensional numerical modeling of compressional orogenies: Thrust geometry and oblique convergence. Geology, 21: 153-156.
    Braun J. 1994. Three-dimensional numerical simulations of crustal-scale wrenching using a non-linear failure criterion. Journal of Structural Geology, 16(8): 1173-1186.
    Braun J, Beaumont C. 1995. Three-dimensional numerical experiments of strain partitioning at oblique plate boundaries: Implications for contrasting tectonic styles in the southern Coast Ranges, California, and central South Island, New Zealand. J. Geophys. Res., 100(B9): 18059-18074.
    Braun J, Sambridge M. 1994. Dynamical Lagrangian Remeshing (DLR): a new algorithm for solving large strain deformation problems and its application to fault-propagation folding[J]. Earth and Planetary Science Letters, 124: 211-220.
    Brooks A N, Hughes T J R. 1982. Streamline Upwind / Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg., 32: 199~259.
    Bullen M E, Burbank D W, Garver J I. 2003. Building the Northern Tien Shan: Integrated thermal, structure, and topographic constraints. J. Geology, 111: 149-165.
    Burtman V S. 1975. Structural geology of the Variscan Tien Shan. Am. J. Sci., 280: 725-744.
    Burtman V S, Molnar P. 1993. Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir: Boulder, Colorado. Geological Society of America Special Paper, 281: 1-76.
    Burov E B, Kogan M G, Lyoncaen L, Molnar P. 1990. Gravity anomalies, the deep structure and dynamics process beneath the Tien Shan. Earth Planet. Sci. Lett.,96(3): 367-383.
    Byerlee J D. 1978. Friction of rocks. Pure Appl. Geophys., 116: 615-626.
    Carson M A, Kirkby M J. 1972. Hillslope Form and Process. New York: Cambridge University Press.
    Chen C M, Lua H F, Dong J, et al. 1999. Closing history of the southern Tianshan oceanic basin, western China: an oblique collisional orogeny. Tectonophysics, 302: 23-40.
    Chen J, Burbank D W, Scharer K M, et al. 2002. Magnetochronology of the Upper Cenozonic strata in the Southwestern Chinese Tian Shan: rates of Pleistocence folding and thrusting. Earth Planet. Sci. Lett., 195: 113-130.
    Chen J H, Liu Q Y, Li S C, et al. 2006. Crust and upper mantle stratification structure undernearth the east Tien Shan orogenic belt. Geophys. Res. Lett. (Submitted)
    Chen Y H, Cogne J P, Courtillot V, et al. 1990. Paleomagnetic study of Mesozoic continental sediments along the northern TianShan and heterogeneous strain in central Asia. J. Geophys. Res., 96: 4065-4082.
    Chen Y H, Roecker S W, Kosarev G L. 1996. Elevation of the 400km discontinuity beneath the central Tien Shan: Case of missing root. EOS, 77: 416
    Chen Y P, Wang L S, Mi N, et al. 2005. Shear wave splitting observations in the Chinese Tianshan orogenic belt. Geophys Res Lett, 32, doi: 10.1029/2004GL021686
    Christensen U. 1983. Convection in a variable viscosity fluid: Newtonian versus power-law rheology. Earth Plant. Sci. Lett., 64: 153-162.
    Christensen U. 1984. Convection with pressure- and temperature- dependent non-Newtonian rheology. Geophys. J. R. astr. Soc., 77: 343-384.
    Christensen U. 1992. An Eulerian technique for thermo-mechanical modeling of lithosphereic extension. J. Geophys. Res., 97(B2): 2015-2036.
    Conrad C P, Hager B H. 2001. Mantle convection with strong subduction zones. Geophys. J. Int., 144:
    271-288. Conrad C P, Molnar P. 1997. The growth of Rayleigh-Taylor-type instabilities in the lithosphere for various rheological and density structure. Geophys. J. Int., 129: 95-112.
    Coukroune P. 1989. ECORS Team. The ECORS Pyrenean deep seismic profile reflection data and the overall structure of an orogenic belt. Tectonics, 8: 23-39.
    Cserepes L. 1982. Numerical studies of non-Newtonian mantle convection. Phys. Earth Planet. Int., 30: 49-61.
    Curtis A, Woodhouse J H. 1997. Crust and upper mantle shear velocity structure beneath the Tibetan plateau and surrounding regions from interevent surface wave phase velocity inversion. J. Geophys. Res. 102(B6): 11789-11813.
    Dahlen F A. 1984. Noncohesive critical Coulomb wedges: an exact solution. J. Geophys. Res., 89: 10125-10133.
    Dahlen F A, Suppe J, Davis D J. 1984. Mechanics of fold-and-thrust belts and accretionary wedges: Cohesive Coulomb theory. J. Geophys. Res., 89: 10087-10101.
    Davis D J, Suppe J, Dahlen F A. 1983. Mechanics of fold-and-thrust belts and accretionary wedges. J. Geophys. Res., 1983, 88: 1153-1172.
    Dziewonski A M. 1984. Mapping the lower mantle: Determination of lateral heterogeneities in P velocity up to degree and order 6. J Geophys. Res., 89: 5925~5952
    Ellis S, Fullsack P, Beaumont C. 1995. Oblique convergence of the crust driven by basal forcing: implications for length-scales of deformation and strain partitioning in orogens. Geophys. J. Int., 120: 24-44.
    Ellis S, Beaumont C, Jamieson R A, Quinlan G. 1998. Continental collision including a weak zone: the vise model and its application to the Newfoundland Appalachians. Canadian Journal of Earth Science, 1998, 35: 1323-1346.
    Ellis S, Beaumont C, Pfiffner A. 1999. Geodynamic models of crustal-scale episodic tectonic accretion and underplating in subduction zones. J. Geophys. Res., 104: 15169-15190.
    England P, Houseman G. 1986. Finite strain calculation of continental deformation, 2. Comparison with the India-Asia collision zone. J. Geophys. Res., 91(B3): 3664~3676
    England P, McKenzie D. 1982. A thin viscous sheet model for continental deformation. Geophysical Journal of the Royal Astronomical Society, 70: 295~321.
    Fan G, Ni J F, Wallace T C. 1994. Active tectonics of the Pamirs and Karakoram, J. Geophys. Res., 99, 7131- 7160.
    Farnetani D G, Richard M A. 1995. Thermal entrainment and melting in mantle plumes. Earth Planet. Sci. Lett., 136: 251-267.
    Forsyth D, Uyeda S. 1975. On the relative importantce of the driving forces of plate motions. Geophys. J. R. astr. Soc., 43: 163-200.
    Forte A M, Mitrovica J X. 2001. Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data. Nature, 410: 1049~1055.
    Froidevaux C, Ricard Y. 1987. Tectonic evolution of high plateaus. Tectonophysics, 134: 227-238. Fu R S, Huang J H. 1993. Earth’s geoid, plate motion, seismic tomography of the mantle and CMB topogranphy. J. Geomag. Geolectr., 45: 1249-1265.
    Fullsack P. 1995. An arbitrary Lagrangian-Eulerian formulation for creeping flows and its application in tectonic models. Geophys. J. Int., 120: 1~23.
    Gao J, Li M S, Xiao X C, et al. 1998. Paleozoic tectonic evolution of the Tianshan orogen, northwestern China. Tectonophysics, 287: 213-231.
    Gerya T V, Yuen D. 2003. Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties. Phys. Earth Planet. Inter., 140: 293~318.
    Ghosh S, Kikuchi N. 1991. An arbitrary Lagrangian-Eulerian finite element method for large deformation analysis of elastic-viscoplastic solid. Comput. Meths. Appl. Mech. Engrg., 86: 127~188.
    Harlow F W, Welch J E. 1965. Numerical calculation of time-dependence viscous incompressible flow of fluid with free surface. Physics of Fluid, 8: 2182~2189.
    Haskell N A. 1935. The motion of a viscous fluid under a surface load, I. Physics, 6: 265~269.
    Haskell N A. 1936. The motion of a viscous fluid under a surface load, II. Physics, 7: 56~61.
    Hendrix MS, Graham SA, Carroll AR, et al. 1992. Sedimentary record and climatic implications of recurrent deformation in the Tianshan: Evidence from Mesozoic strata of the north Tarim, South Junggar and Turpan basins, northwest China. Geol. Soc. Am. Bull., 104: 53-79.
    Hendrix M S, Dumitru T A, Graham S A. 1994. Late Oligocence-early Miocene unroofing in the Chinese Tianshan: An early effect of the India-Asia collision. Geology, 22: 487~490
    Hirt CW, Amsden AA, Cook JL. 1974. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. Journal of Computational Physics, 14: 227-253.
    Houseman G A, England P. 1986. Finite strain calculation of continental deformation, 1. Method and general results for convergent zones[J]. J. Geophy. Res., 91(B3): 3651-3663.
    Housemane G A, Molnar P. 1997. Gravitational (Rayleigh-Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere. J. Geophys. Res., 128: 125-150.
    Houseman G A, McKenzie D P, Molnar P. 1981. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J. Geophys. Res., 86: 6115-6132.
    Huang H C, Usmani A S. 1994. Finite element analysis for heat transfer. London: Springer-Verlag.
    Hughes T J R, Franca L P, Balestra M. 1986. A new finite element formulation for computational fluid dynamoics: V. Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order Interpolations. Comput. Methods Appl. Mech. Engrg., 59: 85~99.
    Hughes T J R, Liu W K, Zimmerman T K. 1981. Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput. Meths. Appl. Mech. Engrg., 29: 329~349.
    Isacks B., Molnar P. 1969. Mantle earthquake mechanisms and the sinking of the lithosphere. Nature, 223: 1121-1124.
    Jeanloz R. 1986. Temperature distribution in the crust and mantle. Ann. Rev. Earth Plannet. Sci., 14: 377~415
    Jamieson RA, Beaumont C, Fullsack P, Lee, B. 1998. Barrovian regional metamorphism: Where's the heat? In: Treloar P,O'Brien P, eds. What Controls Metamorphism and Metamorphic Reactions?.Geological Society Special Publication, London, 138: 23-51.
    Jamieson RA, Beaumont C, Medvedev S, Nguyen MH. 2004. Crustal channel flows: 2. Numerical models with implications for metamorphicsm in the Himalayan-Tibetan Orogen. J. Geophys. Res., 109, B06407, 1-24.
    Karato S. 2003. The dynamic structure of the deep earth: an interdisciplinary approach. Princeton, Princeton University Press.
    Kerr R A. 1999. A lava lamp model for the deep earth. Science, 283: 1826~1827
    King S D. 1995. Models of mantle viscosity. In: Mineral and Crystallography: a Handbook of Physical Constants, Ed. Ahrens T J. AGU, 227-235, Washington.
    King S D, Anderson D L. 1995. An alternative mechanism of flood basalt formation. Earth Planet. Sci. Lett., 136: 269-279.
    King S D, Anderson D L. 1998. Edge-driven convection. Earth Planet. Sci. Lett., 160: 289-296.
    King S D, Hager B H. 1994. Subducted slabs and the geoid 1. Numerical experiments with temperature- dependent viscosity. J. Geophys. Res., 99(B10): 19843-19852.
    King S D, Ritsema J. 2000. African hot spot volcanism: Small-scale convection in the upper mantle beneath cratons. Science, 290: 1137~1140
    King S D, Raefsky A, Hager B H. 1990. ConMan: vectorizing a finite element code for incomepressible two-dimensional convection in the Earth’s mantle. Phys. Earth Planet. Inter., 59: 195~207.
    Kirby S H. 1983. Rheology of the lithosphere. Rev. Geophys. Space Phys., 21: 1458-1487.
    Kooi H, Beaumont C. 1994. Escarpment evolution on high-elevation rifted margins: Insights derived from a surface processes model that combines diffusion, advection, and reaction. J. Geophys. Res., 99(B6): 12191-12209.
    Koons P O. 1989. The topographic evolution of collisional mountain belts: a numerical look at the southern Alps, New Zealand, American Journal of Science, 289: 1041-1069.
    Kosarev G L, Petersen N V, Vinnik L P, Roecker S W. 1993. Receiver function for the Tien Shan analog broadband network: contrasts in the evolution of structures across the Talasso-Fergana fault. J. Geophys. Res., 98(B3): 4437~4448.
    Kumar P, Yuan X, Kind R, Kosarev G. 2005. The lithosphere-asthenosphere boundary in the Tien Shan-Karakoram region from S receiver functions: Evidence for continental subduction, Geophys. Res. Lett., 32, L07305, doi:10.1029/2004GL022291, 1-4.
    Lowman J P, Jarvis G T. 1993. Mantle convection flow reversals due to continental collions. Geophys. Res. Lett., 20: 2087-2090.
    Lu Huafu, Howell DG, Jia Dong, et al. 1994. Rejuvenation of the Kuqa foreland basin, northern flank of the Tarim Basin, northwest China, International Geology Review, 36: 1151-1158.
    Lyon-Caen H, Molnar P. 1985. Gravity anomalies and the structure of western Tibet and southern Tarim basin. J. Geophys. Res., 88: 8187-8191.
    Marquart G. 2001. On the geometry of mantle flow beneath drifting lithosphereic plates. Geophys. J. Int., 144: 356-372.
    McKenzie D P, Roberts J M, Weiss N O. 1974. Convection in the earth’s mantle: towards a numerical simulation. J. Fluid Mech., 62: 465-538.
    Meissner R, Wever T, Sadowiak P. 1991. Continental collisions and seismic signature. Geophys. J. Int., 105: 15-23.
    Mitrovica J X, Forte A M. 2004. A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth Plannet. Sci. Lett., 225: 177~189.
    Molnar P, Deng Q D. 1984. Faulting associated with large earthquakes and the average rate of deformation in central and eastern Asia. J. Geophys. Res., 89(B7): 6203-6277.
    Molnar P, Ghose S. 2000. Seismic moments of Major earthquakes and the rate of shortening across the Tien Shan. Geophys. Res. Lett., 27: 2377-2380.
    Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: effects of a continental collision. Science, 189: 419-426.
    Molnar P, England P, Martinod J. 1993. Mantle dynamics, uplift of the Tibetan plateau, and the Indian monsoon. Rev. Geophys. 31(4): 357-396.
    Molnar P, Brown E T, Buchfiel B C, et al. 1994. Quaternary climate change and the formation of river terraces across growing anticlines on the north flank of the TianShan, China. J. Geology, 102: 583-602.
    Moresi L, Dufour F, Muhlhaus H B. 2003. A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials. J. Comput. Phys., 184: 476~497.
    Nelson M R, McCaffey R, Molnar P. 1987. Source parameters for 11 earthquakes in the Tien Shan, central Asia, determined by P and SH waveform inverseon. J. Geophys. Res., 92: 12629-12648.
    Nomura T. 1994. ALE finite element computations of fluid-structure interaction problems. Comput. Meths. Appl. Mech. Engrg., 112: 291~308.
    Noh W F. 1964. CEL: a time-dependent two-space- dimensional coupled Eulerian- Langrangian code, in: Alder B, Fernbach S, and Rotenberg M, eds. Methods in Computational Physics 3. New York: Academic Press.
    Oreshin S, Vinnik L, Peregoudov D, Roecker S. 2002. Lithosphere and asthenosphere of the Tien Shan imaged by S receiver functions, Geophys. Res. Lett., 29(8), 1191, doi:10.1029/2001GL014441.
    Owens T J, Zandt G. 1997. The implications of crustal property variations on models of Tibetan Plateau evolution. Nature, 387: 37-43.
    Parmentier E M and Morgan J. 1982 The thermal convection in non-Newtonian fluids: volumetric heating and boundary layer scaling. J. Geophys. Res., 87: 7757-7762.
    Parsons B, Daly S. 1983. The relationship between surface topography, gravity anomalies, and temperature structure of convection. J. Geophys. Res., 88(B2): 1129-1144.
    Ranalli G. 1987. Rheology of the earth. Allen Unwin, Boston.
    Reigber CH, Michel GW, Galas R, et al. 2001. New space geodetic constraints on the distribution of deformation in Central Asia. Earth & Planet. Sci. Lett., 191: 157-165.
    Ringwood A E. 1975. Composition and petrology of the earth’s mantle. MacGraw-Hill.
    Roecker S. 1982. Velocity structure of the Pamir-Hindu Kush region: Possible evidence for subducted crust. J. Geophys. Res., 87: 945-959.
    Roecker S W, Sabitova T M, Vinnik L P, et al. 1993. 3-Dimensional elastic wave velocity structure of the western and central Tian Shan. J. Geophys. Res., 98(B9): 15779~15795.
    Roecker S W. 2001. Constraints on the crust and upper mantle of the Kyrgyz Tien Shan from the preliminary analysis of GHENGIS broadband data. Russ. Geol. Geophys., 42: 1554–1565.
    Schmeling H. 1989. Compressible convection with constant and variable viscosity: the effect on slab formation, geoid, and topography. J. Gephys. Res., 94: 12463-12481.
    Schubert G, Turcott D L, Olsen P. 2001. Mantle convection in the earth and planets. Oxford: Cambridge Univ. Press.
    Schott B, Schmeling H. 1998. Delamination and detachment of a lithosphereic root. Tectonophysics, 296: 225~247.
    Schott B, Yuen D A, and Schmeling H. 1999. Viscous heating in heterogeneous media as applied to the thermal interaction between the crust and mantle. Geophys. Res. Lett., 26: 513-516.
    Silver E A, Reed D L. 1988. Backthrusting in accretionary wedges. J. Geophys. Res., 93: 3116-23126.
    Stocker R L, Ashby M F. 1973. On the rheology of the upper mantle. Rev. Geophys. Space Phys., 11: 391-426.
    Stuwe K. 2002. Geodynamics of the lithosphere. Berlin, Springer.
    Tackley P J. 1996. Effects of strongly variable viscosity on three-dimensional compressible convection in planetary mantle. J. Geophys. Res., 101(B2): 3311-3332.
    Tackley P J, King S D. 2003. Testing the tracer ratio method for modeling active compositional fields in mantle convection simulations. Geochem. Geophys. Geosyst., 4(4): 8302, doi: 10.1029/2001 GC000214.
    Tapponnier P, Molnar P. 1976. Slip-line field theory and large-scale continental tectonics. Nature, 264: 319-324.
    Tapponnier P, Monlar P. 1979. Active faulting and Cenozonic tectonics of the Tien Shan, Mongolia, and Baial regions. J. Geophys. Res., 84: 3425~3459
    Travis B J, Anderson C, Baumgardner J, et al. 1990. A benchmark comparison of numerical methods for infinite Prandtl number thermal convection in two-dimensional Cartesian geometry. Geophys. Astrophys. Fluid Dynamics, 55: 137~160.
    Trubitsyn V P, Rykov V V, Jacoby W R. 1999. A self-consistent 2-D model for the dip angle of mantle downflow beneath an overriding continent. Geodynamics, 28: 215-224.
    Turcotte D L, Schubert G. 1982. Geodynamics: Applications of continuum physics to geological problems. New York, John Wiley & Sons.
    van Keken P. 1997. Evolution of starting mantle plumes: a comparison between numerical and laboratory models. Earth Planet. Sci. Lett., 148: 1-11.
    Vilotte J P, Diagnieres M, Madariaga R. 1982. Numerical modeling of intraplate deformation: Simple mechanical models of continental collision. J. Geophys. Res., 87: 10709-10728.
    Vilotte J P, Madariaga R, Daignieres M, Ziekiewicz O. 1986. Numerical study of continental collision: influence of buoyancy forces and initial stiff inclusion. Geophysical Journal of the Royal Astronomical Society, 1986, 84: 279-310.
    Vinnik, L P , Saipekova A M. 1984. Structure of the lithosphere and asthenosphere of the Tien Shan. Annales Geophysicae, 2(6):621-626.
    Vinnik L P, Reigber C, Aleshin I M, et al. 2004. Receiver function tomography of the central Tien Shan. Earth Planet. Sci. Lett., 225, 131- 146.
    Waschbusch P, Beaumont C. 1996. Effect of a retreating subduction zone on deformation in simple regions of plate convergence. J. Geophys. Res., 101: 28133-28148.
    Weertman J. 1970. The creep strength of the Earth’s mantle. Rev. Geophys. Space Phys., 8: 145-168. Weinberg R F, Schmeling H. 1992. Polydiapirs: multiwavelength gravity structure. J. Struct. Geol., 14: 425~436.
    Willett S. 1992. Dynamic and kinematic growth and change of a Coulomb wedge. In: McClay K.R., eds., Thrust tectonics. London: Chapman and Hall, 19-31.
    Willett S, Beaumont C, Fullsack P. 1993. Mechanical model for the tectonics of doubly vergent compressional orogens. Geology, 21: 371-374.
    Willet S, Beaumont C. 1994. Subduction of Asian lithospheric mantle beneath Tibet inferred from models of continental collision. Nature, 369: 642-645.
    Wilson J T. 1990. On the building and classification of mountains. J. Geophys. Res., 95(B5): 6611-6628.
    Winder R O, Peacock S M. 2001. Viscous forces acting on subducting lithosphere. J. Geophys. Res., 106(B10): 21937-21951.
    Windley B F, Allen M B, Zhang C, et al. 1990. Paleozoic accretion and Cenozoic redeformation of the Chinese Tianshan range, central Asia. Geology, 18: 128-131.
    Yin A, Nie S, Craig P, Harrison T M. 1998. Late Cenozoic tectonic evolution of the southern Chinses Tian Shan. Tectonics, 17(1): 1~27
    Yuen D A, Quareni F, and Hong H J. 1987. Effects from equation of state and rhology in dissipative heating in compressible mantle convection. Nature, 326: 67-69.
    Yuen D A, Monnereau M, Hansen U, et al. 2006. Dynamics of superplumes in the lower mantle. In: Zhao J M, Liu G D, Lu Z X, et al. 2003. Lithospheric structure and dynamic processes of the Tianshan orogenic belt and the Junggar basin. Tectonophysics, 376: 199-239.
    Zhong S J, Gurnis M. 1992. Viscous flow model of a subduction zone with a faulted lithosphere: long and short wavelength topography, gravity and geoid. Geophys. Res. Lett., 19: 1891-1894.
    Zhong S J, Zuber M T, Moresi L, Gurnis M. 2000. Role of temperature-dependent viscosity and surface plates in sphereical shell models of mantle convection. J. Geophys. Res., 105(B5): 11063-11082.
    Zienkiewicz O C, Taylor R L. 2000. The finite element method (5th edition). Oxford: Butterworth- Heinemann.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700