用户名: 密码: 验证码:
含丁二烯结构空穴传输材料的合成及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含丁二烯结构的化合物是一类重要的空穴传输材料(HTM),具有合成简单,空穴迁移率高,自成膜性等优点,在有机光导体(OPC)中有着广泛的应用。本文首先以溴苯和苯乙酮为原料经Grignard反应、脱水反应和氯甲基化反应制得1,1-二苯基-3-氯丙烯,并确定其最佳工艺条件,以相同的方法合成了1-(1-萘基)-1-苯基-3-氯丙烯,同时由Vilsmeier甲酰化反应合成了4-(N-苯基-N-(4-甲基苯基))氨基苯甲醛等5种N,N-二取代氨基苯甲醛。其次由1,1-二芳基-3-氯丙烯和4,4-二(二乙胺基)二苯甲酮经Grignard和脱水反应合成了3种1,1,4,4-四芳基-1,3-丁二烯衍生物,并确定了其中1,1-二(对二乙氨基苯基)-4,4-二苯基-1,3-丁二烯(CT6)最佳合成工艺条件,以1,1-二苯基-3-氯丙烯和N,N-二取代氨基苯甲醛为原料,由Wittig-Horner反应合成了4-(4,4-二苯基-1,3-丁二烯基)-N,N-二(4-甲基苯基)-苯胺(CT5)等5种4-(4,4-二苯基-1,3-丁二烯基)-N,N-二取代苯胺化合物。并通过紫外吸收光谱,红外吸收光谱,质谱,元素分析,核磁共振氢谱和X-射线单晶衍射对合成化合物的结构进行了鉴定。
     最后以合成的含丁二烯结构化合物作为空穴传输材料,Y-TiOPc作为电荷发生材料制备出功能分离型光导体并测试其性能,结果表明,除1,1,4,4-四苯基-1,3-丁二烯无法制得功能分离型光导体外,其余7种化合物均为性能优良的空穴传输材料,它们的光敏性值均低于1.00 lx·s,残余电位值不高于80V,暗衰率低于25.0 V·s-1。而将合成的化合物CT5和CT6应用于有机电致发光器件(OLED)时,表现出了优于传统空穴传输材料N,N’-二苯基-N,N’-二(3-甲基苯基)-1,1’-联苯-4,4’-二胺的空穴传输性能。
The compounds containing butadiene moiety is a kind of important Hole Transporting Materials(HTM). Due to their easy prepared, high hole mobility and forming film without the addition of polymers, they can be widely used in Organic Photo-Conductors(OPC). In this thesis, 1,1-diphenyl-3-chloropropylene was prepared by the Grignard reaction, dehydration reaction and chloromethylation reaction using bromobenzene and acetophenone as the raw materials, and its optimal technical conditions were studied. 1-(1-naphthyl)-1-phenyl-3-chloropropylene was prepared by the same route, while five kinds of N,N-disubstituted aminobenzaldehyde like 4-(N-phenyl-N-(4'-methyphenyl))aminobenzaldehyde were synthesizd by the Vilsmeier reaction firstly. Then three kinds of 1,1,4,4-tetraaryl-1,3-butadiene derivatives were synthesized via Grignard and dehydration reaction using 1,1-diaryl- 3-chloropropylene and bis(4-(diethylamino)phenyl)methanone as the raw materials, and the optimal technical conditions of synthesis of 4,4'-(4,4-diphenyl-1,3- butadienylidene)bis[N,N-diethyl-benzenamine] (CT6) were studied. And five kinds of 4-(4,4-diphenyl-1,3-butadienyl)-N,N-disubstituted benzenamine like 4-(4,4-diphenyl -1,3-butadienyl)-N,N-bis(4-methylphenyl) benzenamine (CT5) were obtained by the Wittig-Horner reaction using 1,1-diphenyl-3-chloropropylene and N,N-disubstituted aminobenzaldehyde as the raw materials. The structure of the synthesized compounds were determined by UV, IR, MS, EA, 1H NMR and X-ray diffraction.
     Finally, the OPC of functional separation type were fabricated using synthesized compounds containing butadiene moiety as the HTM and Y-TiOPc as the charge generation materials, The test results showed that all of the synthesized compounds containing butadiene moiety had excellent photographic performance except that the OPC can’t be prepared by using 1,1,4,4-tetraaryl-1,3-butadiene as HTM. The data of their half-decay exposure were less than 1.00 lx·s, residual voltage were no higher than 80V, dark decay speed were less than 25.0 V·s-1. When using the synthesized compounds CT5 and CT6 as HTM in Organic Light-Emitting Diodes (OLED), they show much more excellent hole-transporting properties than the traditional HTM N,N'-diphenyl-N,N'-di(4-tolyl)-[1,1'-biphenyl]-4,4'-diamine.
引文
[1] Arishima K., Hiratsuka H., Tate A. et al, Electrophotographic photoreceptor with high sensitivity in the near-infrared region, Appl. Phys. Lett., 1982, 40(3): 279~281
    [2] 王毅,刘燕刚,有机电荷传输材料,感光科学与光化学,1999,17(1):73~83
    [3] 迟成林,丁瑞松,张其春,三苯胺甲醛二苯腙的合成及其光电性能研究,感光科学与光化学,2001,19(1): 43~47
    [4] 阎建民,林源,魏先福等,有机光导体空穴传输材料的性能表征,信息记录材料,2002,3(2): 13~15
    [5] 文尚胜,彭俊彪,曹镛,渡越时间方法测量聚合物材料的载流子迁移率,激光技术,2005,29(3): 301~303.
    [6] Moser R. H., Thomas A. L., The Phthalocyanines. Boca, Raton:CRC Press, 1983, Vol. I
    [7] 何莉莉,李祥高,吴安树,芳香族腙类空穴传输材料的合成及其光电性能研究,应用化学,2005,22(9): 946~948
    [8] 吴安树,李祥高,王世荣,薛金强,空穴传输材料 TTB 的合成及其在有机光导体中的应用,功能材料,2005,36(5): 708~710
    [9] Toshimitsu Hagiwara, Haruki Tsuruta, 1,1,4,4-tetraphenyl-1,3-butadiene derivative and electrophotogrphic light-sensitive material using the same, 美国专利, 4751163, 1988-7-14
    [10] 曹小丹,周雪琴,董庆敏等,N,N-二(4-甲基苯基)-4-[2-(4-甲基苯基)乙烯基]苯胺的合成及光电导性能研究,2003,20(8): 452~454
    [11] 马昌期,王雪松,张宝文,有机电致发光空穴传输材料研究进展,化学进展,2003,15(6): 495~504
    [12] Kenji Okumoto, Yasuhiko Shirota, Development of new hole-transporting amorphous molecular materials for organic electroluminescent devices and their charge-transport properties, Materials Science and Engineering, 2001, B85: 135~139
    [13] 李文连,有机EL的稳定性和寿命,液晶与显示,1998,13(2): 136~140
    [14] Koene B. E., Loy D. E., Thompson M. E., Asymmetric triaryldiamines as thermally stable hole tranaporting layers for organic light-emittingdevices, Chem. Mater., 1998, 10(8): 2235~2250
    [15] Van Slyke S. A., Chen C. H., Tang C. W., Organic electroluminescent devices with improved stability, Appl. Phys. Lett.,1996, 69(15): 2160~2162.
    [16] O’Brien D. F., Burrows P. E., Forrest S. R., et al, Hole transporting materials with high glass trasition temperatures for use in organic light-emitting devices, Adv. Mater., 1998, 10(14): 1108~1112
    [17] Shirota Y., Kuwabara K., Okuda D., et a1., Starburst molecules based on pi-electron systems as materials for organic electroluminescent devices, J. Lumin., 1997,72-74: 985~991
    [18] Katsuma K., Shirota Y., Novel class of π-electron dendrimers for thermally and morphologically stable amorphous molecular materials, Adv. Mater., 1998, 10(3): 223~226
    [19] Kuwabara Y., Ogawa H., Inada H. et al, Thermally stable multilayered organic electroluminescent devices using novel starburst molecules, 4,4',4"-tri(N- carbazolyl)triphenylamine (TCTA) and ,4',4"-tris(3-methylphenylphenylamino) triphenylamine (m-MTDATA), as hole-transport materials, Adv. Mater., 1994, 6(9): 677~679
    [20] Jiuyan Li, Di Liu, Yanqing Li, et al, A High Tg Carbazole-Based Hole- Transporting Material for Organic Light-Emitting Devices. Chem. Mater. 2005, 17: 1208~1212
    [21] Bach L., Lupo D., Comte P., et al, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature, 1998, 395: 583~585
    [22] Tennakone K., Kumara G.R.R.A., Kumarasinqhe A.R., et al, A dye-sensitized mano-porous solid-state photovoltaic cell, Semicond. Sci. Technol., 1995, 10(12): 1689~1693
    [23] Shiratsuchi Kentare, Takizewa Hiroo, Photoelectric conversion device and solar cell, 欧洲专利, 0901175A2, 1999-03-10
    [24] Hao Yanzhong,Yang Maizhi, Li Weihua, et al, A Photoelectrochemical solar cell based on ZnO/dye/polypyrrole film electrode as photoanode, Solar Energy Materials &olar Cells, 2000, 60: 349~359
    [25] Hayashida shigeru, Morishita yashitada, Ishikawa hiroko, et al, Butadiene derivative, production thereof and electrophotographic sensitive body using the same, 日本专利, 4055860, 1992-02-24
    [26] Toshio Enokida, Ryo Hirohashi, Morphology and hole transport of butadiene derivative, J. Appl. Phys, 1991, 70(11): 6908~6914
    [27] Mizuta yasushi, Kawahara arihiko, Butadiene derivative and electrophotographic photoreceptor using the same, 日本专利, 5112502, 1993-05-07
    [28] 张其春,蒋克健,迟成林等,单烯丙基三苯胺的合成及光电性能研究,材料导报,2000,14(12): 65~67
    [29] Hanatani yasuyuki, Iwasaki hiroaki, Muto nariaki, et al, electrophotographic sensitive body, 日本专利, 6011871, 1994-01-21
    [30] Niimi tatsuya, Umeda minoru, Method for restoring fatigue of electrophoto -graphic sensitive body, 日本专利, 3075785, 1991-03-29
    [31] Hagiwara Toshimitsu, Sugiyama hiroshi, Matsushima yoshimasa, et al, Triphenylamine derivatives, and charge-transporting materials and electrophoto -graphic photoreceptors containing such derivatives, 欧洲专利, 0650956A1, 1995-05-03
    [32] Hagiwara Toshimitsu. Triphenylamine derivative, charge-transporting material comprising the same, and electrophotographic photoreceptor, 美 国 专 利 , 5910610, 1996-06-08
    [33] Teruyuki mitsumori, Yokohama, Electrophotographic photoreceptor containing charge-transporting material with butadiene structure, 美国专利, 6030734, 2000-2-29
    [34] Yoshimasa matsushima, Toshimitu hagiwara, Electrophotographic photoreceptor containing 1,4-bis(4,4-diphenyl-1,3-butadiene)benzene derivative, 美国专利 , 5486441, 1996-7-23
    [35] Masami kuroda kanagawa, Motohiro takeshima, Kei yamaguchi, Electrophoto -graphic photosensitive body containing butadiene-derivativ, 美 国 专 利 , 5935746, 1999-8-10
    [36] 李连海,杨联明,戴辉雄,一种新型电荷传输材料的合成研究,感光材料,1995,1: 22~25
    [37] Moehrle H., Engelsing R., N-(3-oxoalkyl)-lactame, Monatsh. Chem., 1971, 102: 233~244
    [38] Gu Weiqiang, Weiss Richard G, Mediation of Photochemical Reaction of 1-Naphthyl Phenylacylates by Polyolefin Films. A ‘Radical Clock’ to Measure Rates of Radical-Pair Cage Recombinations in Viscous Space, Tetrahedron, 2000, 56(36): 6913~6926
    [39] Walter Cabri, Ilaria Candiani, Angelo Bedeschi, Palladium-catalyzed arylation of unsymmetrical olefins, bidentate phosphine ligand controlled regioselectivity, J. Org. Chem., 1992, 57: 3558~3563
    [40] 顾可权,重要有机化学反应,上海:上海科学技术出版社,1983, 508~511
    [41] 黄宪,陈振初,有机合成化学,北京:化学工业出版社,352~361
    [42] 唐培堃,精细有机合成化学及工艺学,天津:天津大学出版社,1993,284~285
    [43] 何莉莉,腙类空穴传输材料的合成:[本科学位论文],天津;天津大学,2003
    [44] 郭灿城,尹振明,张伟强,多芳胺选择性甲酰化合成多芳胺基苯甲醛,高等学校化学报,2002,23(9): 1719~1721

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700