用户名: 密码: 验证码:
三苯胺基团有机空穴传输材料的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电荷传输材料是光电材料研究的热点,广泛应用于如有机光电导体、有机电致发光二极管、有机太阳能电池、有机场效应管等。有机电荷传输材料主要包括有机空穴传输材料、有机电子传输材料及有机双极性材料等。三芳胺类化合物作为有机空穴传输材料具有良好的应用前景。
     本文从分子设计和材料设计的思想出发,合成了三苯胺衍生物、三苯胺基二苯乙烯衍生物、三苯胺基二苯乙烯聚合物等三类化合物共10种空穴传输材料,初步探讨了反应的机理,对这些化合物的合成工艺和纯化方法进行了详细的考察。利用元素分析、FTIR以及~1H NMR等多种方法表征了这些化合物的分子结构。研究了这三类材料在常用溶剂中的溶解性,发现甲氧基或溴原子取代都会使其溶解性得到改善,这对于采用湿法成膜制备光电器件是非常有利的。同时发现这些空穴传输材料还具有较好的热稳定性,在制备高稳定性的有机光电器件方面具有优势。
     结合电化学循环伏安方法和UV-Vis吸收考察了三苯胺衍生物、三苯胺基二苯乙烯衍生物以及三苯胺基二苯乙烯聚合物的能带结构,发现给电子的甲氧基或吸电子的溴原子取代对这三类材料的影响是不同的。对于三苯胺衍生物,甲氧基取代会提高HOMO能级达0.22 eV、降低LUMO能级达0.05 eV,而溴原子取代会同时降低HOMO和LUMO能级分别达0.08 eV和0.17 eV。对于三苯胺基二苯乙烯衍生物,甲氧基取代会同时提高HOMO和LUMO能级,而溴原子取代则同时降低HOMO和LUMO能级。甲氧基或溴原子取代对这三类化合物能带结构的影响不同被认为与分子本身共轭体系的大小有关,共轭体系越大,引入基团与分子的共轭效应对能带结构的影响就越小。用半经验的PM3量子化学方法对三苯胺衍生物的能带结构进行了模拟计算,计算值与实测值有很好的线性相关性。
     对三苯胺基二苯乙烯衍生物荧光性能进行了研究,发现在氯仿溶液中,取代基从给电子的甲氧基到吸电子的溴原子变化,荧光发射波长蓝移达42 nm,同时,斯托克位移逐渐减小达27 nm;随着溶剂极性的增大,荧光发射波长发生红移,同时斯托克位移增大;蒸镀薄膜的荧光发射峰相对于其在氯仿中的发射峰发生了
    
    翻沐心大拳协士拳勺七翻全J忆摘县
    红移。引入甲氧基同样导致三苯胺基二苯乙烯聚合物荧光发射波长红移。
     研究了三苯胺衍生物浸涂薄膜和三苯胺基二苯乙烯衍生物真空蒸镀薄膜的
    聚集态结构,发现均为非晶态薄膜,通过甲氧基或嗅原子取代可改善材料的成膜
    性,适当升高真空蒸镀基片的温度也会改善三苯胺基二苯乙烯衍生物的成膜性。
    甲氧基或溟原子取代改善材料的成膜性被认为与空间位阻的增大等因素有关。
     制备了单电子器件,采用SCLC法测得二个甲氧基取代的三苯胺基二苯乙烯
    衍生物(DSPAVBi)和未取代的三苯胺基二苯乙烯衍生物(D刊钾Bi)的空穴迁
    移率分别为l.35xlo一semZz(v·s)和9.oxxo--6em2/(v·s),前者是后者的1.5倍。引入
    甲氧基后空穴迁移率提高被认为与甲氧基同三苯胺基二苯乙烯通过P一:共扼扩
    大了分子的共扼体系有关。
     制备了TIOPc作为电荷发生材料并以三苯胺衍生物、三苯胺基二苯乙烯衍生
    物分别为空穴传输材料的有机双层光电导体原型器件,测试结果表明,使用甲氧
    基或浪原子取代的衍生物作为空穴传输材料时的光敏性都较使用未取代的衍生
    物更好,甲氧基或嗅原子取代的三苯胺基二苯乙烯衍生物也较三苯胺衍生物更
    好。比如光照强度为18时/c耐,曝光波长为454 nm,使用Ds砂“Bi作为空穴
    传输材料时有机光电导体的光敏性为1.39 cm沁J,是使用DW卿Bi时(0 .08
    cmz/时)的17倍多,是使用二个甲氧基取代的三苯胺衍生物DTPA时(0 .22 cmz/时)
    的6倍多。从传输材料的溶解性、HOMO能级、本征空穴迁移率以及传输材料
    与粘合剂树脂的相容性等角度对此进行了解释,在此基础上提出了改善材料空穴
    传输性能的若干建议。
     本文着重探讨了给/吸电子基团取代以及二苯乙烯基取代对含三苯胺基团
    有机空穴传输材料性能的影响,对指导含三苯胺基团有机空穴传输材料的分子设
    计具有较重要的理论意义,同时,合成出的部分产物空穴传输性能优良,部分产
    物还具有较好的荧光性能,在有机光电导体和有机电致发光二极管(OLED)等
    光电器件上有较好的应用前景。
Recently, the organic charge transport materials (OCTMs) have been focused to be developed, and have been widely applied in thin layer optoelectronic devices such as xerography, organic light-emitting diodes (OLED), organic solar cells, organic field-effect transistors (OFETs), and so on. OCTMs include organic hole transport materials (OHTMs), organic electron transport materials (OETMs), and organic hole /electron transport materials (OHETMs). As OHTMs, triarylamine derivatives have attracted significant attention due to their excellent optoelectronic properties with high potentialities in both basic and applied researches.
    Basing on molecular and material designs, 10 kinds of OHTMs including the triphenylamine derivatives, the triphenylamine substituted stilbene derivatives, and the triphenylamine substituted stilbene polymers have been designed and synthesized. The reaction mechanisms were discussed, and the purification methods were investigated. Their molecular structures were characterized by FTIR spectrum, !H NMR spectroscopy and elemental analysis. Their solubility and stability were also investigated. Results showed that the compounds substituted methoxy groups or bromine atoms had better solubility than their parent compounds, and they also have good thermal stability, so they were favorite for the optoelectronic devices with high thermal stability prepared by solution.
    The effect of molecular structure on the energy bands of the triphenylamine derivatives, the triphenylamine substituted stilbene derivatives, and the triphenylamine substituted stilbene polymers has been studied by combining cyclic voltammetry (CV) and UV-Vis absorption. It is indicated that electron-donor methoxy groups and electron-acceptor bromine atoms exhibit different effect on the three kinds of materials. The introduction of methoxy groups as the substituent in the triphenylamine derivatives can raise the highest occupied molecular orbital (HOMO) level from -5.50 eV to -5.28 eV, lower the lowest unoccupied molecular orbital
    
    
    
    
    (LUMO) level from to -2.05 eV to -2.07 eV, whereas the introduction of bromine atoms as the substituent can both lower HOMO and LUMO levels from -5.50 eV to -5.58 eV and from -2.05 to -2.19 eV respectively. The introduction of methoxy groups as the substituent in the triphenylamine substituted stilbene derivatives can both raise HOMO and LUMO levels, whereas the introduction of bromine atoms as the substituent can both lower HOMO and LUMO levels. This could be attributed to the conjugation between the substituent and the parent conjugate system. The larger parent conjugate system, the smaller of the effect of P- n conjugation between the substituent and the parent conjugate system on the energy bands of the conjugate system. The HOMO level, LUMO level and Eg of the triphenylamine derivatives were calculated by semi-empirical PM3 method. The results showed that there exists significant linear correlation between the calculated values and the experimental values.
    The effect of molecular structure on the photoluminescence spectra of the triphenylamine substituted stilbene derivatives and the triphenylamine substituted stilbene polymers has also been studied. The results showed that with the substituent of the triphenylamine substituted stilbene derivatives changing from the electron-donor of methoxy groups to the electron-acceptor of bromine atoms, the
    maximum emission wavelength () of their chloroform solutions was blue-shifted,
    PL
    max
    and the Stock's shift decreased. When the polarity of solution was increased, the of the triphenylamine substituted stilbene derivatives was red-shifted and the Stock's shift increased. The X of the triphenylamine substituted stilbene derivatives film
    coated by vacuum vapour method had a red shift in contrast to those in the solution of chloroform. The introducing methoxy groups into the triphenylamine substituted
    stilbene polymer also resulted in the red shift of the X.
    The effect of molecular structure on the aggregate structure of hole transport materials containing
引文
1.刘云圻,朱道本,有机固体,科学(上海),1997,49(5):15.
    2.邱勇,段炼,有机发光显示技术及有机半导体,半导体学报,2003,24(B05):209.
    3. C.W. Tang, Two-layer organic photovoltaic cell, Appl. Phys. Lett., 1986, 48: 183.
    4. E. Lebedev, T. Dittrich, V. Petrova-Koch, S. Karg, W. Brütting, Charge carrier mobility in poly(p-phenylenevinylene) studied by the time-of-flight technique, Appl. Phys. Lett., 1997, 71: 2686.
    5. K. Yamashita, Y. Harima, T. Matsubayashi, Conductance control of porphyrin solids by molecular design and doping, J. Phys. Chem., 1989, 93:5311.
    6. S. Naka, H. Okada, H. Onnagawa, J. Kido, T. Tsutsui, Time-of-Flight Measurement of Hole Mobility in Aluminum (Ⅲ) Complexes, Jpn. J. Appl. Phys., 1999, 38: L-1252.
    7. H.E. Katz, A. J. Lovinger, J. Johnson, C. Kloc,; T. Siegrist, W. Li, Y.-Y. Lin, and A. Dodabalapur. A soluble and air-stable organic semiconductor with high electron mobility. Nature, 2000, 404: 478.
    8. J.R. Ostrick, A. Dodabalapur, L. Torsi, A. J. Lovinger, E. W. Kwock, T. M. Miller, M. Galvin, M. Berggren, and H. E. Katz. Conductivity-type anisotropy in molecular solids, J. Appl. Phys., 1997, 81: 6804.
    9. J. H. Schon, High mobilities in organic semiconductors: basic science and technology, Synthetic Metals, 2001,122:157.
    
    
    10.宋文波,陈旭,吴芳,田文晶,马於光,许宏鼎,有机/聚合物材料体系能带结构的表征——电化学方法研究,高等学校化学学报,2000,21(9):1422.
    11.张志明,李国文,马於光,吴芳,田文晶,沈家骢,含噻吩环噁二唑衍生物的合成及电化学性能研究,高等学校化学学报,2000,21(11):1719.
    12. E. Aminaka, T. Tsutsui and S. Saito, Electroluminescent behavior in multiplayer thin-film electroluminescent devices using 9,10-bisstyrylanthracence derivatives, Jpn. J. Appl. Phys., 1994, 33: 1061.
    13. S. Saito, E. Aminaka, and T. Tsutsui, Progress in organic electroluminescent materials and device structures, J. Luminesence, 1994, 60&61: 902.
    14. T. Katsume, M. Hiramoto, M. Yokoyama, High photon conversion in a light transducer combining organic electroluminescent diode with photoresponsive organic pigment film, Appl. Phys. Lett., 1994, 64: 2546.
    15. A. Rajagopal, C. I. Wu, A. Kahn, Energy level offset at organic semiconductor heterojunctions, J. Appl. Phys., 1998, 83: 2649.
    16. S. T. Lee, X. Y. Hou, M. G Mason, C. W. Tang, Energy level alignment at Alq/metal interfaces, Appl. Phys. Lett., 1998, 72: 1593.
    17. S. F.Alvarado, L. Libioulle, P. F. Seidler, STM-excited luminescence on organic materials, Synth. Met., 1997, 91: 69.
    18. H. Eckhardt and L. W. Shacklette, K. Y. Jen, The electronic and electrochemical properties of poly(phenylene vinylenes) and poly(thienylene vinylenes):An experimental and theoretical study, J. Chem. Phys., 1989, 91: 1303.
    19. M. Helbig, H.-H. Horhold, Investigation of poly(arylenevinylene)s, Electrochemical studies on poly (p- phenylenevinylene)s, Makromol. Chem., 1993, 194: 1607.
    20. J. Ladik, P. Otto, Correlation Corrected Band Structures of Quasi 1D and 2D Periodic Systems and Level Distributions of Disordered Chains; New Method with Correlation for Dynamic Nonlinear Optical Properties of Periodic Polymers, International journal of quantum chemistry. Qua, 1993, 27: 111.
    
    
    21. V. Hernandez, F.J. Ramirez, J. T. Navarrete, C. Castiglion, Ab initio RHF/6-31G** theoretical study of thiophene derivatives: 2-methylthiophene and 3-methylthiophene, Journal of molecular structure, 1997, 410/411:311.
    22. E. M. Conwell, H. A. Mizes, S. Jeyadev, Band structure and conductivity of metallic polyacetylene, Synth. Met., 1991, 43:3341.
    23. W. R. Salaneck, M. Fahlman, J. L. Bredas, Electronic structure of 4-BCMU polydiacetylene studied by angle-dependent photoelectron spectroscopy, Synth. Met., 1994, 67: 309.
    24. J. L. Bredas and J. M. Toussaint, Theoretical investigations of the relaxed geometry in the first singlet Bu excited state of polyacetylene oligomers, The journal of chemical physics, 1990, 92: 2624.
    25. D. Beljonne, M. C. B. Colbert, J. L. Bredas, Electronic properties of dinuclear ruthenium-acetylide complexes: electrochemical and theoretical characterization, Synth met., 1996, 81: 179.
    26. M. Mas-Torrent, M. Durkut, P. Hadley, X. Ribas, C. Rovira, High Mobility of Dithiophene-Tetrathiafulvalene Single-Crystal Organic Field Effect Transistors, J. Am. Chem. Soc., 2004, 126(4): 984.
    27. C. W. Tang, S. A. Vanslyke, Organic electroluminescent diodes, Appl. Phys. Lett., 1987, 51: 913.
    28.马昌期,王雪松,张宝文,曹怡,有机电致发光空穴传输材料研究进展,化学进展,2003,15(6):495.
    29.王毅,刘燕刚,有机电荷传输材料,感光科学与光化学,1999,17(1):73.
    30. A. Reser, M. W. B. Lock, J. Knight, Migration and trapping of extrinsic charge carriers in polymer films, Trans Frarday Soc, 1969, 65: 2168.
    31. E. H. Matin, J. Hirsch, Determination of carder mobility in plastics by a time-of-flight method, Solid State Commum., 1969, 7: 783.
    32. H. Scher, E. W. Montroll, Anomalous transit-time dispersion in amorphous solids, Phys. Rev. B., 1975, 12: 2455.
    
    
    33. V. D. Mihailetchi, J. K. J. V. Duren, R W. M. Blom, J. C. Hummelen, R. A. J. Janssen, J. M. Kroon, M. T. Rispens, W. J. H. Verhees, M. M. Wienk, Electron transport in a methanofullerence, Advanced Functional Materials, 2003, 13(1): 43.
    34.朱道本,王佛松主编,有机固体,上海科学技术出版社,上海,1999.
    35. D. Ma, I. A. Hümmelgen, X. Jing, Z. Hong, L. Wang, X. Zhao, E Wang, F. E. Karasz, Charge transport in a blue-emitting alternating block copolymer with a small spacer to conjugated segment length ratio, J. Appl. Phys., 2000, 87:312.
    36.雀部博之,导电高分子材料,科学出版社,北京,1989.
    37. J. H. Schon. High mobilities in organic semiconductors: basic science and technology, Synthetic Metals, 2001,122:157.
    38. A. N. Aleshin, J. Y. Lee, S. W. Chu, J. S. Kim, and Y. W. Park, Mobility studies of field-effect transistor structures based on anthracene single crystals, Applied Physics Letters, 2004, 84(26): 5383.
    39. L. Marcel, L. D. Edith, J. Weigl, Charge transfer sensitization of some organic photoconductors based on carbazole. Molecular Crysals, 1972, 2: 241.
    40. A. J. Cherry, R. Robert, M. D. Shattuck, W. J. Weiche, Electrophotographic plate, U. S. Patent 3,791,826, 1974.
    41. G Destriau, Recherches sur les scintillations des sulfures de zinc aux rayons, Journal de Chemie Physique, 1936, 33: 587.
    42. M. Pope, H. Kallmann, P. Magnante, Electroluminescene in organic crystals, J. Chem. Phys., 1963, 38: 2042.
    43. J. M. Liu, P. Y. Lu, W. K. Weng, Studies on modifications of ITO surfaces in OLED devices by Taguchi methods, Material science Engineering B, 2001, 85, 209.
    44. Y. Shirota, Y. Kuwabara, H. lnada, Multilayered organic electroluminescent device using a novel starburst molecule, 4,4',4"-tris(3-methylphenylphenylamino) triphenylamine, as a hole transport material, Appl. Phys. Lett., 1994, 65(7): 807.
    45. M. Cocchi, D. Virgili, G Giro, V. Fattori, and P. Di Marco, J. Kalinowski, Y.
    
    Shirota, Efficient exciplex emitting organic electroluminescent devices, Appl. Phys. Lett., 2002, 80(13): 2401.
    46. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Bums, A. B. Holmes, Light-emitting diodes based on conjugated polymer, Nature, 1990, 347,539.
    47. E. Anlinaka, T. Tsutsui, and S. Saito, Electroluminescent Behaviors in Multilayer Thin-Film Electroluminescent Devices Using 9,10-Bisstyrylanthracene Derivatives, Jpn. J. Appl. Phys., 1994, 33: 1061.
    48. K. Book, H. Bassler, A. Elschner, S. Kirchmeyer, Hole injection from an ITOIPEDT anode into the hole transporting layer of an OLED probed by bias induced absorption, Organic Electronics, 2003, 4: 227.
    49. M. Thelakkat, H.-W. Schmidt, Synthesis and Properties of Novel Derivatives of 1,3,5- Tris(diarylamino)benzenes for Electroluminescent Devices, Adv. Mater. 1998, 10: 219.
    50. Y. Imai, M. Ishida, M. A. Kakimoto, Synthesis and properties of new triphenylamine-containing aromatic polyimides based on N, N'-bis(4aminophenyl)-N,N '-diphenyl-4,4 '-biphenyldiamine, High Perform Polym., 2003, 15(3): 281.
    51. C. Lambert, G. Noll, Intervalence charge-transfer bands in triphenylamine-based potymers, Synthetic Met., 2003, 139 (1): 57.
    52. H. Detert, O. Sadovski, Triarylamines connected via phenylenevinylene segments, Synthetic Met, 2003, 138: 185.
    53. H. Fujikawa, M. Ishii, S. Tokito, Y. Taga, Organic light-emitting diodes using triphenylamine materials, Mat Res Soc Symp Proc, 2000, 621: Q3.4.1.
    54. Y. Shirota, Organic materials for electronic and optoelectronic devices, J. Mater. Chem., 2000, 10: 1.
    55. C. Lambert, G. N(?)ll, One- and Two-Dimensional Electron Transfer Processes in Triarylamines with Multiple Redox Centers, Angew Chem, 1998, 110: 2239.
    
    
    56. J. Louie, J. F. Hartwig, A. J. Fry, Discrete High Molecular Weight Triarylamine Dendrimers Prepared by Palladium-Catalyzed Amination, J Am Chem Soc, 1997, 119: 11695.
    57. R. Fáber, G.F. Mielke, P. Rapta, A. Sta(?)ko, O. Nuyken, Anodic oxidation of novel hole-transporting materials derived from tetraarylbenzidines, electrochemical and spectroscopic characterization, Collect Czech Chem Commun, 2000, 65: 1403.
    58. C. Ego, A. C. Grimsdale, F. Uckert, G. Yu, G.. Srdanov, K. Müllen, Triphenylamine-substituted polyfluorene - a stable blue-emitter with improved charge injection for light-emitting diodes. Adv. Mater., 2002, 14(11): 809.
    59. J. Ostrauskaite, H. R. Karickal, A. Leopold, D. Haarer, M. Thelakkat, Poly[bis(triphenylamine) ether]s with low glass transition temperatures as photoconductors in fast photorefractive systems, J. Mater. Chem., 2002, 12: 58.
    60. G. S. Liou, S. H. Hsiao, M. Ishida, M. Kakimoto, Y. Irnai, Synthesis and Characterization of Novel Soluble Triphenylamine-Containing Aromatic Polyamides Based on N,N'-Bis(4-aminophenyl)-N,N'-diphenyl-1,4-phenylenediamine, Journal of Polymer Science: Part A: Polymer Chemistry, 2002, 40: 2810.
    61. S. Tanaka, T. Iso, Y. Doke, Preparation of new branched poly(triphenylamine), Chem. Commun.. 1997, 21: 2063.
    62. F. Wang, M. S. Wilson, R. D. Rauh, P. Schottland, J. R. Reynolds, Electroactive and Conducting Star-Branched Poly(3-hexylthiophene)s with a Conjugated Core, Macromolecules, 1999, 32(13): 4272.
    63. P. Kundu, K. R. J. Thomas, J. T. Lin, Y. T. Tao, C. H. Chien, High-Tg carbazole derivatives as blue-emitting hole-transporting materials for electroluminescent devices, Adv. Funct. Mater., 2003, 13(6): 445.
    64. L. H. Chan, R. H. Lee, C. F. Hsich, H. C. Yeh, C.T. Chen, Optimization of High-Performance Blue Organic Light-Emitting Diodes Containing Tetraphenylsilane Molecular Glass Materials, J. Am. Chem. Soc., 2002, 124: 6469.
    
    
    65. F. S. Meng, C. Z. Liu, J. L. Hua, Y. Cao, K. C. Chen, H. Tian, Novel linear and tri-branched copolymers based on triphenylamine for non-doping emitting materials, European Polymer Journal, 2003, 39: 1325.
    66. C. H. Lee, S. H. Ryu, H. D. Jang, S. Y. Oh, Structural effects of a light emitting copolymer having perylene moieties in the side chain on the electroluminescent characteristics, Materials Science and Engineering C, 2004, 24: 87.
    67. H. Tanaka, Y. Yamaguchi, M. Yokoyama, Molecular design for better charge transporting organic materials (2): hole drift mobility and chemical structure of arylamine derivatives, Denshi Shashin Gakkaishi, 1990, 29: 366.
    68. M. Yokoyama, J. F. Yanus, M. Stolka, Guiding concept for developing better charge transporting organic materials, Denshi Shashin Gakkaishi, 1986, 25: 236.
    69. D. M. Pai, J. F. Yanus, M. Stolka, Hole transport in solid solutions of substituted triarymethans in bisphenol-A-polycarbonate, Phil Mag B, 1983, 48: 505.
    70. Y. Shirota, Organic materials for electronic and optoelectronic devices, J. Mater. Chem., 2000, 10: 1.
    71. V. Podzorov, S. E. Sysoev, E. Loginova, V. M. Pudalov, M. E. Gershenson, Single-crystal organic field effect transistors with the hole mobility ~8 cm~2/Vs, Appl Phys Lett, 2003, 83(17): 3504.
    72.王燕君,陈红征,汪茫,杨士林,偶氮类光电导材料研究进展,材料研究学报,1997,11(3):225.
    73.黄剑,曹镛,有机电致发光材料研究进展,化工新型材料,2001,29(9):10.
    74.阎建民,林源,魏先福,王艳乔,杨联明,雷鸣,有机光导体空穴传输材料的性能表征.信息记录材料,2002,3(2):13.
    75. T. Mitsumori, T. Shouda, A. Fujii, M. Sato Electrophotographic Photoreceptor. US 5932384, 1999.
    76. B. C. Maiti, S. Z. Wang, C. E Cheng, D. J. Huang, C. I. Chao, Organic Amorphous Material N,N,N,N -tetraaryl(Ar_2~1Ar_2~2)-1,1'- biphenyl-4,4'-diamine, Journal of the Chinese Chemical Society, 2001, 48: 1059.
    
    
    77. D. F. O'Brien, P. E. Burrows, S. R. Forrest, B. E. Koene, D. E. Loy, M. E. Thompson, Hole Transporting Materials with High Glass Transition Temperatures for Use in Organic Light-Emitting Devices, Adv. Mater., 1998, 10:1108.
    78. H. Kageyama, K. Itano, W. Ishikawa and Y. Shirota, Striking effects of halogen substituents on the glass-forming properties, glass-transition temperatures and stabilities of the glassy state of a new family of amorphous molecular materials, 1,3,5-tris(4-halogenophenylphenylamino) benzenes, J. Mater. Chem., 1996, 6: 675.
    79. J. M. O'Reilly, S. Putta, P. Patkar, QSAR calculations of Tg of electroactive molecular glasses, The MAR 2000 Meeting of The American Physical Society. Minneapolis, MN: 2000.3.
    80. S. Pfeiffer, H Rost, H H. H(?)rhold, Investigation of poly(arylenevinylene)s, 42~a, Synthesis of PPV-based copolymers containing alkyldiphenylamine and triphenylamine in the main chain, Macromol Chem Phys, 1999, 200(11): 2471.
    81.徐征,章婷,陈晓红,刘育新,沈鸿,非共轭聚合物PPV衍生物中烷氧基团对发光性质的影响,发光学报,2002,23(2):175.
    82. K. Sakanoue, M. Motoda, M. Sugimoto, S. Sakaki, A Molecular Orbital Study on the Hole Transport Property of Organic Amine Compounds, J. Phys. Chem. A, 1999, 103: 5551.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700