用户名: 密码: 验证码:
ROS/AMPK介导的凋亡通路在川芎嗪抗胃癌作用中的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胃癌是消化系统最为常见的恶性肿瘤,整体预后不佳,化疗是其主要治疗手段之一。但是,现有的化疗药物存在着副作用大、化疗耐药等诸多问题,因此,从天然药物中寻找有效的胃癌辅助治疗药物,可为胃癌治疗提供新的途径。川芎嗪(Tetramethylpyrazine, TMPZ)是从川芎中提取的一种生物碱单体,其传统治疗作用主要表现为改善微循环、抗氧化应激方面。近些年来,川芎嗪在抗肿瘤治疗方面逐渐成为国内学者研究的热点,并有研究指出川芎嗪能逆转胃癌细胞多药耐药,但是,川芎嗪是否本身有抗胃癌作用,其机制又是什么,迄今为止,并无研究报道。
     AMP激活的蛋白激酶(AMP-activated protein kinase, AMPK)是细胞内的“能量调节器”,AMPK在能量缺乏时被激活,能量过量时抑制,其激活后能抑制细胞内蛋白质、脂肪酸、多糖的合成,这些过程为肿瘤细胞增殖、发展所必须。并且我们在对临床标本的检测中发现,AMPK的活性状态磷酸化AMPK (phosph-AMPK)的表达在胃癌组织中几乎检测不到或仅微弱表达。那么,川芎嗪是否可以通过激活AMPK来达到抑制胃癌生长的目的呢?目前为止,尚无任何文献报道。
     本课题以SGC7901胃癌细胞为研究对象,研究TMPZ在不同药物浓度、不同时间点对SGC7901胃癌细胞生长情况、凋亡的影响。在明确TMPZ可抑制胃癌细胞生长、促进细胞凋亡的基础上,从ROS/AMPK信号通路途径对TMPZ抗胃癌作用机制进行探讨,现将本论文主要研究结果归纳如下:
     1,收集病理确认的胃癌组织、癌旁组织和正常胃黏膜组织,免疫组化检测磷酸化AMPK (p-AMPK)的表达情况。结果显示,p-AMPK在正常组织中94%阳性表达,其阳性表达率高于癌旁组织72%(36/50)及胃癌组织4%(2/50),而癌旁组织中p-AMPK蛋白表达显著高于胃癌组织。进一步的Western blot结果显示p-AMPK蛋白表达量在正常组织为0.93±0.14、癌旁组织为0.43±0.08,胃癌组织为0.07±0.01,差异有显著性(P<0.05)
     2.探讨了TMPZ对SGC7901胃癌细胞的量效、时效关系。以不同浓度梯度的TMPZ (0,0.5,1,2,4,6,8mM)处理6,12,24,48h以后,噻唑蓝(MTT)比色法观察SGC7901细胞的生长情况。不同浓度梯度的TMPZ作用于SGC7901胃癌细胞24h后,流式细胞仪检测细胞凋亡情况。结果发现,低浓度的TMPZ对胃癌细胞生长无明显影响,较高浓度的TMPZ(4,6,8mM)在24h开始明显抑制胃癌细胞生长;并且,在TMPZ处理24h后明显诱导肿瘤细胞的凋亡,其作用呈一定的浓度依赖性;同时我们进一步证实,较高浓度的TMPZ对人胃黏膜上皮细胞GES-1、人脐静脉内皮细胞HUVECs、心肌样细胞H9c2的细胞凋亡并不产生明显影响;
     3.针对高浓度的TMPZ呈剂量依赖性地诱导肿瘤细胞凋亡,流式细胞仪检测高浓度TMPZ对ROS生成的影响,结果发现,高浓度的TMPZ呈浓度依赖性地升高肿瘤细胞ROS的含量,并且抑制细胞生长;给予ROS清除剂N-乙酰半胱氨酸(NAC)之后,ROS含量明显下降,并且高浓度的TMPZ不再能抑制肿瘤细胞的生长;
     4. Western blot法检测高浓度的TMPZ对胃癌SGC7901细胞AMPK磷酸化激活的影响。结果发现高浓度的TMPZ呈剂量依赖性地激活AMPK,使AMPK磷酸化水平增多,但是给予NAC之后,高浓度TMPZ所诱导的AMPK的磷酸化激活被取消;
     5.使用AMPK特异性的阻断剂Compound C,深入探讨高浓度TMPZ通过ROS/AMPK信号通路介导通过线粒体凋亡途径。结果表明,TMPZ通过激活AMPK,促使Bax从胞浆向线粒体迁移,使线粒体膜电位崩解,细胞色素C (cytochromec,Cyt c)从线粒体释放至胞浆中,然后激活caspase-9、caspase-3,从而导致胃癌SGC7901细胞凋亡。
     综上所述,从临床胃癌组织标本中AMPK活性被显著抑制这一现象得到启发,对TMPZ抗胃癌细胞SGC7901作用及机制进行研究发现:TMPZ高浓度抑制胃癌细胞生长,促进胃癌细胞凋亡,但并不会对其它细胞产生明显的影响。其机制可能是高浓度TMPZ诱导产生大量ROS,从而激活AMPK,促使Bax从胞浆迁移至线粒体,导致线粒体膜电位崩解,Cyt c释放至胞浆,激活caspase-9、caspase-3,最终导致肿瘤细胞凋亡。
Gastric cancer is the most common malignant tumor of digestive system with a poor overall prognosis, and chemotherapy is the main treatment method. However, existing chemotherapeutic agents have side effects, drug resistance and many other issues.To find effective drug for treating gastric cancer from natural drugs can provide a new approach for the treatment of gastric cancer. Tetramethylpyrazine (Tetramethylpyrazine, TMPZ) is an alkaloid extracted from the rhizome of chuanxiong whose traditional treatment effect is mainly manifested as improving microcirculation, anti-oxidative stress. In recent years, tetramethylpyrazine has become the focus in anti-tumor therapy research, and studies have shown that tetramethylpyrazine can reverse multiple drug resistance(MDR) in gastric cancer. However,whether tetramethylpyrazine itself has anti tumor effect and what is the mechanism, there is no relevant research reports so far.
     AMP activated protein kinase (AMPK AMP-activated protein kinase,) is an intracellular "energy regulator", which was activated when cell was in the energy shortage condition and was inhibited in energy excess condition. While the activation of AMPK can inhibit the synthesis of intracellular protein, fatty acid, polysaccharide, and the process is necessary for tumor cell proliferation and development. Previously we have found in the clinical samples that the expression of activity status of AMPK-phosphorylation status of AMPK (phosph-AMPK) in gastric cancer tissues were almost undetectable or very weak. Whether tetramethylpyrazine could inhibit the growth of gastric cancer through the activation of AMPK? So far, there is no report in the literature.
     This study foused on the research of the effection on gastric cancer cell growth and apoptosis of different concentrations of TMPZ,on different time points by using gastric cancer cell SGC7901as the research object. On the base of that TMPZ could inhibit the growth of gastric cancer cells and promote it's apoptosis,we further explored the mechanism of TMPZ's anti gastric cancer effect from the ROS/AMPK signal pathway, and the main results in this dissertation were summarized as follows:
     1. Expression of phosphorylated AMPK in pathologically confirmed gastric cancer tissues, paracancerous tissues and normal gastric mucosa tissue were detected using immunohistochemistry.The results showed that, the positive expression of phosph-AMPK was94.0%in normal gastric mucosa tissues, in paracancerous tissues was72.0%, and in carcinoma there was4.0%almost no expression. The expression of p-AMPK protein in normal gastric mucosa tissues was significantly higher than that in paracancerous tissues and gastric cancer tissues,while the expression of p-AMPK protein in paracancerous tissues was significantly higher than that in gastric cancer tissues.Further Western blot analysis showed that p-AMPK protein expression in normal tissues was0.93±0.14, in paracancerous tissues was0.43±0.08and in gastric cancer tissues was0.07±0.01, there was significant difference between the three group(P<0.05).
     2.Investigation of the effects of TMPZ on human gastric cancer cell SGC7901and the dose-effect, time-effect relationship. We treated the tumor cells with different concentrations of TMPZ (0,0.5,1,2,4,6,8mM) for6,12,24,48h, and methyl thiazolyl tetrazolium (MTT) assay was used to examine the growth of the tumor cells. Different concentrations of TMPZ treatment of the tumor cells for24h, cell apoptosis was detected by flow cytometry. The results showed that there was no significant effect of low concentration TMPZ on the growth of the tumor cells, while high concentration TMPZ (4,6,8mM) significantly inhibited the growth of the tumor cells after24h; and obviously induced the apoptosis of the tumor cells after24h treatment in a concentration-dependent manner. At the same time, we further confirmed that higher concentrations TMPZ had no significant effect on the survival rate and the apoptosis of human gastric epithelial cells GES-1, human umbilical vein endothelial cells HUVECs and human Myocardial cells H9c2.
     3.According to the apoptosis of tumor cells induced by the high concentration TMPZ in a dose-dependent manner, we used flow cytometry to detect how the high concentration of TMPZ effceted the ROS production and we found that the high concentration TMPZ could raise the concentration of ROS in tumor cells in a dose-dependent manner and inhibit the tumor cells growth. After administration of NAC,a ROS scavenger, ROS content in cells decreased significantly, and the high concentration TMPZ could not inhibit the growth of tumor cells anymore.
     4.Western blot detection the effect of high concentration TMPZ in phosphorylation of AMPK in human gastric cancer cell line SGC7901. Results showed that the high concentration TMPZ could activate AMPK in a dose-dependent manner and increase the phosphorylation level of AMPK, but after administration of NAC, phosphorylation of AMPK induced by high concentration TMPZ was abolished.
     5.Using AMPK specific inhibitor Compound C, we deeply study the high concentration TMPZ activation the mitochondrial apoptosis pathway through the ROS/AMPK signaling pathway. The results showed that, through the activation of AMPK,TMPZ promoted the migration of Bax from the cytosol to the mitochondria, and the collapse of mitochondrial membrane potential, then cytochrome C released from mitochondria to cytosol, and activated caspase-9, Caspase-3, resulting in apoptosis of gastric cancer cell line SGC7901.
     To sum up, inspired by the AMPK activity in gastric cancer tissues,we studied the effect of TMPZ against gastric cancer cell SGC7901and it's mechanism.We found that high concentration TMPZ inhibited the growth of gastric cancer cells, and promoted the apoptosis of gastric cancer cells, but did not have significant effect on the other cells. The mechanism may be that the high concentration TMPZ induced the generatin of a large amount of ROS, leading to activation of AMPK, Bax migration from the cytosol to the mitochondria, leading to mitochondrial membrane potential collapse, then CytC was released into the cytoplasm, to activate caspase-9, caspase-3. finally induce the apoptosis of tumor cells.
引文
1. Amedei A, Benagiano M, della Bella C, Niccolai E, D'Elios MM. Novel immunotherapeutic strategies of gastric cancer treatment. J Biomed Biotechnol.2011; 2011:437348.
    2. Pasini F, Fraccon AP, DE Manzoni G. The role of chemotherapy in metastatic gastric cancer. Anticancer Res.2011; 31:3543-54.
    3. Fujii M, Kochi M, Takayama T. Recent advances in chemotherapy for advanced gastric cancer in Japan. Surg Today.2010; 40:295-300.
    4. Sasako M, Sakuramoto S, Katai H, Kinoshita T, Furukawa H, Yamaguchi T, et al. Five-year outcomes of a randomized phase Ⅲ trial comparing adjuvant chemotherapy with S-1 versus surgery alone in stage Ⅱ or Ⅲ gastric cancer. J Clin Oncol.2011; 29: 4387-93.
    5. Zhang F, Ni C, Kong D, Zhang X, Zhu X, Chen L, Lu Y, Zheng S. Ligustrazine attenuates oxidative stress-induced activation of hepatic stellate cells by interrupting platelet-derived growth factor-P receptor-mediated ERK and p38 pathways. Toxicol Appl Pharmacol.2012; 265(1):51-60.
    6. Song J, Ruan Q.Mechanism of ligustrazini against thrombosis. Chin Med J (Engl). 2000; 113(2):136-9.
    7. Li Z, Yu F, Cui L, Zhan P, Wang S, Shen Y, Liu X. Ligustrazine derivatives. Part 6: design, synthesis and evaluation of novel ligustrazinyl acylguanidine derivatives as potential cardiovascular agents. Med Chem.2012; 8(5):928-33.
    8. Guo L, Wang A, Sun Y, Xu C. Evaluation of antioxidant and immunity function of tetramethylpyrazine phosphate tablets in vivo. Molecules.2012; 17(5):5412-21.
    9. Wang P, She G, Yang Y, Li Q, Zhang H, Liu J, Cao Y, Xu X, Lei H. Synthesis and biological evaluation of new ligustrazine derivatives as anti-tumor agents. Molecules. 2012; 17(5):4972-85.
    10. Shen T, Xu H, Weng W, Zhang J. Development of a reservoir-type transdermal delivery system containing eucalyptus oil for tetramethylpyrazine. Drug Deliv.2013; 20(1):19-24.
    11. Zhang F, Kong DS, Zhang ZL, Lei N, Zhu XJ, Zhang XP, Chen L, Lu Y, Zheng SZ. Tetramethylpyrazine induces G0/G1 cell cycle arrest and stimulates mitochondrial-mediated and caspase-dependent apoptosis through modulating ERK/p53 signaling in hepatic stellate cells in vitro. Apoptosis.2013; 18(2):135-49.
    12. Leng YF, Gao XM, Wang SX, Xing YH. Effects of tetramethylpyrazine on neuronal apoptosis in the superficial dorsal horn in a rat model of neuropathic pain. Am J Chin Med.2012; 40(6):1229-39.
    13. Wang LS, Shi ZF, Zhang YF, Guo Q, Huang YW, Zhou LL. Effect of Xiongbing compound on the pharmacokinetics and brain targeting of tetramethylpyrazine. J Pharm Pharmacol.2012; 64(11):1688-94.
    14.刘锦蓉,叶松柏.川芎嗪抗肿瘤转移作用及其机制.中国药理学与毒理学杂志.1993;7(2):149.
    15.刘宝瑞,徐修礼,刘文超,孟宪志.14种中药制剂对人肺癌A549细胞增殖的影响.中国药理学通报.2002;18(1):94-96.
    16.林洪生,李树奇,裴迎霞,祁鑫,李攻戍,朴炳奎.川芎嗪、苦参碱对癌细胞与内皮细胞黏附及黏附因子表达的影响.中国新药杂志.1999;8(6):384-386.
    17. Lei Chen, Yin Lu, Jia-ming Wua. Ligustrazine inhibits B16F10 melanoma metastasis and suppresses angiogenesis induced by Vascular Endothelial Growth Factor. Biochemical and Biophysical Research Communications.2009; 386: 374-379.
    18.徐晓玉,严鹏科,陈刚,廖端芳.川芎嗪对小鼠肺癌血管生长和VEGF表达的抑制.中国药理学通报,2004;20(2):151-154.
    19.曲正,侯培珍,曲伟,王颖慧.川芎嗪逆转人胃癌耐药细胞SGC7901/ADM 多药耐药的实验研究.包头医学院学报.2005;21(3):220-221
    20. Shi J, Wang Y, Luo G. Ligustrazine phosphate ethosomes for treatment of Alzheimer's disease, in vitro and in animal model studies. AAPS Pharm Sci Tech. 2012; 13(2):485-92.
    21. Alters Mansuy-Aubert V, Zhou QL, Xie X, Gong Z, Huang JY, Khan AR, Aubert G, Candelaria K, Thomas S, Shin DJ, Booth S, Baig SM, Bilal A, Hwang D, Zhang H, Lovell-Badge R, Smith SR, Awan FR, Jiang ZY. Imbalance between Neutrophil Elastase and its Inhibitor al-Antitrypsin in Obesity Insulin Sensitivity, Inflammation, and Energy Expenditure. Cell Metab.2013; 17(4):534-48.
    22. Shintani Y, Kapoor A, Kaneko M, Smolenski RT, D'Acquisto F, Coppen SR, Harada-Shoji N, Lee HJ, Thiemermann C, Takashima S, Yashiro K, Suzuki K. TLR9 mediates cellular protection by modulating energy metabolism in cardiomyocytes and neurons. Proc Natl Acad Sci USA.2013; 110(13):5109-14.
    23. O'Neill HM. AMPK and Exercise:Glucose Uptake and Insulin Sensitivity. Diabetes Metab J.2013; 37(1):1-21.
    24. Yuan HX, Xiong Y, Guan KL. Nutrient sensing, metabolism, and cell growth control. Mol Cell.2013; 49(3):379-87.
    25. Dupont J, Reverchon M, Cloix L, Froment P, Rame C. Involvement of adipokines, AMPK, PI3K and the PPAR signaling pathways in ovarian follicle development and cancer. Int J Dev Biol.2012; 56(10-12):959-67.
    26. Hardie DG. The LKB1-AMPK pathway-friend or foe in cancer? Cancer Cell. 2013; 23(2):131-2.
    27. Rios M, Foretz M, Viollet B, Prieto A, Fraga M, Costoya JA, Senaris R. AMPK Activation by Oncogenesis Is Required to Maintain Cancer Cell Proliferation in Astrocytic Tumors. Cancer Res.2013. Epub ahead of print
    28. Wang JH, Yun C, Kim S, Lee JH, Yoon G, Lee MO, Cho H. Reactive oxygen species modulates the intracellular level of HBx viral oncoprotein. Biochem Biophys Res Commun.2003; 310(1):32-9.
    29. Gu JM, Lim SO, Oh SJ, Yoon SM, Seong JK, Jung G. HBx modulates iron regulatory protein 1-mediated iron metabolism via reactive oxygen species.Virus Res. 2008; 133(2):167-77.
    30. Storz G, Polla BS. Transcriptional regulators of oxidative stress-inducible genes inprokaryotes and eukaryotes. EXS.1996; 77:239-254.
    31. Fridlyand LE, Philipson LH. Oxidative reactive species in cell injury: Mechanisms in diabetes mellitus and therapeutic approaches.Ann N Y Acad Sci.2005; 1066:136-51.
    32. Hatanaka E, Dermargos A, Hirata AE, Vinolo MA, Carpinelli AR, Newsholme P, Armelin HA, Curi R. Oleic, Linoleic and Linolenic Acids Increase ROS Production by Fibroblasts via NADPH Oxidase Activation. PLoS One.2013; 8(4):e58626. doi: 10.1371/journal.pone.0058626.
    33. Lushchak VI. Free radical oxidation of proteins and its relationship with functionalstate of organisms. Biochemistry(Mosc).2007; 72(8):809-827.
    34. Nishigori C. Cellular aspects of photocarcinogenesis. Photochem Photobiol Sci. 2006; 5(2):208-14.
    35. England K, Cotter TG. Direct oxidative modifications of signalling proteins in mammalian cells and their effects on apoptosis. Redox Rep.2005; 10(5):237-45.
    36. Del Follo-Martinez A, Banerjee N, Li X, Safe S, Mertens-Talcott S. Resveratrol and Quercetin in Combination Have Anticancer Activity in Colon Cancer Cells and Repress Oncogenic microRNA-27a. Nutr Cancer.2013; 65(3):494-504.
    37. Zhu P, Tong BM, Wang R, Chen JP, Foo S, Chong HC, Wang XL, Ang GY, Chiba S, Tan NS. Nox4-dependent ROS modulation by amino endoperoxides to induce apoptosis in cancer cells. Cell Death Dis.2013;4:e552. doi:10.1038/cddis.2013.68
    38. Bishayee K, Ghosh S, Mukherjee A, Sadhukhan R, Mondal J, Khuda-Bukhsh AR. Quercetin induces cytochrome-c release and ROS accumulation to promote apoptosis and arrest the cell cycle in G2/M, in cervical carcinoma:signal cascade and drug-DNA interaction. Cell Prolif.2013; 46(2):153-63.
    39. Lee DJ, Kang SW. Reactive oxygen species and tumor metastasis. Mol Cells. 2013; 35(2):93-8.
    40. Chen Y, Zhang S, Peng G, Yu J, Liu T, Meng R, Li Z, Zhao Y, Wu G. Endothelial NO synthase and reactive oxygen species mediated effect of simvastatin on vessel structure and function:pleiotropic and dose-dependent effect on tumor vascular stabilization. Int J Oncol.2013; 42(4):1325-36.
    41. Migita T, Okabe S, Ikeda K, Igarashi S, Sugawara S, Tomida A, Taguchi R, Soga T, Seimiya H.Inhibition of ATP Citrate Lyase Induces an Anticancer Effect via Reactive Oxygen Species:AMPK as a Predictive Biomarker for Therapeutic Impact.Am J Pathol.2013. doi:pii:S0002-9440(13)00136-3.10.1016/ j.ajpath.2013.01.048.
    42. Yuan Y, Xue X, Guo RB, Sun XL, Hu G. Resveratrol enhances the antitumor effects of temozolomide in glioblastoma via ROS-dependent AMPK-TSC-mTOR signaling pathway.CNS Neurosci Ther.2012; 18(7):536-46.
    43. Chen L, Knowlton AA. Mitochondrial dynamics in heart failure.Congest Heart Fail.2011; 17(6):257-61.
    44. Bae YS, Oh H, Rhee SG, Yoo YD. Regulation of reactive oxygen species generation in cell signaling. Mol Cells.2011; 32(6):491-509.
    45. Apostolova N, Blas-Garcia A, Esplugues JV. Mitochondria sentencing about cellular life and death:a matter of oxidative stress. Curr Pharm Des.2011; 17(36): 4047-60.
    46. Chen X, Gao H, Wei P, Zhang Z, Liu Y. Expression of apoptosis-related genes Fas/FasL, Bax/Bcl-2 and Caspase-3 in rat corpus luteum during luteal regression. Sci China C Life Sci.2003; 46(3):273-85.
    47. Pfister B, Oyler G, Betenbaugh M, Bao G. The effects of BclXL and Bax over-expression on stretch-injury induced neural cell death. Mech Chem Biosyst. 2004; 1(4):233-43.
    48. Assis GF, Ceolin DS, Marques ME, Salvadori DM, Ribeiro DA. Cigarette smoke affects apoptosis in rat tongue mucosa:role of bcl-2 gene family. J Mol Histol.2005; 36(8-9):483-9.
    49. Rosse T, Olivier R, Monney L, Rager M, Conus S, Fellay I, Jansen B, Borner C. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature.1998; 391(6666):496-9.
    50. Clohessy JG, Zhuang J, de Boer J, Gil-Gomez G, Brady HJ. Mcl-1 interacts with truncated Bid and inhibits its induction of cytochrome c release and its role in receptor-mediated apoptosis. J Biol Chem.2006; 281(9):5750-9.
    51. Jemmerson R, Dubinsky JM, Brustovetsky N. Cytochrome C release from CNS mitochondria and potential for clinical intervention in apoptosis-mediated CNS diseases. Antioxid Redox Signal.2005; 7(9-10):1158-72.
    52. Mitchelhill KI, Stapleton D, Gao G, House C, Michell B, Katsis F, Witters LA, Kemp BE. Mammalian AMP-activated protein kinase shares structural and functional homology with the catalytic domain of yeast Snfl protein kinase. J Biol Chem.1994; 269(4):2361-4.
    53. Hardie D G, Hawley S A. AMP-activated protein kinase:the energy charge hypothesis revisited. Bioessays.2001; 23:1112-9.
    54. Hardie D G. The AMP-activated protein kinase cascade, the key sensor of cellular energy status. Endocrinology.2003; 144:5179-83.
    55. Luo Z, Saha AK, Xiang X, Ruderman NB. AMPK, the metabolic syndrome and cancer. Trends Pharmacol Sci.2005; 26(2):69-76.
    56. Luo Z, Zang M, Guo W. AMPK as a metabolic tumor suppressor:control of metabolism and cell growth. Future Oncol.2010; 6(3):457-70.
    57. Guggenheim DE, Shah MA. Gastric cancer epidemiology and risk factors. J Surg Oncol.2013; 107(3):230-6.
    58. Janjigian YY, Kelsen DP. Genomic dysregulation in gastric tumors. J Surg Oncol. 2013; 107(3):237-42.
    59. Katoh M, Igarashi M, Fukuda H, Nakagama H, Katoh M. Cancer genetics and genomics of human FOX family genes. Cancer Lett.2013; 328(2):198-206.
    60. Liu L, Ulbrich J, Muller J, Wustefeld T, Aeberhard L, Kress TR, Muthalagu N, Rycak L, Rudalska R, Moll R, Kempa S, Zender L, Eilers M, Murphy DJ. Deregulated MYC expression induces dependence upon AMPK-related kinase 5. Nature.2012; 483(7391):608-12.
    61. Tokunaga C, Yoshino K, Yonezawa K. mTOR integrates amino acid- and energy-sensing pathways. Biochem Biophys Res Commun.2004; 313(2):443-6.
    62. Davies S P, Hawley S A. Carling D, Haystead TA, Hardie DG. Purification of the AMP-activated protein kinase on ATP-gamma-sepharose and analysis of its subunit structure. Eur J Biochem.1994; 223:351-357.
    63. Vakana E, Platanias LC. AMPK in BCR-ABL expressing leukemias. Regulatory effects and therapeutic implications. Oncotarget.2011; 2(12):1322-8.
    64. Passariello CL, Gottardi D, Cetrullo S, Zini M, Campana G, Tantini B, Pignatti C, Flamigni F, Guarnieri C, Caldarera CM, Stefanelli C. Evidence that AMP-activated protein kinase can negatively modulate ornithine decarboxylase activity in cardiac myoblasts. Biochim Biophys Acta.2012; 1823(4):800-7.
    65. Gallagher EJ, LeRoith D. Diabetes, cancer, and metformin:connections of metabolism and cell proliferation. Ann N Y Acad Sci.2011; 1243:54-68.
    66. Lim TH, Fujikane R, Sano S, Sakagami R, Nakatsu Y, Tsuzuki T, Sekiguchi M, Hidaka M. Activation of AMP-activated protein kinase by MAPO1 and FLCN induces apoptosis triggered by alkylated base mismatch in DNA. DNA Repair (Amst). 2012; 11(3):259-66.
    67. Chiong M, Morales P, Torres G, Gutierrez T, Garcia L, Ibacache M, Michea L Influence of glucose metabolism on vascular smooth muscle cell proliferation. Vasa. 2013; 42(1):8-16.
    68. Ahluwalia A, Tarnawski AS. Activation of the metabolic sensor-AMP activated protein kinase reverses impairment of angiogenesis in aging myocardial microvascular endothelial cells. Implications for the aging heart.J Physiol Pharmacol. 2011; 62(5):583-7.
    69. Hardie DG, Salt IP, Hawley SA, Davies SP. AMP-activated protein kinase:an ultrasensitive system for monitoring cellular energy charge.Biochem J.1999; 338 (Pt 3):717-22.
    70. Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, MSkela TP, Alessi DR, Hardie DG. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol.2003; 2(4):28.
    71. Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, Cantley LC. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA. 2004; 101(10):3329-35.
    72. Hawley SA, Selbert MA, Goldstein EG. Edelman AM, Carling D, Hardie DG 5'-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J Biol Chem.1995; 270(45):27186-91.
    73. Asano K, Takagi K, Haneishi A, Nakamura S, Yamada K. (-)-Epigallocatechin-3-gallate stimulates both AMP-activated protein kinase and nuclear factor-kappa B signaling pathways. Food Chem.2012; 134(2):783-8.
    74. Lee JO, Lee SK, Kim JH, Kim N, You GY, Moon JW, Kim SJ, Park SH, Kim HS. Metformin regulates glucose transporter 4 (GLUT4) translocation through AMP-activated protein kinase (AMPK)-mediated Cbl/CAP signaling in 3T3-L1 preadipocyte cells. J Biol Chem.2012; 287(53):44121-9.
    75. Miyamoto L, Ebihara K, Kusakabe T, Aotani D, Yamamoto-Kataoka S, Sakai T, Aizawa-Abe M, Yamamoto Y, Fujikura J, Hayashi T, Hosoda K, Nakao K. Leptin activates hepatic 5'-AMP-activated protein kinase through sympathetic nervous system and al-adrenergic receptor:a potential mechanism for improvement of fatty liver in lipodystrophy by leptin. J Biol Chem.2012; 287(48):40441-7.
    76. Tokuda H, Kato K, Natsume H, Kondo A, Kuroyanagi G, Matsushima-Nishiwaki R, Ito Y, Otsuka T, Kozawa O. Involvement of AMP-activated protein kinase in thrombin-stimulated interleukin 6 synthesis in osteoblasts. J Mol Endocrinol.2012; 49(1):47-55.
    77. Abbott MJ, Constantinescu S,Turcotte LP. AMP-activated protein kinase a2 is an essential signal in the regulation of insulin-stimulated fatty acid uptake in control-fed and high-fat-fed mice. Exp Physiol.2012; 97(5):603-17.
    78. Awazawa M, Ueki K, Inabe K, Yamauchi T, Kubota N, Kaneko K, Kobayashi M, Iwane A, Sasako T, Okazaki Y, Ohsugi M, Takamoto I, Yamashita S, Asahara H, Akira S, Kasuga M, Kadowaki T. Adiponectin enhances insulin sensitivity by increasing hepatic IRS-2 expression via a macrophage-derived IL-6-dependent pathway. Cell Metab.2011; 13(4):401-12.
    79. Chang HW, Lee YS, Nam HY, Han MW, Kim HJ, Moon SY, Jeon H, Park JJ, Carey TE, Chang SE, Kim SW, Kim SY. Knockdown of β-catenin controls both apoptotic and autophagic cell death through LKB1/AMPK signaling in head and neck squamous cell carcinoma cell lines. Cell Signal.2013; 25(4):839-47.
    80. Huang SW, Wu CY, Wang YT, Kao JK, Lin CC, Chang CC, Mu SW, Chen YY, Chiu HW, Chang CH, Liang SM, Chen YJ, Huang JL, Shieh JJ. p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells. Toxicol Appl Pharmacol.2013; 267(1):113-24.
    81. Kim AJ, Jee HJ, Song N, Kim M, Jeong SY, Yun J. p21(WAFVC1P1) deficiency induces mitochondrial dysfunction in HCT116 colon cancer cells. Biochem Biophys Res Commun.2013; 430(2):653-8.
    82. Ha TK, Her NG, Lee MG, Ryu BK, Lee JH, Han J, Jeong SI, Kang MJ, Kim NH, Kim HJ, Chi SG. Caveolin-1 increases aerobic glycolysis in colorectal cancers by stimulating HMGA1-mediated GLUT3 transcription.Cancer Res.2012; 72(16): 4097-109.
    83. Sato A, Sunayama J, Okada M, Watanabe E, Seino S, Shibuya K, Suzuki K, Narita Y, Shibui S, Kayama T, Kitanaka C. Glioma-initiating cell elimination by metformin activation of FOXO3 via AMPK.Stem Cells Transl Med.2012; 1(11): 811-24.
    84. Chiacchiera F, Simone C. Inhibition of p38alpha unveils an AMPK-FoxO3A axis linking autophagy to cancer-specific metabolism. Autophagy.2009; 5(7):1030-3.
    85. Dong LX, Sun LL, Zhang X, Pan L, Lian LJ, Chen Z, Zhong DS. Negative regulation of mTOR activity by LKB1-AMPK signaling in non-small cell lung cancer cells. Acta Pharmacol Sin.2013; 34(2):314-8.
    86. Zhang Y, Xu S, Lin J, Yao G, Han Z, Liang B, Zou Z, Chen Z, Song Q, Dai Y, Gao T, Liu A, Bai X. mTORC1 is a target of nordihydroguaiaretic acid to prevent breast tumor growth in vitro and in vivo. Breast Cancer Res Treat.2012; 136(2):379-88.
    87. Buller CL, Heilig CW, Brosius FC 3rd. GLUT1 enhances mTOR activity independently of TSC2 and AMPK. Am J Physiol Renal Physiol.2011; 301(3): F588-96.
    88. Green AS, Chapuis N, Lacombe C, Mayeux P, Bouscary D, Tamburini J. LKB1/AMPK/mTOR signaling pathway in hematological malignancies:from metabolism to cancer cell biology. Cell Cycle.2011; 10(13):2115-20.
    89. Yang J, Yang S, Yuan YJ. Integrated investigation of lipidome and related signaling pathways uncovers molecular mechanisms of tetramethylpyrazine and butylidenephthalide protecting endothelial cells under oxidative stress. Mol Biosyst. 2012; 8(6):1789-97.
    90. Sun Y, Yu P, Zhang G, Wang L, Zhong H, Zhai Z, Wang L, Wang Y. Therapeutic effects of tetramethylpyrazine nitrone in rat ischemic stroke models. J Neurosci Res. 2012; 90(8):1662-9.
    91. Zheng CY, Xiao W, Zhu MX, Pan XJ, Yang ZH, Zhou SY. Inhibition of cyclooxygenase-2 by tetramethylpyrazine and its effects on A549 cell invasion and metastasis. Int J Oncol.2012; 40(6):2029-37.
    92. Yin J, Yu C, Yang Z, He JL, Chen WJ, Liu HZ, Li WM, Liu HT, Wang YX. Tetramethylpyrazine inhibits migration of SKOV3 human ovarian carcinoma cells and decreases the expression of interleukin-8 via the ERK1/2, p38 and AP-1 signaling pathways. Oncol Rep.2011; 26(3):671-9.
    93. Slaninova J, Mlsova V, Kroupova H, Alan L, Tumova T, Monincova L, Borovickova L, Fucik V, Cerovsky V. Toxicity study of antimicrobial peptides from wild bee venom and their analogs toward mammalian normal and cancer cells. Peptides.2012; 33(1):18-26.
    94. Higashi D, Seki K, Ishibashi Y, Egawa Y, Koga M, Sasaki T, Hirano K, Mikami K, Futami K, Maekawa T, Sudo M. The effect of lentinan combination therapy for unresectable advanced gastric cancer. Anticancer Res.2012; 32(6):2365-8.
    95. Castillo-Pichardo L, Dharmawardhane SF. Grape polyphenols inhibit Akt/mammalian target of rapamycin signaling and potentiate the effects of gefitinib in breast cancer. Nutr Cancer.2012; 64(7):1058-69.
    96. Yang J, Yang S, Yuan YJ. Integrated investigation of lipidome and related signaling pathways uncovers molecular mechanisms of tetramethylpyrazine and butylidenephthalide protecting endothelial cells under oxidative stress. Mol Biosyst. 2012; 8(6):1789-97.
    97 Sun Y, Yu P, Zhang G, Wang L, Zhong H, Zhai Z, Wang L, Wang Y. Therapeutic effects of tetramethylpyrazine nitrone in rat ischemic stroke models. J Neurosci Res. 2012; 90(8):1662-9.
    98 Gao C, Liu Y, Ma L, Zhang X, Wang S. Effects of Ligustrazine on pulmonary damage in rats following scald injury. Burns.2012; 38(5):743-50.
    99 Wang B, Ni Q, Wang X, Lin L. Meta-analysis of the clinical effect of ligustrazine on diabetic nephropathy. Am J Chin Med.2012; 40(1):25-37.
    100 He X, Zheng Z, Yang X, Lu Y, Chen N, Chen W. Tetramethylpyrazine attenuates PPAR-y antagonist-deteriorated oxazolone-induced colitis in mice. Mol Med Rep. 2012; 5(3):645-50.
    101 Wu HJ, Hao J, Wang SQ, Jin BL, Chen XB. Protective effects of ligustrazine on TNF-α-induced endothelial dysfunction.Eur J Pharmacol.2012; 674(2-3):365-9.
    102 Xue Y, Tie CR, Li J, Tian T, Li QX. Ligustrazine inhibits lipopolysaccharide-induced proliferation by affecting P27, Bcl-2 expression in rat mesangial cells. Eur J Pharmacol.2011; 665(1-3):8-12.
    103 Zheng CY, Xiao W, Zhu MX, Pan XJ, Yang ZH, Zhou SY. Inhibition of cyclooxygenase-2 by tetramethylpyrazine and its effects on A549 cell invasion and metastasis. Int J Oncol.2012; 40(6):2029-37.
    104. Yin J, Yu C, Yang Z, He JL, Chen WJ, Liu HZ, Li WM, Liu HT, Wang YX. Tetramethylpyrazine inhibits migration of SKOV3 human ovarian carcinoma cells and decreases the expression of interleukin-8 via the ERK1/2, p38 and AP-1 signaling pathways. Oncol Rep.2011; 26(3):671-9.
    105. Zhang Y, Liu X, Zuo T, Liu Y, Zhang JH. Tetramethylpyrazine reverses multidrug resistance in breast cancer cells through regulating the expression and function of P-glycoprotein. Med Oncol.2012; 29(2):534-8.
    106.杨岚,杨平地,梁蓉.川芎嗪联合环胞霉素A逆转白血病多药耐药的研究.癌症.2000;19(4):36-43.
    107.范青,范广俊,赵瑾瑶,杨佩满.川芎嗪脂质体对人白血病细胞株K562多药耐药逆转作用的研究.中国药师.2004;7(10):56-63.
    108.胡家才,李清泉.川芎嗪对肺癌A549细胞增殖与凋亡的影响及其机制.武汉大学学报:医学版.2010;31(1):19-21
    109.杨岚,杨平地,梁蓉,袁跃传,田琼.川芎嗪联合环孢霉素A逆转白血病多药耐药的研究.癌症.2000;19(4):304-306.
    110. Luo H, Yang A, Schulte BA, Wargovich MJ, Wang GY. Resveratrol Induces Premature Senescence in Lung Cancer Cells via ROS-Mediated DNA Damage. PLoS One.2013; 8(3):e60065. doi:10.1371/journal.pone.0060065.
    111. Cuendet M, Pezzuto JM. The role of cyclooxygenase and lipoxygenase in cancer chemoprevention. Drug Metabol Drug Interact.2000; 17(1-4):109-57.
    112. Du Q, Hu B, An HM, Shen KP, Xu L, Deng S, Wei MM. Synergistic anticancer effects of curcumin and resveratrol in Hepal-6 hepatocellular carcinoma cells. Oncol Rep.2013; 29(5):1851-8.
    113. Park SA, Na HK, Surh YJ. Resveratrol suppresses 4-hydroxyestradiol-induced transformation of human breast epithelial cells by blocking IκB kinaseβ-NF-KB signalling. Free Radic Res.2012; 46(8):1051-7.
    114. Tsukino H, Hanaoka T, Otani T, Iwasaki M, Kobayashi M, Hara M, Natsukawa S, Shaura K, Koizumi Y, Kasuga Y, Tsugane S. hOGG1 Ser326Cys polymorphism, interaction with environmental exposures, and gastric cancer risk in Japanese populations. Cancer Sci.2004; 95(12):977-83.
    115. Ushio-Fukai M, Alexander RW. Reactive oxygen species as mediators of angiogenesis signaling:role of NAD(P)H oxidase. Mol Cell Biochem.2004; 264(1-2): 85-97.
    116. Venkataraman S, Wagner BA, Jiang X, Wang HP, Schafer FQ, Ritchie JM, Patrick BC, Oberley LW, Buettner GR. Overexpression of manganese superoxide dismutase promotes the survival of prostate cancer cells exposed to hyperthermia. Free Radic Res.2004; 38(10):1119-32.
    117. Jee HJ, Kim HJ, Kim AJ, Song N, Kim M, Yun J. Nek6 suppresses the premature senescence of human cancer cells induced by camptothecin and doxorubicin treatment. Biochem Biophys Res Commun.2011; 408(4):669-73.
    118. Su WP, Lo YC, Yan JJ, Liao IC, Tsai PJ, Wang HC, Yeh HH, Lin CC, Chen HH, Lai WW, Su WC. Mitochondrial uncoupling protein 2 regulates the effects of paclitaxel on Stat3 activation and cellular survival in lung cancer cells. Carcinogenesis.2012; 33(11):2065-75.
    119. Sun H, Yu T, Li J.Co-administration of perifosine with paclitaxel synergistically induces apoptosis in ovarian cancer cells:more than just AKT inhibition. Cancer Lett. 2011; 310(1):118-28.
    120. You BR, Park WH. Arsenic trioxide induces human pulmonary fibroblast cell death via increasing ROS levels and GSH depletion. Oncol Rep.2012; 28(2):749-57. doi:10.3892/or.2012.
    121. Roy SS, Chakraborty P, Ghosh P, Ghosh S, Biswas J, Bhattacharya S. Influence of novel naphthalimide-based organoselenium on genotoxicity induced by an alkylating agent:the role of reactive oxygen species and selenoenzymes. Redox Rep. 2012; 17(4):157-66.
    122. Kim BM, Choi YJ, Lee YH, Joe YA, Hong SH. N,N-Dimethyl phytosphingosine sensitizes HL-60/MX2, a multidrug-resistant variant of HL-60 cells, to doxorubicin-induced cytotoxicity through ROS-mediated release of cytochrome c and AIR Apoptosis.2010; 15(8):982-93.
    123. Tian HL, Yu T, Xu NN, Feng C, Zhou LY, Luo HW, Chang DC, Le XF, Luo KQ. A novel compound modified from tanshinone inhibits tumor growth in vivo via activation of the intrinsic apoptotic pathway. Cancer Lett.2010; 297(1):18-30.
    124. Jegathesan J, Liebenthal JA, Arnett MG, Clancy RL, Pierce JD. Apoptosis: understanding the new molecular pathway. Medsurg Nurs.2004; 13(6):371-5.
    125. Colitti M. BCL-2 family of proteins and mammary cellular fate. Anat Histol Embryol.2012; 41(4):237-47.
    126. Hardwick JM, Chen YB, Jonas EA. Multipolar functions of BCL-2 proteins link energetics to apoptosis. Trends Cell Biol.2012; 22(6):318-28.
    127. Adrain C, Martin SJ. The mitochondrial apoptosome:a killer unleashed by the cytochrome seas. Trends Biochem Sci.2001; 26(6):390-7
    128. Kajta M. Apoptosis in the central nervous system:Mechanisms and protective strategies. Pol J Pharmacol.2004; 56(6):689-700.
    129. Don AS, Hogg PJ. Mitochondria as cancer drug targets. Trends Mol Med.2004; 10(8):372-8.
    130. Singh KK.Mitochondrial dysfunction is a common phenotype in aging and cancer. Ann N Y Acad Sci.2004; 1019:260-4.
    131. Pani G, Colavitti R, Bedogni B, Fusco S, Ferraro D, Borrello S, Galeotti T. Mitochondrial superoxide dismutase:a promising target for new anticancer therapies. Curr Med Chem.2004; 11(10):1299-308.
    132. Danial NN. BCL-2 family proteins:critical checkpoints of apoptotic cell death. Clin Cancer Res.2007; 13(24):7254-63.
    133. Martin SS, Vuori K. Regulation of Bcl-2 proteins during anoikis and amorphosis. Biochim Biophys Acta.2004; 1692(2-3):145-57.
    134. Jiang X, Wang X. Cytochrome C-mediated apoptosis. Annu Rev Biochem.2004; 73:87-106.
    135. Cheng EH Wei MC Weiler S. BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX-and BAK-mediated mitochondrial apoptosis. Mol Cell, 2001; 8(3):705-711.
    136. Antonsson B, Montessuit S, Sanchez B. Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J Biol Chem.2001; 276(15):11615-23.
    1. Hardie DG, Ross FA, Hawley SA. AMP-activated protein kinase:a target for drugs both ancient and modern. Chem Biol.2012; 19(10):1222-36.
    2. Bijland S, Mancini SJ, Salt IP.Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation.Clin Sci (Lond).2013; 124(8):491-507.
    3. Hardie DG, Ross FA, Hawley SA. AMPK:a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol.2012; 13(4):251-62.
    4. Hardie DGSensing of energy and nutrients by AMP-activated protein kinase.Am J Clin Nutr.2011; 93(4):891S-6.
    5. Zungu M, Schisler JC, Essop MF, McCudden C, Patterson C, Willis MS. Regulation of AMPK by the ubiquitin proteasome system. Am J Pathol.2011; 178(1): 4-11.
    6. Namgaladze D, Kemmerer M, von Knethen A, Briine B. AICAR inhibits PPARy during monocyte differentiation to attenuate inflammatory responses to atherogenic lipids. Cardiovasc Res.2013. Epub ahead of print
    7. Zhang M, Dong Y, Xu J, Xie Z, Wu Y, Song P, Guzman M, Wu J, Zou MH. Thromboxane receptor activates the AMP-activated protein kinase in vascular smooth muscle cells via hydrogen peroxide. Circ Res.2008; 102(3):328-37.
    8. Bhalla K, Hwang BJ, Dewi RE, Twaddel W, Goloubeva OG, Wong KK, Saxena NK, Biswal S, Girnun GD. Metformin prevents liver tumorigenesis by inhibiting pathways driving hepatic lipogenesis. Cancer Prev Res (Phila).2012; 5(4):544-52.
    9. Lee-Young RS, Bonner JS, Mayes WH, Iwueke I, Barrick BA, Hasenour CM, Kang L, Wasserman DH. AMP-activated protein kinase (AMPK)α2 plays a role in determining the cellular fate of glucose in insulin-resistant mouse skeletal muscle. Diabetologia.2013; 56(3):608-17.
    10. Hermann R, Marina Prendes MG, Torresin ME, Velez D, Savino EA, Varela A. Effects of the AMP-activated protein kinase inhibitor compound C on the postconditioned rat heart. J Physiol Sci.2012; 62(4):333-41.
    11. Puthanveetil P, Rodrigues B. Glucocorticoid excess induces accumulation of cardiac glycogen and triglyceride:suggested role for AMPK. Curr Pharm Des.2013. Epub ahead of print
    12. Chin JT, Troke JJ, Kimura N, Itoh S, Wang X, Palmer OP, Robbins RC, Fischbein MP.A novel cardioprotective agent in cardiac transplantation:metformin activation of AMP-activated protein kinase decreases acute ischemia-reperfusion injury and chronic rejection. Yale J Biol Med.2011; 84(4):423-32.
    13. Zaha VG, Young LH. AMP-activated protein kinase regulation and biological actions in the heart. Circ Res.2012; 111(6):800-14.
    14. Chen K, Kobayashi S, Xu X, Viollet B, Liang Q. AMP Activated Protein Kinase Is Indispensable for Myocardial Adaptation to Caloric Restriction in Mice. PLoS One. 2013;8(3):e59682.
    15. Passariello CL, Gottardi D, Cetrullo S, Zini M, Campana G, Tantini B, Pignatti C, Flamigni F, Guarnieri C, Caldarera CM, Stefanelli C. Evidence that AMP-activated protein kinase can negatively modulate ornithine decarboxylase activity in cardiac myoblasts. Biochim Biophys Acta.2012; 1823(4):800-7.
    16. Yan H, Zhang D, Zhang Q, Wang P, Huang Y. The activation of AMPK in cardiomyocytes at the very early stage of hypoxia relies on an adenine nucleotide-independent mechanism. Int J Clin Exp Pathol.2012; 5(8):770-6.
    17. Mackenzie RM, Salt IP, Miller WH, Logan A, Ibrahim HA, Degasperi A, Dymott JA, Hamilton CA, Murphy MP, Delles C, Dominiczak AF. Mitochondrial reactive oxygen species enhance AMP-activated protein kinase activation in the endothelium of patients with coronary artery disease and diabetes.Clin Sci (Lond).2013; 124(6): 403-11.
    18. Kambara T, Ohashi K, Shibata R, Ogura Y, Maruyama S, Enomoto T, Uemura Y, Shimizu Y, Yuasa D, Matsuo K, Miyabe M, Kataoka Y, Murohara T, Ouchi N. CTRP9 protein protects against myocardial injury following ischemia-reperfusion through AMP-activated protein kinase (AMPK)-dependent mechanism. J Biol Chem.2012; 287(23):18965-73.
    19. Oliveira SM, Zhang YH, Solis RS, Isackson H, Bellahcene M, Yavari A, Pinter K, Davies JK, Ge Y, Ashrafian H, Walker JW, Carling D, Watkins H, Casadei B, Redwood C. AMP-activated protein kinase phosphorylates cardiac troponin I and alters contractility of murine ventricular myocytes. Circ Res.2012; 110(9):1192-201.
    20. Chen YC, Lee SD, Kuo CH, Ho LT. The effects of altitude training on the AMPK-related glucose transport pathway in the red skeletal muscle of both lean and obese Zucker rats. High Alt Med Biol.2011; 12(4):371-8.
    21. Shah AK, Gupta A, Dey CS. AICAR induced AMPK activation potentiates neuronal insulin signaling and glucose uptake.Arch Biochem Biophys.2011; 509(2): 142-6.
    22. Paiva MA, Rutter-Locher Z, Goncalves LM, Providencia LA, Davidson SM, Yellon DM, Mocanu MM. Enhancing AMPK activation during ischemia protects the diabetic heart against reperfusion injury. Am J Physiol Heart Circ Physiol.2011; 300(6):H2123-34.
    23. Leick L, Fentz J, Biens RS, Knudsen JG, Jeppesen J, Kiens B, Wojtaszewski JF, Pilegaard H. PGC-1{alpha} is required for AICAR-induced expression of GLUT4 and mitochondrial proteins in mouse skeletal muscle.Am J Physiol Endocrinol Metab. 2010; 299(3):E456-65.
    24. Habegger KM, Hoffman NJ, Ridenour CM, Brozinick JT, Elmendorf JS. AMPK enhances insulin-stimulated GLUT4 regulation via lowering membrane cholesterol. Endocrinology.2012; 153(5):2130-41.
    25. Magnoni LJ, Vraskou Y, Palstra AP, Planas JV. AMP-activated protein kinase plays an important evolutionary conserved role in the regulation of glucose metabolism in fish skeletal muscle cells. PLoS One.2012; 7(2):e31219.
    26. Habets DD, Coumans WA, El Hasnaoui M, Zarrinpashneh E, Bertrand L, Viollet B, Kiens B, Jensen TE, Richter EA, Bonen A, Glatz JF, Luiken JJ. Crucial role for LKB1 to AMPKalpha2 axis in the regulation of CD36-mediated long-chain fatty acid uptake into cardiomyocytes. Biochim Biophys Acta.2009; 1791(3):212-9.
    27. Hwang YP, Choi JH, Kim HG, Lee HS, Chung YC, Jeong HG. Saponins from Platycodon grandiflorum inhibit hepatic lipogenesis through induction of SIRT1 and activation of AMP-activated protein kinase in high-glucose-induced HepG2 cells. Food Chem.2013; 140(1-2):115-23.
    28. Eid AA, Ford BM, Block K, Kasinath BS, Gorin Y, Ghosh-Choudhury G, Barnes JL, Abboud HE. AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p53 and epithelial cell apoptosis in diabetes.J Biol Chem.2010; 285(48):37503-12.
    29. Chae HD, Lee MR, Broxmeyer HE.5-Aminoimidazole-4-carboxyamide ribonucleoside induces G(1)/S arrest and Nanog downregulation via p53 and enhances erythroid differentiation. Stem Cells.2012; 30(2):140-9.
    30. Downs SM, Ya R, Davis CC. Role of AMPK throughout meiotic maturation in the mouse oocyte:evidence for promotion of polar body formation and suppression of premature activation. Mol Reprod Dev.2010; 77(10):888-99.
    31. Kim J, Guan KL. Regulation of the autophagy initiating kinase ULK1 by nutrients:Roles of mTORC1 and AMPK. Cell Cycle.2011;10(9):112-116.
    32. Ui A, Ogiwara H, Nakajima S, Kanno S, Watanabe R, Harata M, Okayama H, Harris CC, Yokota J, Yasui A, Kohno T. Possible involvement of LKB1-AMPK signaling in non-homologous end joining. Oncogene.2013; Epub ahead of print.
    33. Lee JY, Choi AY, Oh YT, Choe W, Yeo EJ, Ha J, Kang I. AMP-activated protein kinase mediates T cell activation-induced expression of FasL and COX-2 via protein kinase C theta-dependent pathway in human Jurkat T leukemia cells. Cell Signal. 2012; 24(6):1195-207.
    34. Chang XZ, Yu J, Liu HY, Dong RH, Cao XC. ARKS is associated with the invasive and metastatic potential of human breast cancer cells. J Cancer Res Clin Oncol.2012; 138(2):247-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700