用户名: 密码: 验证码:
溴化锂溶液降膜流动及传热传质的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄液膜流动以其高传热传质系数、结构简单且动力消耗小等独特优点,在传统工业和高新技术领域中得到广泛应用,例如降膜蒸发器、冷凝器、降膜吸收器和降膜反应器及核反应堆冷却和微电子器件冷却等。由于薄液膜流动固有的不稳定性表现出丰富的动力学行为,深入了解薄液膜流动的波动特性、影响因素及传热传质强化机理,已成为近年来富有挑战性的研究课题,且对于传热传质过程强化具有重要意义。
     本文针对吸收器中发生的降膜吸收传热传质耦合过程,分别对水冷平板上的光滑层流降膜吸收过程、单一入口扰动频率下薄液膜流动的波动特性及影响因素和含有传热传质的波动降膜吸收过程进行了较为系统的数值模拟研究。主要研究内容如下:
     同时考虑冷却水侧温度和对流传热系数的变化,建立了垂直平板上的光滑层流降膜吸收器模型。研究了不同下降位置处液膜内的温度、浓度分布规律和壁面、主体及界面的温度、浓度随着下降距离的变化规律;讨论了壁面热通量、界面热通量和质量通量随着下降距离的变化规律;分析了物性变化和冷却水侧对流传热系数对吸收过程的影响。结果表明,冷却水侧对流传热的强化对吸收器的吸收性能有很大的影响,同时总吸收传质速率常物性比变物性高。
     建立了波动降膜流动模型,研究了单一入口扰动频率下液膜表面的稳态波形,分析了波不同位置处的顺流速度分布和壁面切应力等波动力学特性。结果表明,在低频率下,入口处的扰动发展为泪滴状孤波,且孤波前伴随着细小的毛细波;在高频率下,入口处的扰动发展为周期准正弦波,同时孤波波峰处出现循环流动。波内的大部分位置处的顺流速度与Nusselt速度分布吻合较好。在一些特殊位置,如孤波前的第一个波谷处,速度为负值,意味着回流的出现。壁面切应力的结果也证实了回流的出现。基于经典的边界层分离理论解释了回流产生机理,并分析了波动强化传热机理。
     在波动降膜流动模型基础上,研究了入口扰动频率、Re数和壁面倾斜角等操作条件和表面张力和粘度等物性对降液膜波形和波内动力学的影响。结果表明,随着入口扰动频率的增加,表面稳态波形经历了由孤波、相互作用波和周期准正弦波的转变,时均传热系数逐渐降低;随着Re数的增加,孤波的波峰高度和循环流动尺度增加,而壁面倾斜角的增大,在流动方向的重力分力增加,进而加速了波的发展;随着表面张力的增加,波峰高度降低,且孤波前的毛细波数目增多;粘度的增加使稳态波形由孤波向周期准正弦波转变。.在所有的模拟结果中,孤波波峰处均出现循环流动,周期准正弦波波峰处无循环流动。顺流速度分布和壁面切应力结果表明,孤波前第一个毛细波波谷处出现回流,且回流强度较大,覆盖了整个波谷。当Re增加时,除了第一个毛细波波谷外,第二个毛细波波谷处也出现回流。同时分析了操作条件和物性对涡流形式和强度的影响。随着入口扰动频率的增加,孤波前第一个毛细波处的涡流经历了完全开式涡、半开式涡至消失的转变。随着表面张力的增加,孤波前第一个毛细波处涡流范围逐渐增大,由半开式涡逐渐转变为完全开式涡。随着壁面倾斜角的增加,最小液膜厚度近壁面处由小涡流逐渐发展为完全开式涡。
     最后,建立了波速动坐标系下的孤波降膜吸收模型。通过得到的温度场和浓度场结果,分析了循环流动对波内温度场和浓度场的影响,给出了不同波内位置处的温度和浓度分布,同时给出了吸收热通量和质量通量、局部传热系数和传质系数随着下降距离的变化,研究了波动强化吸收机理。结果表明,波动引起了衬底和毛细波处的浓度边界层减薄强化了吸收过程,同时由于传热传质的耦合特性,波峰处的循环流动和毛细波处的液膜减薄均强化了流体与壁面的换热,降低了液膜温度,增加了传质推动力,强化吸收。
The concept of a thin liquid film falling downward an inclined or a vertical wall has been widely used in traditional industries and hi-tech fields, such as falling film evaporator, condenser, falling film absorber and falling film reactor, nuclear cooling and micro-electronic diveces cooling, because it can enhance heat and mass transfer rates without incurring much flow resistance and power consumption. The flow of falling liquid film exhibits abundant hydrodynamical behaviors because of the inherent instability. Due to its importance and universality of application, it is extremely necessary to investigate the hydrodynamic properties, heat and mass transfer of falling film and the influencing factors.
     Absorber is one important component in absorption system and its characteristics have significant effects on the overall absorption efficiency. In this dissertation, the numerical study on heat and mass transfer in film absorption under laminar flow was conducted; The surface wave dynamics of vertical falling films under monochromatic-frequency flowrate-forcing perturbations was computed by VOF method. And then, the influence factors of operation conditions and physical properties on surface wave dynamics were investigated. Finally, the numerical simulation has been carried out on steam absorption by wave falling film.
     A model of simultaneous heat and mass transfer process in a water-cooled vertical plate absorber under laminar flow was developed using lithium bromide/water as the working pairs. The practical convective boundary condition at the cooling water side is considered. The convective heat transfer coefficient is assumed constant, and the coolant temperature changes linearly along its flowing path. The model can predict temperature and concentration profiles across the film as well as along the downstream distance, heat and mass fluxes. In addition, the effect of cooling heat transfer coefficient on mass transfer rate was investigated. In particular, the effect of variable physical properties on the absorption process was considered and discussed.
     Numerical simulation has been made on the wave evolution and flow dynamics of falling films of aqueous LiBr solution along a vertical wall. Volume of Fluid (VOF) model is used to track the free surface and Continuum Surface Force (CSF) model is used for dynamic boundary conditions considering the effect of surface tension. The characteristics of wave dynamics, such as streamwise velocity profile and wall shear stress, were analyzed. A small amplitude forcing disturbance was introduced at the inlet of the flow boundary. The simulation results show that at low frequency the small disturbance may give rise to a solitary rolling wave with a large amplitude and some small amplitude capillary waves. At high frequency the wave amplitude becomes small and accompanied capillary waves disappear. The waveform is nearly like the sinusoidal shape. Furthermore, the circulation flow was observed at the peak of solitary wave. In most sections of the wave the velocity profile is described by the self-similar parabolic form. In some unique regions, such as the first capillary wave trough, the velocity is negative, indicating the reverse flow in these areas. This is the same situation as that proved by the distribution of wall shear stress. Based on the principle of boundary layer separation, the mechanism leading to the origination of backflow phenomena was explained. And the mechanism of wave enhancement was analyzed.
     Based on the wave model of falling liquid film, the influence of operation conditions and physical properties to the dynamics of the wave was examined. Operation conditions include disturbance frequency, Re and wall inclination angle. Physical properties include surface tension and viscosity. The simulation results indicated that as the increase of the disturbance frequency, the transition of solitary waves, interacting waves and sinusoidal waves took place. Furthermore, as the increase of Reynolds number, the wave amplitude, wave length and intensity of recirculation increased. As the increase of wall inclination angle, the component of gravity parallel to the wall increased, thus the wave grew faster. Peak height decreased as the increase of surface tension and wave numbers of capillary waves in front of solitary wave increased. As the increase of viscosity wave shape changed from the solitary shape to the sinusoidal one.
     A model of simultaneous heat and mass transfer process of steam absorption by wavy falling film was developed. The temperature and concentration profiles at different streamwise position were presented. At the same time, the heat and mass flux, local heat and mass transfer coefficient along the downstream distance were also presented. The mechanism of wave enhancement was analyzed.
引文
[1]FULFORD G D. The flow of liquids in thin films [M]. New York:Advances in Chemical Engineering. 5, Academic Press,1964.
    [2]ALEKSEENKO S V, NAKORYAKOV V E, POKUSAEV B G. Wave flow of liquid films. Begell House [M]. New York,1994.
    [3]CHANG H C, DEMEKHIN E A. Complex wave dynamics on thin films [M]. Elsevier Press,2002.
    [4]DEMEKHIN E A, KALAIDIN E N, SELIN A S. Three-dimensional localized coherent structures of surface turbulence. III. Experiment and model validation [J]. Physics of Fluids 22,2010:092103.
    [5]NUSSELT W. Die Oberflachenkondensation des Wasserdampfes. Zeitschrift des Vereines Deutscher Ingenieure [J].1916,60(2):541-546.
    [6]戴干策,陈敏恒.化工流体力学[M].化学工业出版社,1988.
    [7]VALLURI P, MATAR O K, HEWITT G F. Mendes M.A. Thin film flow over structured packings at moderate Reynolds numbers [J]. Chemical Engineering Science,2005,60(7):1965-1975.
    [8]ALEKSEENKO S V, MARKOVICH D M. Experimental investigation of liquid distribution over structured packing [J]. AIChE Journal,2008,54(6):1424-1430.
    [9]KOSTOGLOU M, SAMARAS K, KARAPANTSIOS T D. Reconstruction of film thickness time traces for wavy turbulent free falling films [J]. International Journal of Multiphase Flow,2010,36(3): 184-192.
    [10]KAPITZA P L, KAPITZA S P. Wave flow of thin layers of a viscous fluid:III. Experimental study of undulatory flow conditions [J]. Zh Exp Tear Fiz,1949,19:105-124.
    [11]YIH C S. Stability of liquid flow down an inclined plane [J]. Physics of Fluids,1963,6(3):321-334.
    [12]LIU J, GOLLUB J P. Solitary wave dynamics of film flows [J]. Physics of Fluids,1994,6(5): 1702-1712.
    [13]叶学民.壁面薄膜流的热质传递和稳定性研究[D].保定;华北电力大学,2002.
    [14]BENNEY D J. Long waves on liquid films [J]. Journal of Math Physics,1966,45:150-155.
    [15]LIN S P. Finite amplitude stability of a parallel flow with a free surface [J]. Journal of Fluid Mechanics,1969,36:113-126.
    [16]GJEVIK B. Occurrence of finite-amplitude surface waves on falling liquid films [J]. Physics of Fluids, 1970,13:1918-1925.
    [17]NAKAYA C. Long waves on a thin fluid layer flowing down an inclined plane [J]. Physics of Fluids, 1975,18:1407-1412.
    [18]PUMIR A, MANNEVILLE P, POMEAU Y. On solitary waves running down an inclined plane [J]. Journal of Fluid Mechanics,1983,135:27-50.
    [19]JOO S W, DAVIS S H, BANKOFF S G. Long-wave instabilities of heated falling films: two-dimensional theory of uniform layers [J]. Journal of Fluid Mechanics,1991,230:117-146.
    [20]SHKADOV V Y, KHOLPANOV L P, MALYUSOV V A, et al. Nonlinear theory of wave flows of liquid films [J]. Teorosn Khim Tekhnol,1970,4:859-867.
    [21]ALEKSEENKO S V, NAKORYAKOV V Y, POKUSAEV B G. Wave formation on a vertical falling liquid film [J]. AIChE Journal,1985,31(9):1446-1460.
    [22]PROKOPIOU T H, CHENG M, CHANG H C. Long waves on inclined films at high Reynolds number [J]. Journal of Fluid Mechanics,1991,222:665-691.
    [23]CHANG H C, DEMEKHIN E, KALAIDIN E. Interaction dynamics of solitary waves on a falling film [J]. Journal of Fluid Mechanics,1995,294:123-154.
    [24]YU L Q, WASDEN F K. Nonlinear evolution of waves on falling films at high Reynolds numbers [J]. Physics of Fluids,1995,7(8):1886-1902.
    [25]LEE J J, MEI C C. Stationary waves on an inclined sheet of viscous fluid at high Reynolds and moderate Weber numbers [J]. Journal of Fluid Mechanics,1996,307:191-229.
    [26]NGUYEN L T, BALAKOTAIAH V. Modeling and experimental studies of wave evolution on free falling viscous films [J]. Physics of Fluids,2000,12(9):2236-2256.
    [27]陶文铨.数值传热学(第2版)[M].西安:西安交通大学出版社,2001.
    [28]陶文铨.传热与流动问题的多尺度数值模拟:方法与应用[M].北京:科学出版社,2008.
    [29]WASDEN F K, DUKLER A E. Insights into the hydrodynamics of free falling wavy films [J]. AIChE Journal,1989,35(2):187-195.
    [30]BRAUNER N, MARON D M. Modeling of wavy flow in inclined thin films [J]. Chemical Engineering Science,1983,38(5):775-788.
    [31]MARON D M, BRAUNER N, HEWITTB G F. Flow patterns in wave thin films:numerical simulation [J]. International Communications in Heat and Mass Transfer,1989,16:655-666.
    [32]YANG R, WOOD B D. A numerical solution of the motion on a falling liquid film [J]. Canadian Journal of Chemical Engineering,1991,69(6):723-728.
    [33]PIERSON F W, WHITAKER S. Some theoretical and experimental observations of the wave structure of falling liquid films [J]. Industrial and Engineering Chemistry Fundamentals,1977,16(4):401-408.
    [34]JAYANTI S, HEWITT G F. Hydrodynamics and heat transfer of wavy thin film flow [J]. International Journal of Heat and Mass Transfer,1997,40(1):179-190.
    [35]JAYANTI S, HEWITT G F. Hydrodynamics and heat transfer of wavy annular gas-liquid flow:a computational fluid dynamics study [J]. International Journal of Heat and Mass Transfer,1997,40(10): 2445-2460.
    [36]NAGASAKI T, HIJIKATA K A. Numerical study of interfacial waves on a falling liquid films [C]. ANS proceeding of the 1989 National Heat Transfer Conference. American Nuclear Society.1989: 23-30.
    [37]KIYOTA M, MORIOKA I, KIYOI M. Numerical analysis of waveform of falling films [J]. Trans JSME B,1994,60(580):4177-4184.
    [38]BACH P, VILLADSEN J. Simulation of the vertical flow of a thin wavy film using a finite-element method [J]. International Journal of Heat and Mass Transfer,1984,27(6):815-827.
    [39]KHESHGI H S, SCRIVEN L E. Disturbed film flow on a vertical plate [J]. Physical Fluids,1987, 30(4):990-997.
    [40]MALAMATARIS N T, PAPANASTASIOU T C. Unsteady free surface flows on truncated domains [J]. Industrial Engineering Chemistry Research,1991,30(9):2211-2219.
    [41]SALAMON T R, ARMSTRONG R C, ROBERT A B. Traveling waves on vertical films:numerical analysis using the finite element method [J]. Physics of Fluids,1994,6(6):2202-2219.
    [42]HO L W, PATERA A T. A legendre spectral element method for simulation of unsteady incompressible viscous free-surface flows [J]. Computer Methods in Applied Mechanics and Engineering,1990,80:355-366.
    [43]RAMASWAMY B, CHIPPADA S, JOO S W. A full-scale numerical study of interfacial instabilities in thin-film flows [J]. Journal of Fluid Mechanics,1996,325:163-194.
    [44]NIKOLAOS A M, VLACHOGIANNIS M, BONROZOGLOU V. Solitary waves on inclined films:flow structure and binary interactions [J]. Physics of Fluids,2002,14(3):1082-1094.
    [45]VLACHOGIANNIS M, BONTOZOGLOU V. Observations of solitary wave dynamics of film flows [J]. Journal of Fluid Mechanics,2001,435:191-215.
    [46]MIYARA A. Numerical analysis on flow dynamics and heat transfer of falling liquid with interfacial waves [J]. Heat and Mass Transfer,1999,35:298-306.
    [47]MIYARA A. Numerical simulation of wavy liquid film flowing down on a vertical wall and an inclined wall [J]. International Journal Thermal Science,2000,39:1015-1027.
    [48]HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries [J]. Journal of Computational Physics,1981,39:201-225.
    [49]LAN H, WEGENER J L, ARMALY B F, et al. Developing laminar gravity-driven thin liquid film flow down an Inclined plane [J]. Journal of Fluids Engineering-Transactions of the ASME,2010, 132(8):081301.
    [50]GAO D, MORLEY N B, DHIR V. Numerical simulation of wavy falling film flow using VOF method [J]. Journal of Computational Physics,2003,192:624-642.
    [51]TIHON J, SERIFI K, ARGYRIADI K, et al. Solitary waves on inclined films:their characteristics and the effects on wall shear stress [J]. Experiments in Fluids,2006,41(79-89).
    [52]PORTALSKI S. Eddy formation in film flow down a vertical plate [J]. Industrial and Engineering Chemistry Fundamentals,1964,3(1):49-53.
    [53]DIETZE G F, LEEFKEN A, KNEER R. Investigation of the backflow phenomenon in falling liquid films [J]. Journal of Fluid Mechanics,2008,595:435-459.
    [54]MALAMATARIS N A, BALAKOTAIAH V. Flow structure underneath the large amplitude waves of a vertically falling film [J]. AIChE Journal,2008,54(7):1725-1740.
    [55]KOSTOGLOU M, SAMARAS K, KARAPANTSIOS T D. Large wave characteristics and their downstream evolution at high Reynolds number falling films [J]. AIChE Journal,2010,56(1):11-23.
    [56]KRANTZ W B, GOREN S L. Stability of thin liquid films flowing down a plane [J]. Industrial Engineering Chemistry Fundamentals,1971,10(1):91-101.
    [57]PORTALSKI S, CLEGG A J. Experimental study of wave inception on falling liquid films [J]. Chemical Engineering Science,1972,27(6):1257-1265.
    [58]NOSOKO T, YOSHIMARA P N, NAGATA T, et al. Characteristics of two-dimensional waves on a falling liquid films [J]. Chemical Engineering Science,1996,51(5):725-732.
    [59]DIETZE G F, AL-SIBAI F, KNEER R. Experimental study of flow separation in laminar falling liquid films [J]. Journal of Fluid Mechanics,2009,637:73-104.
    [60]LIU J, SCHNEIDER J B, GOLLUB J P. Three-dimensional instabilities of film flows [J]. Physical Fluids,1995,7(1):55-67.
    [61]MORAN K, INUMARU J, KAWAJI M. Instantaneous hydrodynamics of a laminar wavy liquid film [J]. International Journal of Multiphase Flow,2002,28(5):731-755.
    [62]余黎明,曾爱武,余国琮.气液降膜流动中液相速度波动及其传质研究[J].高校化学工程学报,2006.5:696-701.
    [63]JANZEN J G, HERLINA H, JIRKA G H, et al. Estimation of mass transfer velocity based on measured turbulence parameters [J]. AIChE Journal,2010,56(8):2005-2017.
    [64]LEEFKEN A, AL-SABAI F, RENZ U. LDV measurement of the velocity distribution in periodic waves of laminar falling films [C].5th international conference on multiphase flow ICMF. Yokohama Japan.2004.
    [65]ALEKSEENKO S V, ANTIPIN V A, BOBYLEV A V, et al. Application of PIV to velocity measurements in a liquid film flowing down an inclined cylinder [J]. Experiments in Fluids,2007, 43(2):197-207.
    [66]沙庆云.传递原理[M].大连理工大学出版社,2003.
    [67]KUTZTELADZE S S. Semi-empirical theory of film condensation of pure vapours [J]. International Journal of Heat and Mass Transfer,1982,25(5):653-660.
    [68]CHUN K R, SEBAN R A. Heat transfer to evaporating liquid films [J]. ASME J Heat Transfer,1971, 93:391-396.
    [69]NAKORYAKOV V E, POKUSAVE B G, ALEKSEENKO S V. Wave effect on desorption of carbon dioxide from falling liquid films(in Russian) [J]. TeorOsnovy Khim Tekhn,1983,17(3):307-312.
    [70]SEBAN R A, FAGHRI A. Wave effects on the transport to falling laminar liquid films [J]. Journal of Heat Transfer,1978,100(1):143-147.
    [71]NAKORYAKOV V Y, GRIGOREVA N I. Combined heat and mass transfer in film absorption [J]. Heat Transfer-Soviet Research,1980,12(3):111-117.
    [72]PARK C D, NOSOKO T. Three-dimensional wave dynamics on a falling film and associated mass transfer [J]. AIChE Journal,2003,49(11):2715-2727.
    [73]VAZQUEZ-UNA G, CHENLO-ROMERO F, SANCHEZ-BARRAL M, et al. Mass transfer enhancement due to surface wave formation at a horizontal gas-liquid interface [J]. Chemical Engineering Science,2000,55(23):5851-5856.
    [74]SCHAGEN A, MODIGELL M. Local film thickness and temperature distribution measurement in wavy liquid films with a laser-induced luminescence technique [J]. Experiments in Fluids,2007,43(2): 209-221.
    [75]SCHAGEN A, MODIGELL M. Luminescence technique for the measurement of local concentration distribution in thin liquid films [J]. Experiments in Fluids,2005,38(2):174-184.
    [76]WASDEN F K, DUKLER A E. A numerical study of mass transfer in free falling wavy films [J]. AIChE Journal,1990,36(9):1379-1390.
    [77]NAGASAKI T, AKIYAMA H, NAKAGAWA. Numerical analysis of flow and mass transfer in a falling liquid film with interfacial waves [J]. Thermal Science and Engineering,2002,10(1):17-23.
    [78]SISOEV G A, MATAR O K, LAWRENCE C J. Absorption of gas into a wavy falling film [J]. Chemical Engineering Science,2005,60(3):827-838.
    [79]LEEFKEN A, RENZ U. Numerical analysis on hydrodynamics and heat transfer of laminar-wavy falling films [C].11th-12th Conference on Transport Phenomena with Moving Boundaries. Berlin, Germany.2004.
    [80]MIYARA A. Flow dynamics and heat transfer of wavy condensate film [J]. ASME Journal of Heat Transfer,2001,123:492-500.
    [81]SERIFI K, MALAMATARIS N A, BONROZOGLOU V. Transient flow and heat transfer phenomena in inclined wavy films [J]. International Journal of Thermal Sciences,2004,43:761-767.
    [82]STUHLTRAGER E, MIYARA A, UEHARA H. Flow dynamics and heat transfer of a condensate film on a vertical wall-Ⅱ.Flow dynamics and heat transfer [J]. International Journal of Heat and Mass Tranfer,1995,38(15):2715-2722.
    [83]KUNUGI T, KINO C. DNS of falling film structure and heat transfer via MARS method [J]. Computers and Structure,2005,83:455-462.
    [84]HU J S, CHAO C Y H. Study of a micro absorption heat pump system [J]. International Journal of Refrigeration,2008,31(7):1198-1206.
    [85]孙健,付林,张世钢.吸收式热泵中表面活性剂的强化机制研究[J].制冷与空调,2010,10(3):16-19.
    [86]陈亚平,施晨洁,施明恒.双面膜反转强化吸收过程传热传质[J].化工学报,2008,59(1):19-24.
    [87]苏风民.双组分纳米流体的物性测量和NH3/H2O泡状吸收强化的研究[D].大连;大连理工大学,2009.
    [88]RIVERA W, CEREZO J, MARTINEZ H. Energy and exergy analysis of an experimental single-stage heat transformer operating with the water/lithium bromide mixture [J]. International Journal of Energy Research,2010,34(13):1121-1131.
    [89]GROSSMAN G, HEATH M T. Simultaneous heat and mass transfer in absorption of gases in turbulent liquid films [J]. International Journal of Heat and Mass Transfer,1984,27(2):2365-2376.
    [90]GRIGOREVA N I, NAKORYAKOV V E. Exact solution of combined heat- and mass-transfer problem during film absorption [J]. Journal of Engineering Physics and Thermophysics,1977,33(5): 1349-1353.
    [91]GROSSMAN G. Simultaneous heat and mass transfer in film absorption under laminar flow [J]. International Journal of Heat and Mass Transfer,1983,26(3):357-371.
    [92]ANDBERG J W, VLIET G C. Nonisothermal absorption of gases into falling liquid films [C]. ASME-JSME Thermal Engineering Joint Conference.1983:423-431.
    [93]KAWAE N, SHIGECHI T, KANEMARU K, et al. Water vapor evaporation into laminar film flow of a lithium bromide-water solution (influence of variable properties and inlet film thickness on absorption mass transfer rate) [J]. Heat Transfer - Japanese Research,1989,18(3):58-70.
    [94]BRAUNER N, MARON D M, MEYERSON H. Coupled heat condensation and mass absorption with comparable concentrations of absorbate and absorbent [J]. International Journal of Heat and Mass Transfer,1989,32(10):1897-1906.
    [95]Van Der WEKKEN B J C WASSENAAR R H. Simultaneous heat and mass transfer accompanying absorption in laminar flow over a cooled wall [J]. International Journal of Refrigeration,1988,11(2): 70-77.
    [96]YANG R, WOOD B D. Numerical modeling of an absorption process on a liquid falling film [J]. Solar Energy,1992,48(3):195-198.
    [97]GOFF H L, RAMADANE A, BARKAOUI M, et al. Modeling the coupled heat and mass transfer in a falling film:application to absorbers and desorbers in absorption heat pumps [C]. Heat Transfer Proceedings of the International Heat Transfer Conference. New York.1986:1971-1976.
    [98]CONLISK A T. Analytical solutions for the heat and mass transfer in a falling film absorber [J]. Chemical Engineering Science,1995,50(4):651-660.
    [99]IBRAHIM G A, VINNICOMBE G A. Hybrid method to analyze the performance of falling film absorbers [J]. International Journal of Heat and Mass Transfer,1993,36(5):1383-1390.
    [100]JERNQVIST A, KOCKUM H. Simulation of falling film absorbers and generators [C]. Proceeding of International Absorption Heat Pump Conference. Montreal.1996:311-318.
    [101]YIGIT A. A numerical study of heat and mass transfer in falling film absorber [J]. International Communications in Heat and Mass Transfer,1999,26(2):269-278.
    [102]YOON J I, PHAN T T, MOON C G, et al. Numerical study on heat and mass transfer characteristic of plate absorber [J]. Applied Thermal Engineering,2005,25(14-15):2219-2235.
    [103]周兴禧,尉迟斌.水平圆管上溴化锂溶液膜式吸收过程的传热和传质分析[J].流体工程,1986,12:46-52.
    [104]阮复昌,陈烈强,罗运禄等.溴化锂水溶液降膜吸收水蒸汽的研究[J].华南理工大学学报(自然科学版),1989,4:35-41.
    [105]李维,杨小琼,王启杰等.水平圆管外溴化锂水溶液降膜吸收过程的数值分析[J].流体工程,1993,12:50-55.
    [106]毛雯萍,陆震,李大庆等.垂直管外溴化锂溶液降膜吸收的传热传质模型研究[J].流体机械,1996,24(9):47-51.
    [107]NAKORYAKOV V Y, BUFETOV N S, GRIGORYERA N I. Heat and mass transfer in film absorption [J]. Fluid Mechanics-Soviet Research,1982,11(3):97-115.
    [108]UDDHOLM H, SETTER WALL F. Model for dimensioning a falling film absorber in an absorption heat pump [J]. International Journal of Refrigeration,1988,11(1):41-45.
    [109]MORIOKA I, KIYOTA M. Absorption of water vapor into a wavy film of an aqueous solution of LiBr [J]. JSME International Journal, Series 2:Fluids Engineering,1991,34(2):183-188.
    [110]YANG R, JOU D. Heat and mass transfer of the wavy film absorption process [J]. Canadian Journal of Chemical Engineering,1993,71(4):533-538.
    [111]SABIR H, SUEN K O, VINICOMBE G A. Investigation of effects of wave motion on the performance of a falling film absorber [J]. International Journal of Heat and Mass Transfer,1996, 39(12):2463-2472.
    [112]PATNAIK V, PEREZ-BLANCO H. A study of absorption enhancement by wavy film flows [J]. International Journal of Heat and Fluid Flow,1996,17(1):71-77.
    [113]ISLAM M A, MIYARA A, SETOGUCHI T. Numerical investigation of steam absorption in falling film of LiBr aqueous solution with solitary waves [J]. International Journal of Refrigeration,2009, 32(7):1597-1603.
    [114]SUBRAMANIAM V, GARIMELLA S. From measurements of hydrodynamics to computation of species transport in falling films [J]. International Journal of Refrigeration,2009,32(4):607-626.
    [115]KYUNG I, HEROLD K E, KANG Y T. Model for absorption of water vapor into aqueous LiBr flowing over a horizontal smooth tube [J]. International Journal of Refrigeration,2007,30(4): 591-600.
    [116]MCNEELY L A. Thermophysical properties of aqueous solutions of lithium bromide [J]. ASHRAE Transcations,1979,85:413-434.
    [117]ANDBERG J W. Absorption of vapors into liquid films flowing over cooled horizontal tubes [D]. Austin (USA); University of Texas,1986.
    [118]LEE R J, DIGUILIO R M. Properties of lithium bromide-water solutions at high temperatures and concentrations-II:Density and Viscosity [J]. ASHRAE Transaction,1996(Pt 1),1990:709-728.
    [119]Fluent, user's guide.2005.
    [120]BRAUNER N, MARON D M. Characteristics of inclined thin films:waviness and the associated mass transfer [J]. International Journal of Heat and Mass Transfer,1982,25(1):99-110.
    [121]HEROLD K E, RADERMACHER R. Absorption chillers and heat pumps [M]. CRC Press,1996.
    [122]BANERJEE R. A numerical study of combined heat and mass transfer in an inclined channel using the VOF multiphase model [J]. Numerical Heat Transfer Part A-Applications,2007,52(2):163-183.
    [123]张政(译).传热与流体流动的数值计算[M].北京:科学出版社,1984.
    [124]MEZA C E, BALAKOTAIAH V. Modeling and experimental studies of large amplitude waves on vertically falling films [J]. Chemical Engineering Science,2008,63(19):4704-4734.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700