用户名: 密码: 验证码:
盾构直接掘削大直径钢筋混凝土群桩研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:盾构掘进遭遇障碍物桩基时,直接切桩相比于传统方法,影响周边环境小、成本低、工期短,社会及经济效益显著,但目前切桩理论研究与实施技术在国际范围内尚远未成熟,尤其是对于切削大直径桩基。本文依托苏州地铁盾构切削14根中1000~1200mm桥梁桩基工程,综合采用调研、理论分析、有限元仿真、现场试验和工程实测等研究手段,对盾构直接掘削大直径钢筋混凝土群桩的相关机理、理论与技术进行研究。主要研究内容和成果如下:
     (1)综合考虑材料非线性、几何非线性以及接触非线性,以国际大型非线性显式动力软件为分析平台,对刀刃切削钢筋、混凝土的切削过程、相互作用及细观切削机理进行了研究。
     (2)切削钢筋混凝土桩基应选用负前角、双面刃的刀具;通过有限元仿真获得了刀刃前角、刃角、刃宽等对切筋、切砼的影响规律,并以适应连续切削大直径桩基为目标,研发出了新型切桩专用刀具;通过建立三维切削钢筋热力耦合模型和三维切削混凝土全过程模型,揭示了新型刀具的动态切削过程及切削性能;结合仿真计算结果并对比各种磨损类型的发生条件,指出刀具合金切削钢筋、混凝土对应的磨损机理为硬质点磨粒磨损。
     (3)从理论上对切桩刀盘刀具配置进行了深入研究:刀具布置形式可采用同心圆法,相邻刀具宜以等相位角差值进行定位,切削轨迹的间距确定应以能实现全覆盖面切削混凝土为原则;考虑掘削桩基对刀盘刀具的多功能需求,提出了包括有正面大贝壳刀、边缘大贝壳刀、中心小贝壳刀、仿形贝壳刀以及羊角储备刀在内的刀盘群刀综合配置方案。
     (4)通过建立刀盘切桩数学模型,编制刀盘受力计算程序,获得了推力扭矩与刀盘不平衡力的变化特征,以及桩基尺寸大小、偏移距离对刀盘受力的影响规律,并给出了相应的主动掘削参数设置建议;采用国际大型机械设计软件建立了切桩刀盘刀具模型,并针对最不利的切削工况,对刀盘刚度进行检算并提出了加固措施。
     (5)开展了国内外首次的盾构直接切削钢筋混凝土桩基现场试验,分析了切桩效果、刀具损伤规律以及掘削参数特征等,对刀具配置和掘削参数初步方案的合理性进行了验证,并根据试验结果提出了超前贝壳刀的优化配置方案及分次切筋的切削理念,其切削效果得到了群刀切削仿真实验的证实,并最终在工程实践中得到成功应用。
     (6)以苏州地铁盾构切削14根大直径桥梁群桩工程为依托,探讨了切桩条件下的上部结构与管片衬砌的安全性能;从刀盘刀具、螺旋输送机、小流量推进泵、外包管等多方面研究提出了盾构综合改造加强方案;形成了以“慢推速、中转速、保土压、注惰浆、控姿态”为核心的盾构掘削大直径桩基施工控制技术。
ABSTRACT:While encountering pile obstacles during shield tunneling, the method of cutting pile directly has the advantage of small impact on surrounding environment, low cost and short construction period compared to traditional methods, as a result, its social and economic benefit is remarkable. However, the theory research and implementation technology of cutting piles are far from mature in the international scope currently, especially for cutting large-diameter reinforced concrete piles. Based on the construction of shield cutting14Φ1000~1200mm diameter bridge piles in Suzhou subway, the related mechanism, theory and technology of shield cutting reinforced concrete piles are studied by using investigation, theoretical analysis, finite element simulation, field test as well as construction measuring. The major contents and achievements of the study are as follows:
     (1) Considering material nonlinearity, geometric nonlinearity and contact nonlinearity, the whole process, interaction and mesoscopic mechanism of blade cutting steel, concrete were studied with the analysis platform of international famous nonlinear explicit dynamic software.
     (2) The shell cutter of negative front angle with double-side blade is fit for cutting piles. The influence laws of front angle, blade angle and blade width on cutting steel, concrete were obtained through finite element simulation. In order to adapt the continuous cutting of large-diameter reinforced concrete piles, a new type of cutting pile tool was invented. By establishing three-dimensional thermodynamic coupling model of cutting steel and three-dimensional whole-process model of cutting concrete, the dynamic cutting process and cutting performance of the new cutting tool were revealed. According to the simulation results, the wear mechanism of tool alloy when cutting steel, concrete was considered as hard point abrasive wear by comparing various wear types.
     (3) The cutting tools configuration was studied theoretically:Cutter layout can adopt the method of concentric circles, adjacent cutters should be positioned with equal phase angle, the determination of cutter spacing should cover the entire cutting plane of pile concrete. An integrated configuration scheme including obverse shell tools, edge shell tools, center small shell tools, overbeaking shell tools as well as claw tools was proposed in order to meet the multi-function requirements of cutting piles.
     (4) The mathematical model of cutterheand cutting pile was set up and the corresponding force calculation program was created, then the change characteristics and influence laws of thrust, torque and unbalanced force were obtained. The active cutting parameter setting suggestions were given for cutting piles of different size and offset distance. With the help of international mechanical design software, the cutterhead and tools models were drew, then the cutterhead stiffness was checked and reinforcement measures were put forward for the most unfavorable cutting conditions.
     (5)The field test of shield cutting reinforced concrete pile directly was carried out for the first time both at home and abroad, the cutting effect, tool damage law and cutting parameters characteristics were analyzed, meanwhile, the rationality of preliminary scheme of the tool configuration and cutting parameters settings was checked. The layout scheme of advancing shell tool and the concept of cutting rebar with different times were presented according to the experiment results, which was then confirmed by simulation, and was successfully applied in engineering practice eventually.
     (6) Taking Suzhou subway shield cutting large-diameter bridge piles as project background, the security performances of upper structure and segment lining under the condition of cutting piles were discussed, a comprehensive shield strengthening scheme was put forward, including cutter tools, screw conveyor, small flow pump and outside pipes. Slow advancing speed, medium rotation speed, stabile soil pressure, inert slurry and strict shield attitude were suggested to control the construction of cutting large-diameter piles.
引文
[1]刘建卫.盾构穿越城市建(构)筑物桩基的施工技术研究[J].铁道标准设计,2010,(2):113-118
    [2]竺维彬,韩世健.地铁盾构施工风险源及典型事故的研究[M].广州:暨南大学出版社,2009
    [3]王宗勇.一种盾构直接截除立交桥群桩掘进施工方法:中国,201110417724.2[P].2011-12-14
    [4]王家祥.运营铁路正线下方盾构切削钢筋混凝土桩的施工方法:中国,201210451004.2[P].2012-11-12
    [5]Pang C H, Yong K Y, Chow Y K, et al. The response of pile foundations subjected to shield tunneling [C]//Proc. of the 5th International Conference of TC28 of the ISSMGE. Netherlands:Business Press,2006:737-743
    [6]朱逢斌,杨平,林水仙.盾构隧道施工对邻近承载桩基影响研究[J].岩土力学,2010,31(12):3894-3900
    [7]付静.地铁盾构侧穿桥桩基施工技术[J].石家庄铁道学院学报,2009,22(4):95-99
    [8]肖谊.盾构隧道开挖对邻近桩基水平向变形影响分析[D].北京交通大学,2010
    [9]余志江.盾构施工引起的地层变形及对邻近桩基的影响研究[D].长沙理工大学,2009
    [10]岳鹏飞,戴泉,何炬.盾构施工下穿建筑桩基的影响研究[J].铁道标准设计,2012,(3):77-79
    [11]赵文艺,翟世鸿,蒲诃夫,郑俊杰.盾构掘进对邻近桩基影响及托换桩加固效果分析[J].华中科技大学学报,2010,(3):11-15
    [12]李德胜.盾构隧道近接施工对邻近既有桩基的影响研究[D].山东科技大学,2008
    [13]刘勇,何振华,李忠.苏州轨道交通一号线盾构区间通过桥桩的方案设计[J].隧道建设,2007,27(3):51-55
    [14]徐前卫,朱合华,马险峰,等.地铁盾构隧道穿越桥梁下方群桩基础的托换与除桩技术研究[J].岩土工程学报,2012,34(7):1217-1226
    [15]孙立宝,王云春.套管钻进拔桩法及其工程应用[J].探矿工程,2009,36(9):59-63
    [16]杜闯东.侵入盾构隧道桩基人工挖孔处理技术[J].隧道建设,2009,29(2):222-226
    [17]杨自华,钟志全.泥水盾构穿越桩基础掘进施工[J].建筑机械化,2007,28(9):51-53
    [18]傅德明,李毕华,马忠政.软土盾构直接切削钢筋混凝土桩基施工技术[J].中国市政工程,2010,(4):46-47
    [19]符敏.盾构穿越厂房切削钢筋混凝土桩基施工技术[J].建筑机械,2010,(7):90-91
    [20]郑坚.穿越桩基础的盾构机改造技术[J].建筑施工,2010,32(5):391-393
    [21]王虹,鞠世健.盾构穿越建筑物桩基群的施工技术[J].广东建材,2006,(7):71-73
    [22]鲍永亮,郑七振,唐建忠.泥水盾构穿越桩基础掘进施工[J].铁道建筑,2009,(4):52-55
    [23]滕丽.盾构穿越地下障碍物的试验研究[J].建筑机械化,2011,32(10):89-91
    [24]徐小何,余静.岩石破碎学[M].北京:煤炭工业出版社,1984
    [25]Evans. A theory of the cutting force for point-attack picks [J]. International Journal of Mining Engineering,1984,2(1):63-71
    [26]Nishimatsu, Y. The mechanics of rock cutting[J]. Int. J. Rock. Mech. Mining Sci.,1972, (9)
    [27]矢野信太郎.盾构工法[M].鹿岛研究所出版会,1980
    [28]富昭治郎.建设机械学[M].鹿岛研究所出版会,2001
    [29]Hettiaratchi D.R.P., Reece A. R. Symmetrical three-dimensional soil failure[J].J. Terramcch.1967,4(3):45-67
    [30]Godwin R. J., Spoor G Soil failure with narrow tines [J]. Journal of Agricultural Engineering Research,1977,22(3):213-228
    [31]McKyes L., Ali O. S. The cutting of soil by narrow blades[J]. Journal of Tecrramechanics.1977,14(2):43-58
    [32]Ji Z., Kushwaha R. L. A modified model to predict soil cutting resistance [J]. Soil & Tillage Research,1995(34):157-168
    [33]于颖,徐宝富,奚鹰.软土地基十压平衡盾构切削刀盘扭矩的计算[J].中国工程机械学报,2004,2(3):314-318
    [34]宋克志.泥岩砂岩交互地层越江隧道盾构掘进效能研究[D].北京:北京交通大学,2005
    [35]宋克志,姜爱国.盾构切削刀具的工作原理分析[J].建筑机械,2007,(2):74-76
    [36]崔国华,王国强,王继新.全断面盾构掘进机切削刀具的计算力学模型求解[J].吉林大学学报,2008,38(2):139-143
    [37]徐前卫,朱合华,丁文其.均质地层中土压平衡盾构施工刀盘切削扭矩分析[J].岩土工程学报,2010,32(1):47-54
    [38]宋克志,姜爱国.盾构刀具切削力学模型的改进及其分析[J].工程机械,2012,43:33-36
    [39]Teale, R.. The Concept of Specific Energy in Rock Drilling[J]. Int. J.Rock Mech.Min. Sci.& Geomech Abstr.2,1965:57-73
    [40]张照煌.全断面岩石掘进机盘形滚刀破岩机理的探讨[J].矿山机械,1995,(10): 27-29
    [41]刘志杰,滕弘飞,史彦军等.TBM刀盘设计若干关键技术[J].中国机械工程,2008,19(16):1980-1985
    [42]Paul. B.and D.L. Sikarskie. A Preliminary Theory of Static Penetration of a Rigid Wedge into a Brittle Material[J].Transactions of the Society of Mining Engineers, AIME, New York, NY 232,1965:372-383
    [43]Roxborough, f. f. and H. R. Phillips. Rock Excavation by Disc Cutter[J]. Int. J. Rock Mech.Min. Sci.&Geomech Abstr.12(12),1975:361-366
    [44]Snowdon, R. A. and Ryley, M. D. Single and Multiple Pass Disc Cutting in Shape Granite [J].Tunnel&Tunnelling:November 1983:15-19
    [45]OzdemirL, Miller R, Wang FD. Mechanical tunnel boring prediction and machine design [R]. Colorado School of Mines,1977
    [46]Rostami, J.. Design Optimization Performance Prediction and Economic Analysis of Tunnel Boring Machines for the Construction of the Proposed Yucca Mountain Nuclear Waste Repository[R]. Department of mining engineering. Golden, CO, Colorado school of mines,1992: 131
    [47]张照煌.全断面岩石掘进机盘形滚刀寿命管理理论及技术研究[D].北京:华北电力大学,2008
    [48]余静.岩石机械破碎规律和破碎机理模型[J].煤岩学报,1982,9(3):10-18
    [49]茅承觉,刘春林.全断面岩石掘进机盘形滚刀压痕试验[J].工程机械1987,(6)
    [50]屠昌锋.盾构机盘形滚刀破岩机理与受力预测模型的研究[D].长沙:中南大学,2009
    [51]张照煌.全断面岩石掘进机及其刀具破岩理论[M].北京:中国铁道出版社,2003
    [52]吴起星.全断面岩石掘进机盘形滚刀寿命管理理论及技术研究[D].广州:暨南大学,2011
    [53]Johnson, S.T., Fowell, R.J. Compressive strength is not enough (Assessing Pick Wear for Drag Tool-Equipped Machines). In:Proceedings of the 27th US Symp. Rock Mech., Tuscaloosa, Ala., USA,1986:840-845
    [54]Buchi, E., Mathier, J.F., Wyss, Ch. Gesteinsabrasivitat-ein bedeutender Kostenfaktor beim mechanischen Abbau von Fest-and Lockergestein. Tunnel and Underground Space Technology,1995,5,38-44
    [55]B.Nilsen.New test methodology for estimating the abrasiveness of soils for TBM tunneling[J].Int. J. Rock Mech. Min. Sci.2007,35:105-107
    [56]赵小林.刀具磨损的小波检测[J].工具技术,2001,35(12):39-40
    [57]邹积波.盾构刀具磨损原因探析[J].建筑机械化,2003,24(11):57-58
    [58]管会生,高波.盾构切削刀具寿命的计算[J].工程机械,2006(1):26-30
    [59]蒋建敏.盾构机刀具制造用耐磨耐冲击堆焊药芯焊丝的研究[J].焊接,2008,(3):13-16
    [60]张明富,袁大军.砂卵石地层盾构刀具动态磨损分析[J].岩石力学与工程学报,2008,398-400
    [61]张明富.土压平衡盾构掘进刀具动态磨损研究[D].北京:北京交通大学,2007
    [62]王振飞,张成平,张顶立,孙毅.富水砂卵石地层大直径盾构刀具的磨损与适应性[J].北京交通大学学报,2013,37(4),25-31
    [63]H.Y Liu. S.Q. Kou, P.A. Lindqvist, C.A. Tang. Numerical simulation of the rock fragmentation process induced by indenters[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39(4):491-505
    [64]Alessio Nardin, Bernhard A. Schrfler. Numerical simulation of rock behaviour through a discrete model[J]. International Journal of Solids and Structures,2004,41(21):5945-5965
    [65]Qiu-Ming Gong, joint orientationJian Zhao, Yu-Yong Jiao. Numerical modeling of the effects of rock fragmentation by TBM cutters[J]. Tunnelling and Underground Space Technology, 2005,20(2):183-191
    [66]杨金强.盘形滚刀受力分析及切割岩石数值模拟研究[D].北京:华北电力大学,2007
    [67]张魁.盾构机盘形滚刀作用下岩石破碎特征及滚刀振动特性研究[D].长沙: 中南大学,2010
    [68]薛静.盘形滚刀切削力影响因素及滚刀刃形优化设计研究[D].长沙:中南大学,2010
    [69]田雨.考虑岩石围压与损伤的TBM盘形滚刀受力的数值模拟分析[D].天津:天津大学,2010
    [70]孙金山,陈明,陈保国等.TBM滚刀破岩过程影响因素数值模拟研究[J].岩土力学,2011,32(6):1891-1897
    [71]苏翠侠,王燕群,蔡宗熙等.盾构刀盘掘进载荷的数值模拟[J].天津大学学报,2011,44(6):522-528
    [72]满林涛.盘形滚刀破岩过程有限元数值模拟[D].大连:大连理工大学,2012
    [73]Araya K., Gao R. A non-linear three-dimensional finite element analysis of subsoiler cutting with pressurised air injection[J].Agrinc. Eng. Res.,1995,61(2):115-128
    [74]Bohatier C., Nouguier C. Dynamic soil-tool interaction force and flow state[C].Proc. Int. Con# on Applied Mechanics (SACAM2000), Durban, South Africa,2000:294-298
    [75]Renon N, Montmitonnet P., Laborde. Numerical formulation for solving soil/tool interaction problem involving large deformation, Engineering Computations[J]. International Journal for Computer-Aided Engineering and Software,2005,22(1):87-109
    [76]郭志军,周志立,咚金,仟露泉.抛物线型切削面刀具切削性能二维有限元分析[J].洛阳工学院学报,2002.23(41):1-4
    [77]陆怀民.切土部件与上壤相互作用的粘弹塑性有限元分析[J].土木工程学报,2002,35(6):79-81
    [78]丁峻宏.盾构刀盘切削的三维并行数值模拟[J].计算机辅助工程,2006,15(1):303-307
    [79]丁峻宏,金先龙,郭毅之.土壤切削大变形的三维数值仿真[J].农业机械学报,2007(4),118-121
    [80]郭峰.岩土掘削的数值分析新方法与新型装置的研究[D].哈尔滨:哈尔滨工业大学,2007
    [81]沈建奇.盾构掘进过程数值模拟方法研究及应用[D].上海:上海交通大学,2009
    [82]陈日曜.金属切削原理[M].广州:机械工业出版社,2012
    [83]陈剑中,孙家宁.金属切削原理与刀具[M].广州:机械工业出版社,2013
    [84]时党勇,李裕春,张胜民.基于ANSYS/LS-DYNAB.1进行显式动力分析[M].北京:清华大学出版社,2004
    [85]尚晓江,苏建宇ANSYS/LS-DYNA动力分析方法与工程实例[M].北京:中国水利水电出版社,2005
    [86]王泽喜,胡仁喜,康士延ANSYS13.0/LS-DYNA非线性有限元分析实例指导教程[M].广州:机械工业出版社,2011
    [87]许志明.高速钻地弹水泥靶板侵彻过程的实验研究与计算机仿真[D].南京理工大学,2004
    [88]王建刚.子弹侵彻钢筋混凝土的数值模拟研究[D].国防科学技术大学,2011
    [89]汪衡.弹丸侵彻混凝土靶的数值研究[D].中北大学,2010
    [90]郭怡晖,马鸣图,张宜生等.汽车前防撞梁的热冲压成形数值模拟与试验[J].锻压技术,2013,38(3):46-50
    [91]Hong H, Deeks J A, Wu C Q. Numerical simulations of the performance of steel guardrails under vehicle impact[J]Transactions of Tianjin University,2008,14(5):89-93
    [92]黄志刚,柯映林,王立涛.金属切削加工的热力耦合模型及有限元模拟研究[J].航空学报,2004,25(3):317-320
    [93]程飞波.高速切削过程的仿真和剪切角规律的研究[D].上海:同济大学,2009
    [94]蒋志涛.高速金属铣削加工的有限元模拟[D].昆明:昆明理工大学,2009
    [95]T.Mabrouki, J.F. Rigal. A contribution to a qualitative understanding of thermo-mechanical effects during chip formation in hard turning[J]. Journal of Materials Processing Technology 2006,176:214-221
    [96]F. Klocke, H. W. Raedt, S.Hoppe.2b-FEM simulation of the orthogonal high speed cutting process [J].Machining science and technology,2001,5(3):323-340
    [97]刘新佳,陶哲,顾冬生.建筑钢材速查手册[M].北京:化学工业出版社,2011
    [98]宋小龙,安继儒.新编中外金属材料手册[M].北京:化学工业出版社,2012
    [99]何雪宏,郭成壁.45号钢复杂应力状态下低周疲劳损伤准则[J].大连理工大学学报,
    1996,36(2):203-207
    [100]胡昌明,贺红亮,胡时胜.45号钢的动态力学性能研究[J].爆炸与冲击,2003,23(2):188-192
    [101]陈刚,陈忠富,陶俊林等.45钢动态塑性本构参量与验证[J].爆炸与冲击,2005,25(5):451-456
    [102]Taylor L M, Chen E P, Kuszmaul J S. Micro-crack induced damage accumulation in brittle rock under dynamic loading[J]. Computer Methods in Applied Mechanics and Engineering, 1986,55:301-320
    [103]Riedel W, Thoma K, Hiermaier S, et al. Penetration of reinforced concrete by BETA2B2500 numerical analysis using a new macroscopic concrete model for hydrocodes[C]// 9th International Symposium, Interaction of the Effects of Munitions with Structures. Berlin-Strausherg: 1999:315-322
    [104]Holmquist T J, Johnson G R, Cook W H. A computational constitutive model for concrete subjective to large strains, high strain rates and high pressures [C]//14'h International Symposium on Ballistics. Quebec, Canada,1993:591-600
    [105]李耀,李和平,巫绪涛.混凝土HJC动态本构模型参数研究[J].合肥工业大学学报(自然科学版),2009
    [106]李杰,任晓丹.混凝土静力与动力损伤本构模型研究进展述评[J].力学进展,2010,40(3):284-297
    [107]任晓丹.基于多尺度分析的混凝土随机损伤本构理论研究[D].上海:同济大学,2010
    [108]J. Rech, C. Claudin, E:D Framo. Identification of a Friction model-Application to the context of dry cuttinb of an AISI 1015 annealed steel coated carbide tool [J] Tribology International,2009,42:738-744.
    [109]M. A. Dav. Cao, A. I.Cooks et al. On the measurement and prediction of temperature fileds in machining AISI 1045 Steel [J].CIRP Annals-Manufacturing Technology,2003, 52(1):77-80
    [110]黄清飞.砂卵石地层盾构刀盘刀具与土相互作用及其选型设计研究[D].北京:北京交通大学,2010
    [111]蒲毅,刘建琴,郭伟.土压平衡盾构机刀盘刀具布置方法研究[J].机械工程学报,2011,
    [112]周喜温.土压平衡式复合盾构刀盘的刀具优化配置研究[D].长沙:中南大学,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700