用户名: 密码: 验证码:
基于数值仿真技术的盾构刀盘系统载荷与结构特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
刀盘系统是盾构掘进设备的关键部件,刀盘的工作性能将直接影响工程掘进效率和施工安全性。由于当前地下隧道施工过程中盾构机掘进界面隐蔽,无法直接观测刀盘系统载荷信息,相关的试验和理论分析分别受到模型规模较小和简化过多的限制在获取正常掘进状态的刀盘结构力学特性以及刀盘动态掘进载荷分布方面存在一些困难。当前有限元技术的发展使得数值模拟成为工程结构可靠性分析的重要工具之一,也是研究刀盘问题的一种有效方法。
     针对当前盾构刀盘载荷分析和刀盘可靠性设计缺少必要的研究方法的现象,本文通过研究有限元相关技术提出了一种基于数值方法的盾构刀盘掘进全物理过程仿真模型,从切削角度出发,将隧道掘进过程视为刀盘系统与土体的相互作用问题,采用损伤失效准则模拟土体切屑分离过程,实现了盾构刀盘掘进过程的直接数值模拟。同时通过分析和提取典型盾构刀盘的拓扑结构特征,开发了一套盾构机刀盘参数化建模系统,解决了盾构刀盘建模过程耗时、费力、重复性工作多等问题。
     本文利用刀盘掘进全物理过程仿真模型模拟了盾构刀盘连续掘进隧道过程,对刀盘动态掘进载荷分布和结构力学特性进行了研究。根据刀盘与掌子面土体的相互作用得到了刀盘法向和切向动态切削载荷分布以及掘进过程中刀盘扭矩随掘进时间的变化规律,分析了地质参数、施工参数和结构参数对刀盘掘进载荷的影响。对考虑动态效应和面对脱困载荷情况下的刀盘刚度、强度等力学结构特性进行了校验。结合刀盘系统扭矩构成和分布规律,分析了面对不同地层的刀盘顺应性问题,证实了盾构扭矩直接相关的诸多因素中隧道埋深和土体的粘聚力对其影响最大。通过数值和实验证指出了刀盘中心刀结构在刀盘承载方面的重要影响。
The operation performance of cutterhead which is a critical component of shieldtunneling device directly affects the efficiency of engineering excavation and safety ofconstruction. Since the interface of shield machine excavation is invisible in thecurrent underground tunnels’ construction, it cannot be directly observed that the loadinformation of cutterhead. The related experimental and theoretical analyses havesome constraint in obtaining the responses of mechanical properties of cutterhead instate of normal excavation and the load distribution of cutterhead in dynamicexcavation respectively due to the constraint of model scale and excess simplification.Presently, the development of finite element makes numerical simulation become oneof valid methods for reliability analysis for engineering structure and also a promisingmethod for studying cutterhead problems.
     Considering the lack of shield cutterhead load analysis and reliability designmethods, in this paper, a simulation model for the excavating process of shieldcutterhead is developed based on numerical method to accomplish the directnumerical simulation of shield cutterhead tunneling and in this method we considerthe process of tunneling excavation as the problem of soil cutting of cutterhead andemploy the progressive damage and failure criterion to simulate the process of cuttingscrap formation and cutting scrap separation; meanwhile, we develop a shieldmachine cutterhead parametric modeling system by analyzing and collectingtopological characteristics of typical shield cutterheads so that it settles manyproblems in modeling of shield cutterhead such as time-consuming, hard sledding,and much more repetitive work.
     In this paper, we utilize the model to simulate the continuous excavating processof shield cutterhead and study the load distribution of cutterhead in dynamicexcavation and the response of mechanical properties. According to the interactionbetween cutterhead and soil of tunnel face, we can obtain the dynamic cutting loaddistribution along the normal and tangential direction of cutterhead and the torque’svariation with time during the process of excavation, and also study the effect of parameters of geology, construction and structure on cutterhead’s tunneling load.Some mechanical responses, cutterhead stiffness and strength, etc, are verified inconditions of taking account of dynamic effects and rescue load. In addition, we studythe cutterhead compliance for different stratum by combining the cutterhead’s torquecomposition and distribution and conclude that tunnel depth and soil cohesion havethe greatest impact on shield torque among the related factors. The numerical andexperimental results indicate the important effect of center cutter on the load-carryingcapacity of cutterhead
引文
[1]陈馈,李健斌,盾构国产化及其市场前景分析,建筑机械化,2006,(5):59~64
    [2] Russell L,Building underground:a new concept for tunneling in soft soil,Portsand Dredging,1996,146:15~17
    [3] Maidl B,Herrenknecht M,Nheuser L,Mechanized Shield Tunneling,Berlin:Ernst&Sohn,1996
    [4]张镜剑,傅冰骏,隧道掘进机在我国应用的进展阴,岩石力学与工程学报,2007,26(2):226~238
    [5]郭磊,复合式盾构常见施工故障排除,现代隧道技术,2006,(增刊):436~439
    [6]何伦,盾构施工工艺及刀盘刀具切削机理的研究:[硕士学位论文],广州;华南理工大学,2003
    [7]竺维彬,王晖,鞠世健,复合地层中盾构刀具磨损原因分析及对策,土木工程隧道工程盾构,43(4):72~77
    [8]张明富,土压平衡盾构掘进刀具动态磨损研究:[硕士学位论文],北京;北京交通大学,2007
    [9]解立功,砂卵石层盾构刀具损坏原因分析及国产化技术:[硕士学位论文],天津;天津大学,2006
    [10]张厚美,复合地层中盾构刀具磨损的检测方法研究,盾构掘进机设计制造,大直径隧道与城市轨道交通工程技术—2005上海国际隧道工程研讨会文集,461~472
    [11]Mathew M T,Pai P S,Rocha L A,An effective sensor for tool wear monitoringin face milling,Acoustic emission,Sādhanā,2008,(33):227~233,Part3
    [12]赵维刚,刘明月,全断面隧道掘进机刀具异常磨损的识别,中国工程机械,2007,18(2):150~15
    [13]何其平,土压平衡盾构刀盘结构探讨,工程机械,2003,7:10~17
    [14]尹旅超,朱振宏,李玉珍,袁少军等译,日本盾构隧道新技术,武汉,华中理工大学出版社,2003
    [15]白中仁,广州地铁修建中的盾构选型现代隧道技术,2004,41(01):10~13
    [16]何其平,海瑞克,盾构在南京地铁工程中的应用,工程机械,2003,34(02):12~15
    [17]张风祥,朱合华,傅德明编著,盾构隧道,北京:人民交通出版社,2004
    [18]陈馈,洪开荣,吴学松,盾构施工技术,人民交通出版社,2009
    [19]Handewith H,Suggested tunnel investigation criteria for rock boring machines,8th Canadian Rock Mechanics symposium,Toronto,Department of Energy,Mines,and Resources,Ottawa,1972
    [20]Farmer I,Garrity P,Glossop N,Operational Characteristics of Full Face TunnelBoring Machines,Rapid Excavation and Tunneling Conference,1987:188~201
    [21]袁敏正,鞠世健,竺维彬,广州地铁一号线和二号线盾构机适应性研究与探讨,现代随到技术,2004,41(03):31~34
    [22]宋克志,孙谋,复杂岩石地层盾构掘进效能影响因素分析,岩石力学与工程学报,2007,26(10):2092~2096
    [23]管会生,盾构刀盘扭矩估算的理论模型,西南交通大学学报,2006,43(2):213~217
    [24]朱伟译,隧道标准规范(盾构篇)及解说,北京:中国建筑工业出版社,2001
    [25]宋克志,砂卵石地层盾构刀盘与土体相互作用研究:[博士后学位论文],上海;同济大学,2009
    [26]何於琏,TBM施工进度的科学预测方法,铁道工程学报,1999,2:94~98
    [27]朱合华徐前卫廖少明等,土压平衡盾构施工的顶进推力模型试验研究,岩土力学,2007,8:1587~1594
    [28]杨洪杰,傅德明,葛修润,盾构周围土压力的试验研究与数值模拟,岩石力学与工程报,2006,25(8):1652~1657
    [29]徐前卫,朱合华等,砂土地层盾构法施工的地层适应性模型试验研究,岩石力学与工程报,2006,25(Supp.l):2902~2909
    [30]朱合华,徐前卫,郑七振,软土地层土压平衡盾构施工参数的模型试验研究,土木工程学报,2007,40(9):87~94
    [31]张厚美,吴秀国,曾伟华,土压平衡式盾构掘进试验及掘进数学模型研究,岩石力学与工程学报,2005,24(Supp.2):5762~5766
    [32]吕强,傅德明,土压平衡盾构掘进机刀盘扭矩模拟试验研究,岩石力学与工程报,2006,25(Suppl):3137~3143
    [33]Schmitt J,Fritsch M,Gatermann J,et. al,Numerical investigations to theinfluence of rearrangement of ground pressure for shield tunneling,ProceedingsICOSSAR2005,Millpress,Rotterdam,2005,1317~1322
    [34]陈先国,高波,地铁近距离平行隧道有限元数值模拟,岩石力学与工程学报,2002,21(9):1330~1334
    [35]张海波,地铁隧道盾构法施工对周围环境影响的数值模拟:[博士学位论文],南京;河海大学,2005
    [36]Kasper T,G Meschke,A3D finite element simulation model for TBM tunnelingin soft ground,International Journal for Numerical And Analytical Methods inGeomechanics,2004,28(14):1441~1460
    [37]Ding W Q,Yue Z Q,Tham L G,Zhu H.H,Analysis of shield tunnel,International Journal for Numerical And Analytical Methods in Geomechanics,2004,28(1):57~91
    [38]朱忠隆,软土盾构法隧道施工变形的数值解析与智能方法研究:[博十学位论文],上海;同济大学,2002
    [39]周奇才,郑宇轩,李炳杰等,地铁盾构刀盘改造的有限元分析,中国工程机械学报,2008,6(2):188~193
    [40]程佰兴,王作乾,基于CATIA的盾构掘进机刀盘的有限元分析,机械设计与制造,2008,(6):22~24
    [41]刘守法,新型盾构机刀盘设计与有限元分析,机械设计与制造,2010,(3):59~60
    [42]丁峻宏,盾构切削及掘进的三维动态数值仿真研究:[博士学位论文],上海;上海交通大学,2006
    [43]Shen J Q,Jin X L,Li Y,Wang J Y,Numerical simulation of cutterhead and soilinteraction in slurry shield tunneling,Engineering Computations,2009,26(7~8):985~1005
    [44]Youg R N,Hanna A W,Finite Element analysis of Plane Soil Cutting,Journalof Terramechanics,1977,14(3):103~125
    [45]谢晓谜,东北壤土二维切削问题的非线性有限元分析,农业机械学报,1983,(1):73~82
    [46]郭志军,推土铲切削性能的二维有限元分析,拖拉机与农用运输车,2006,33(6):30~32
    [47]Mouazen A M,Nemenyi M,A review for the finite element modeling techniquesof soil tillage,Mechanics and Computers in Simulation,1998,48(1):23~32
    [48]Chi L,Kushwaha R L,Finite element analysis of forces on a plane soil blade,Canadian Agricultural Engineering,1989,31(2):135~140
    [49]Chi L,Kushwaha R L,A non-linear3~D finite element analysis of soil failurewith tillage tools,Journal of Terramechanics,1990,27(4):343~366
    [50]Kushwaha R L,Shen J,Finite Element Analysis of the Dynamic InteractionBetween Soil and Tillage Tool,Transactions of the ASAE,1995,37(4):1315~1319
    [51]Abdul M M,Miklos N,Tillage Tool Design by the Finite Element Method: Part1,Finite Element Modelling of Soil Plastic Behaviour,Journal of AgriculturalEngnneering Research,1999,72(1):37~51
    [52]Rosa U A,Wulfsohn D,Constitutive model for high speed tillage using narrowtools,Journal of Terramechanics,1999,36(4):221~234
    [53]陆怀民,切土部件与土壤相互作用的粘弹塑性有限元分析,土木工程学报,2002,35(6):79~81
    [54]陆怀民,土壤切削粘弹塑性有限元分析,岩土工程学报,1995,17(2):100~104
    [55]Simo J C,Laursen T A,An Augmented Lagrangian treatment of contactproblems involving friction,Computers&Structures,1992,42(1):97~116
    [56]Pietrzak G, Curnier A, Large deformation frictional contact mechanics:continuum formulation and augmented Lagrangian treatment,Computer Methodsin Applied Mechanics Engineering,1999,177(3-4):351~381.
    [57]Sachdeva T D,Ramakrtshnan C V,A finite element solution for the twodimensional elastic contact problems with friction,International Journal forNumerical Methods in Engineering,1981,17(8):1257~1271
    [58]习俊通,梅雪松,吴序堂,面向对象的接触问题的有限元分析,机械强度,1999,21(1):39~41
    [59]廖雄华,李锡夔,关于土-结相互作用界面力学行为的数值模拟,计算力学学报,2002,19(4):450~455
    [60]Desai C S, Zaman M M, Lightner J G et al.,Thin layer element for interfaceand joints,International Journal for Numerical and Analytical Methods inGeomechanics,1984,8(1):19~43
    [61]陈万吉,胡志强,三维摩擦接触问题算法精度和收敛性研究,大连理工大学学报,2003,43(5):541~547.
    [62]Bekker M. G.,Introduction to terrain-vehicle system,Michigan:University ofMichigan Press,1969
    [63]Clough G W,Duncan J M,Finite element analysis of retaining wall behavior,Journal of Soil Mechanics&Foundations Div,1973,99(4):347~356
    [64]钟万勰,弹性接触问题的参数变分原理及参数二次规划求解,计算结构力学及其应用,1985,2(1):1~9
    [65]陈国庆,陈万吉,冯恩民,摩擦接触问题数学规划法的收敛性和算法的改进,计算结构力学及其应用,1994,11(4):374~37
    [66]Christensen P W,Klarbring A,Pang J S,et a1.Formulation and comparison ofalgorithm for frictional contact problems,International Journal for NumericalMethods in Engineering.,1998,42(1):145~173.
    [67]陈万吉,李学文,三维摩擦接触问题的一种混合不动点算法,大连理工大学学报,2001,41(1):29~34
    [68]Iwata K,Osakada K,Terasaka Y,Process modeling of orthogonal cutting byrigid-plastic finite element method, Journal of Engineering Material andTechnology,1984,106(2):132~138
    [69]Carroll J T,Strenkowski J S,Finite element models of orthogonal cutting withapplication to single point diamond turning,International Journal of MechanicalSciences,1988,30(12):899~920
    [70]Xie J Q,Bayoumi A E,Zbib H M,A study on shear banding in chip formationof orthogonal machining, International Journal of Machine Tools&Manufacture,1996,36(7):835~847
    [71]Hashemi J,Tseng A A,Chou P C,Finite element simulation of segmented chipformation in high speed machining,Journal of Materials Engineering andPerformance,1994,3(5):712~721
    [72]Ceretti E,Fallbohmer P,Wu W T,Altan T,Application of2D FEM to chipformation in orthogonal cutting,Journal of Materials Processing Technology,1996,59(1-2):169~180
    [73]Moriwaki T,Sugimura N,Luan S,Combined stress, material flow and heatanalysis of orthogonal micromachining of copper,Annals of the CIRP,1993,42(1):75~84
    [74]O Pantale,J-L Bacaria,et al,2D and3D numerical models of metal cutting withdamage effects,Computer Methods in Applied Mechanics Engineering,2004,193(39-41):4383~4399
    [75]王霄,卢树斌,金属切削加工有限元模拟技术的研究,煤矿机械,2006,27(11):51~54
    [76]Usui E,Shirakashi T,Mechanics of metal machining from "descriptive" to"predictive" theory,on the art of cutting metal-75years layer attribute to F.W.Taylor,1982
    [77]Komvopoulos K,Erpenbeck S A,Finite Element Modeling of Orthogonal MetalCutting,Journal of Engineering for Industry,1991,113(3):253~267
    [78]Zhang B,Bagchi A,Finite element simulation of chip formation and comparisonwith machining experiment,ASMEJEng Ind.,1994,116(3):289~297
    [79]Shib A J,Finite element simulation of orthogonal metal cutting,Transactions ofthe ASME,Journal of Enginecdng for Industry,1995,117:84~93
    [80]刘家富,张洪才,基ABAQUS的二维金属切削有限元分析,2006,10:68~70
    [81]朱合华,刘庭金,超浅埋盾构法隧道施工方案二维有限元分析,现代隧道技术,2001,38(6):14~1898
    [82]Xie L J,Estimation of two-dimension tool wear based on finite element method:
    [Doctoral thesis],WBK:Universitat Karlsruhe(TH),2004
    [83]王敏强,陈胜宏,盾构推进隧道结构的三维非线性有限元仿真岩土力学与工程学报,2002,21(2):228~232
    [84]Hibbitt,Karlsson&Sorensen,Inc,ABAQUS Analysis User’s Manual HelpOnline,ABAQUS Documentation.
    [85]竺维彬,鞠世健,盾构施工泥饼(次生岩块)的成因及对策,地下工程与隧道,2003,(2):25~29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700