用户名: 密码: 验证码:
Meq基因簇microRNAs调控马立克氏病病毒致病表型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马立克氏病(Marek’s disease,MD)是由马立克氏病病毒(Marek’s diseasevirus,MDV)感染鸡而引发的一种高传染性、免疫抑制性和肿瘤性疾病。虽然MD肿瘤的发生可以用疫苗来进行免疫预防,但由于MDV毒力的不断增强,近年来在疫苗免疫鸡群中仍不断有MD的发生,给养鸡业造成了严重的经济损失。
     MicroRNA(miRNA)在多种生物学过程中发挥重要的转录后基因调控功能,研究发现MDV也编码数十种miRNA基因,它们在病毒的复制、潜伏感染、诱导肿瘤发生等方面可能具有重要的调控作用。MDV-1编码的14个miRNA基因全部位于病毒基因组的反转重复序列区中,且形成3个miRNA基因簇,其中Meq基因簇miRNAs可能在MDV致病和致瘤中发挥关键作用。为了进一步探究MDV致病和致瘤的分子机制,本研究在vv MDV GX0101BAC克隆的基础上,采用RecE/T重组技术构建MDV-1Meq基因簇miRNAs及Meq基因簇内各miRNA单基因缺失的MDV毒株,经动物实验研究该基因簇内miRNAs基因缺失对MDV-1致病表型的影响,最终探明具有调控MDV-1致病表型作用的miRNA,为进一步阐明其分子调控机制奠定基础。
     首先,在超强毒MDV分离株GX0101BAC克隆的基础上,分别采用2轮RecE/T重组突变对MDV meq基因簇内miR-M9、miR-M5、miR-M12、miR-M3、miR-M2、miR-M4及整个Meq基因簇miRNAs分别进行缺失,并对各缺失后的BAC克隆进行多基因的PCR鉴定及DNA序列分析。结果表明,经过2轮RecE/T重组突变,成功获得了缺失整个Meq基因簇miRNAs和Meq基因簇内各miRNA单基因的BAC克隆,分别命名为GX0101ΔmiR-M2-BAC、GX0101ΔmiR-M3-BAC、 GX0101ΔmiR-M4-BAC、 GX0101ΔmiR-M5-BAC、GX0101ΔmiR-M9-BAC、GX0101ΔmiR-M12-BAC和GX0101△Meq-miRs-BAC。
     其次,将GX0101ΔmiR-M2、 GX0101ΔmiR-M3、 GX0101ΔmiR-M4、GX0101ΔmiR-M5、GX0101ΔmiR-M9、GX0101ΔmiR-M12和GX0101ΔMeq-miRs的BAC DNA分别转染单层CEF进行病毒的拯救,并对拯救的病毒进行鉴定。结果表明,成功获得了MDV miRNA基因缺失株GX0101ΔmiR-M2、GX0101ΔmiR-M3、GX0101ΔmiR-M4、GX0101ΔmiR-M5、GX0101ΔmiR-M9、GX0101ΔmiR-M12和GX0101ΔMeq-miRs。采用SYBR Green I qRT-PCR对感染CEF后不同时间各GX0101△miRNA毒株的Meq基因及gB基因进行定量,检测各GX0101ΔmiRNA毒株在CEF上的复制动力学。结果在感染CEF后0-144h内各MDV GX0101ΔmiRNA毒株均显示与亲本株GX0101BAC相似的增殖曲线,表明Meq基因簇内各miRNA不是MDV复制的必需基因。
     最后,将MDV GX0101ΔmiR-M2、GX0101ΔmiR-M3、GX0101ΔmiR-M4、GX0101ΔmiR-M5、GX0101ΔmiR-M9、GX0101ΔmiR-M12和GX0101ΔMeq-miRs毒株分别感染1日龄SPF白来航鸡,进行各病毒株致死率、致肿瘤率、在攻毒鸡体内复制力、鸡生长性能和免疫器官发育及显微肿瘤发生情况等方面的检测、分析。结果表明,亲本株GX0101BAC在75dpi时的致死率已为100%,而各GX0101ΔmiRNA毒株在90dpi的累计致死率均仍低于亲本株GX0101BAC,且GX0101△miR-M5的致死率最高,其次分别为GX0101△miR-M3、GX0101△miR-M9、GX0101△miR-M2、GX0101△miR-M4、GX0101△miR-M12和GX0101△Meq-miRs;在75dpi时,而各GX0101ΔmiRNA毒株累计肉眼肿瘤发生率均低于GX010BAC,在90dpi时GX0101Meq-miRs的累计肿瘤发生率最低,其次分别为GX0101△miR-M12、 GX0101△miR-M3、 GX0101△miR-M4、GX0101△miR-M5、GX0101△miR-M2、GX0101△miR-M9;Meq基因簇内miRNAs并不是MDV的体内复制所必需,但Meq基因簇内miRNAs的缺失影响病毒的体内复制。除GX0101△miR-M3在30dpi时、GX0101△miR-M5在21dpi-30dpi时抑制感染鸡的生长外, GX0101△miR-M2、 GX0101△miR-M4、GX0101△miR-M9、GX0101△miR-M12及GX0101△Meq-miRs对感染鸡的体重增长没有影响;各miRNA缺失株在14-21dpi期间的法氏囊指数与胸腺指数均显著低于CEF对照组,但各miRNA缺失株和GX0101BAC毒株之间没有持续性的显著差异。各GX0101ΔmiRNA感染鸡后肝脏显微肿瘤发生率也低于亲本株GX0101BAC,且GX0101Meq-miRs组的肿瘤形成率最低,其次分别为GX0101ΔmiR-M12、GX0101ΔmiR-M2、GX0101ΔmiR-M4、GX0101ΔmiR-M3、GX0101ΔmiR-M9、GX0101ΔmiR-M5。
     综上所述,Meq基因簇内miRNAs的缺失虽不能完全废除MDV的致瘤性,但却能阻止肿瘤的发生进程,Meq基因簇miRNAs对MDV的致病表型具有重要的调控作用,但Meq基因簇内的各miRNA在MDV致瘤过程中可能具有不同的调控作用,其中MDV1-miR-M12的潜在调控作用可能最为重要,其次为MDV1-miR-M2、 MDV1-miR-M3、 MDV1-miR-M4和MDV1-miR-M9,而MDV1-miR-M5的调控作用可能最弱。本研究的结果将为进一步研究Meq基因簇miRNAs调控MD致病及致瘤的的分子机制奠定了重要基础。
Marek’s disease(MD) is a highly contagious, neoplastic, and immunosuppressivedisease of chicken caused by Marek’s disease virus (MDV). The tumorigenesis can beprevented effectively by immunization with attenuated or nonpathogenic forms ofMDV viruses. However, due to high-density poultry production and possible selectionpressure from vaccination, the virulence of MDV field strains has been seen to haveincreased. MD outbreaks happen sporadically every year in worldwide, and it hascaused huge losses in the poultry industry.
     MicroRNAs play important post-transcriptional regulatory roles in variousimportant biological processes. In recent years, a large number of viral miRNAs havebeen found to be encoded in the genomes of MDV, and these miRNAs may playcritical regulatory roles in infection, latency, and oncogenesis. Three distinct serotypesof MDV have been characterized, and the viral miRNAs are all located in the invertedrepeat sequences of MDV-1genomes and focused in three gene clusters. TheMeq-clustered miRNAs are sequentially located upstream from the Meq oncogene,and these miRNAs were hypothesized to play more important roles in MDVpathogenesis and oncogenesis.
     In order to further explore the molecular mechanism of MDV pathogenesis andtumorigenesis, we intend to construct a series of single-cluster-deleted orsingle-miRNA-deleted MDV strains using RecE/T homologous recombination basedon the BAC clones of vv MDV GX0101. Then the pathogenic or tumorigenicphenotypes would be evaluated by challenge SPF chicken with the miRNA-deletedmutants. The study will provide a means for further investigating the regulatoryfunctions of miRNAs in MDV pathogenic phenotypes and a basis for furtherelucidating the molecular regulation mechanism, and the research will also providereference for clarifying the regulation roles of miRNAs on biology, genetics, andimmunology of tumorigenesis.
     Firstly, the single Meq-clustered miRNAs and MDV1-miR-M2, MDV1-miR-M3, MDV1-miR-M4, MDV1-miR-M5, MDV1-miR-M9, MDV1-miR-M12were deletedrespectively based on the BAC clones of vv MDV GX0101by two rounds RecE/Tmutagenesis,then the existence of the GX0101genome and deletion of the individualMeq-clustered miRNAs were confirmed by PCR analysis using the different primersthat amplify different genes and by DNA sequence analysis. The results showed that aseries of BAC clones with the corresponding deletions of single Meq-clusteredmiRNAs and individual miRNA in Meq cluster were constructed successfully, namedGX0101Δ miR-M2-BAC, GX0101Δ miR-M3-BAC, GX0101Δ miR-M4-BAC,GX0101Δ miR-M5-BAC, GX0101Δ miR-M9-BAC, GX0101Δ miR-M12-BACand GX0101Δ Meq-miRs respectively.
     Secondly, the BAC DNA of GX0101ΔmiR-M2, GX0101ΔmiR-M3,GX0101ΔmiR-M4, GX0101ΔmiR-M5, GX0101ΔmiR-M9, GX0101ΔmiR-M12andGX0101ΔMeq-miRs were transfected into CEF respectively for the rescue of MDVvirus. Then the rescued viruses were confirmed by PCR analysis and indirectimmunofluorescence assay (IFA). The results indicated that GX0101ΔmiRNA viruseswere reconstituted successfully. To investigate the in vitro virus proliferation rates,real-time qPCR were performed on Meq and gB genes with the CEFs infectedGX0101BAC or GX0101ΔmiRNA viruses. The results showed that both the parentand the miRNAs-deleted mutant viruses have very similar replication kinetics,indicating that the six Meq-clustered miRNAs are not essential for MDV replicationin vitro.
     Finally, one-day-old white Leghorn SPF chickens were separately challengedwith CEFs containing MDV GX0101BAC, GX0101ΔmiR-M2, GX0101ΔmiR-M3,GX0101ΔmiR-M4, GX0101ΔmiR-M5, GX0101ΔmiR-M9,GX0101ΔmiR-M12orGX0101ΔMeq-miRs viruses by abdominal cavity inoculation, then the mortality,gross tumor incidences and in vivo replication of GX0101ΔmiRNA viruses, thegrowth rates, immune organs and microscopic tumorigenesis of birds wereexamined and analyzed. The results showed that the rates of cumulative mortality ofMDV GX0101ΔmiRNA viruses were all lower than the parent GX0101BAC, andMDV GX0101ΔmiR-M5was higher than that of GX0101ΔmiR-M3,GX0101ΔmiR-M9, GX0101ΔmiR-M2, GX0101ΔmiR-M4, GX0101ΔmiR-M12andGX0101ΔMeq-miRs. By75dpi, the rates of cumulative gross tumor generation ofMDV GX0101ΔmiRNA viruses were all lower than that of the parent GX0101BAC. By90dpi, the rates of cumulative gross tumor generation of GX0101ΔMeq-miRswere lower than that of GX0101ΔmiR-M12, GX0101ΔmiR-M3, GX0101ΔmiR-M4,GX0101ΔmiR-M5, GX0101ΔmiR-M2and GX0101ΔmiR-M9. These results showedthat the pathogenicity and oncogenicity of the serial mutant viruses were stronglysuppressed when compared to the parental GX0101BAC virus; The Meq-clusteredmiRNAs were not essential for replication of MDV in vivo, and some effect of thedeletions in the Meq-cluster locus affecting the viral replication in vivo; There was nodifference in body weight of birds except GX0101ΔmiR-M3orGXΔmiR-M5-challenged birds whose body weights were lower at30dpi or at21to30dpi than that of the CEF controls. The ratios of bursa/body weight andthymus/body weight of birds inoculated with the mutant viruses were all significantlylower than that of the control birds at14and/or21dpi. However, there was noconsistent significant difference between the parental GX0101BAC and themiRNA-deleted mutants viruses.The rates of microscopic tumorigenesis in liver ofbirds showing no gross organic tumors showed that GX0101ΔmiRNA viruses were alllower that of the parental GX0101BAC, and the microscopic tumorigenesis ofGX0101Meq-miRs was the lowest, then followed by GX0101ΔmiR-M12,GX0101ΔmiR-M2, GX0101ΔmiR-M4, GX0101ΔmiR-M3, GX0101ΔmiR-M9andGX0101Δ miR-M5.
     In conclusion, these results suggest that the oncogeneicity was not completelyabolished in the mutant viruses the Meq-clustered miRNAs deleted but tumorprogression was hindered compared to that of the parental GX0101virus. Theseresults further indicate that the Meq-clustered miRNAs have important reglatory rolesin the pathogenic phenotype of Marek’s disease virus. The data suggests that in MDVoncogenesis, the Meq-clustered miRNAs possibly play different roles, soMDV1-miR-M12may be a more important regulator, followed by MDV1-miR-M2,MDV1-miR-M3, MDV1-miR-M4and MDV1-miR-M9,while MDV1-miR-M5maybe less significant. Further work will be needed to elucidate which other fundamentalmolecular mechanisms trigger the development of MD lymphoma.
引文
[1] Churchill A E, Biggs P M. Agent of Marek's disease in tissue culture [J]. Nature,1967,215(5100):528-530.
    [2] Witter R L. Increased virulence of Marek's disease virus field isolates [J]. Aviandiseases,1997,41(1):149-163.
    [3] Witter R L, Calnek B W, Buscaglia C, et al. Classification of Marek's diseaseviruses according to pathotype: philosophy and methodology [J]. Avianpathology: journal of the WVPA,2005,34(2):75-90.
    [4] Lee L F, Wu P, Sui D, et al. The complete unique long sequence and the overallgenomic organization of the GA strain of Marek's disease virus [J]. Proceedingsof the National Academy of Sciences of the United States of America,2000,97(11):6091-6096.
    [5] Tulman E R, Afonso C L, Lu Z, et al. The genome of a very virulent Marek'sdisease virus [J]. Journal of virology,2000,74(17):7980-7988.
    [6] Cebrian J, Kaschka-Dierich C, Berthelot N, et al. Inverted repeat nucleotidesequences in the genomes of Marek disease virus and the herpesvirus of theturkey [J]. Proceedings of the National Academy of Sciences of the United Statesof America,1982,79(2):555-558.
    [7] Su S, Cui N, Cui Z, et al. Complete genome sequence of a recombinant Marek'sdisease virus field strain with one reticuloendotheliosis virus long terminal repeatinsert [J]. Journal of virology,2012,86(24):13818-13819.
    [8] Makimura K, Peng F Y, Tsuji M, et al. Mapping of Marek's disease virus genome:identification of junction sequences between unique and inverted repeat regions[J]. Virus genes,1994,8(1):15-24.
    [9] Schat K A, Buckmaster A, Ross L J. Partial transcription map of Marek's diseaseherpesvirus in lytically infected cells and lymphoblastoid cell lines [J].International journal of cancer Journal international du cancer,1989,44(1):101-109.
    [10] Sugaya K, Bradley G, Nonoyama M, et al. Latent transcripts of Marek's diseasevirus are clustered in the short and long repeat regions [J]. Journal of virology,1990,64(12):5773-5782.
    [11] Biggs P M, Nair V. The long view:40years of Marek's disease researchandAvian Pathology [J]. Avian Pathology,2012,41(1):3-9.
    [12] Silva R F, Dunn J R, Cheng H H, et al. A MEQ-deleted Marek's disease viruscloned as a bacterial artificial chromosome is a highly efficacious vaccine [J].Avian diseases,2010,54(2):862-869.
    [13] Fragnet L, Blasco M A, Klapper W, et al. The RNA subunit of telomerase isencoded by Marek's disease virus [J]. Journal of virology,2003,77(10):5985-5996.
    [14] Trapp S, Parcells M S, Kamil J P, et al. A virus-encoded telomerase RNApromotes malignant T cell lymphomagenesis [J]. The Journal of experimentalmedicine,2006,203(5):1307-1317.
    [15] Fragnet L, Kut E, Rasschaert D. Comparative functional study of the viraltelomerase RNA based on natural mutations [J]. The Journal of biologicalchemistry,2005,280(25):23502-23515.
    [16] Cayuela M L, Flores J M, Blasco M A. The telomerase RNA component Terc isrequired for the tumour-promoting effects of Tert overexpression [J]. EMBOreports,2005,6(3):268-274.
    [17] Cui X, Lee L F, Reed W M, et al. Marek's disease virus-encoded vIL-8gene isinvolved in early cytolytic infection but dispensable for establishment of latency[J]. Journal of virology,2004,78(9):4753-4760.
    [18] Jarosinski K W, Schat K A. Multiple alternative splicing to exons II and III ofviral interleukin-8(vIL-8) in the Marek's disease virus genome: the importanceof vIL-8exon I [J]. Virus genes,2007,34(1):9-22.
    [19]高巍,秦爱建,金文杰,等.不同毒力马立克氏病病毒毒株的vIL8表达水平分析[J].中国预防兽医学报,2010,12:972-974.
    [20] Gimeno I M, Witter R L, Hunt H D, et al. The pp38gene of Marek's diseasevirus (MDV) is necessary for cytolytic infection of B cells and maintenance ofthe transformed state but not for cytolytic infection of the feather follicleepithelium and horizontal spread of MDV [J]. Journal of virology,2005,79(7):4545-4549.
    [21] Bradley G, Lancz G, Tanaka A, et al. Loss of Marek's disease virustumorigenicity is associated with truncation of RNAs transcribed withinBamHI-H [J]. Journal of virology,1989,63(10):4129-4135.
    [22] Bradley G, Hayashi M, Lancz G, et al. Structure of the Marek's disease virusBamHI-H gene family: genes of putative importance for tumor induction [J].Journal of virology,1989,63(6):2534-2542.
    [23] Silva R F, Reddy S M, Lupiani B. Expansion of a unique region in the Marek'sdisease virus genome occurs concomitantly with attenuation but is not sufficientto cause attenuation [J]. Journal of virology,2004,78(2):733-740.
    [24] Sun A, Li Y, Wang J, et al. Deletion of1.8-kb mRNA of Marek's disease virusdecreases its replication ability but not oncogenicity [J]. Virology journal,2010,7:294-301.
    [25] Hayashi M, Kawamura T, Akaike H, et al. Antisense oligonucleotidecomplementary to the BamHI-H gene family of Marek's disease virus inducedgrowth arrest of MDCC-MSB1cells in the S-phase [J]. The Journal of veterinarymedical science/the Japanese Society of Veterinary Science,1999,61(4):389-394.
    [26] Kamil J P, Tischer B K, Trapp S, et al. vLIP, a viral lipase homologue, is avirulence factor of Marek's disease virus [J]. Journal of virology,2005,79(11):6984-6996.
    [27] Sun A, Lee L F, Khan O A, et al. Deletion of Marek's disease virus large subunitof ribonucleotide reductase impairs virus growth in vitro and in vivo [J]. Aviandiseases,2013,57(2Suppl):464-468.
    [28] Liu H C, Soderblom E J, Goshe M B. A mass spectrometry-based proteomicapproach to study Marek's Disease Virus gene expression [J]. Journal ofvirological methods,2006,135(1):66-75.
    [29] Jarosinski K W, Osterrieder N, Nair V K, et al. Attenuation of Marek's diseasevirus by deletion of open reading frame RLORF4but not RLORF5a [J]. Journalof virology,2005,79(18):11647-11659.
    [30] Xing Z, Schat K A. Inhibitory effects of nitric oxide and gamma interferon onin vitro and in vivo replication of Marek's disease virus [J]. Journal of virology,2000,74(8):3605-3612.
    [31] Davison F, Naik V. Use of Marek's disease vaccines could they be driving thevirus to increasing virulence [J]. Vaccine,2005,4(1):77-88.
    [32] Schat K A, Markowski-Grimsrud C J. Immune responses to Marek's diseasevirus infection [J]. Current topics in microbiology and immunology,2001,255(91-120.
    [33] Abdul-Careem M F, Javaheri-Vayeghan A, Shanmuganathan S, et al.Establishment of an aerosol-based Marek's disease virus infection model [J].Avian diseases,2009,53(3):387-391.
    [34] Quere P, Rivas C, Ester K, et al. Abundance of IFN-alpha and IFN-gammamRNA in blood of resistant and susceptible chickens infected with Marek'sdisease virus (MDV) or vaccinated with turkey herpesvirus; and MDV inhibitionof subsequent induction of IFN gene transcription [J]. Archives of virology,2005,150(3):507-519.
    [35] Jarosinski K W, Jia W, Sekellick M J, et al. Cellular responses in chickenstreated with IFN-alpha orally or inoculated with recombinant Marek's diseasevirus expressing IFN-alpha [J]. Journal of interferon&cytokine research: theofficial journal of the International Society for Interferon and Cytokine Research,2001,21(5):287-296.
    [36] Abdul-Careem M F, Haq K, Shanmuganathan S, et al. Induction of innate hostresponses in the lungs of chickens following infection with a very virulent strainof Marek's disease virus [J]. Virology,2009,393(2):250-257.
    [37] Jarosinski K W, Njaa B L, O'connell P H, et al. Pro-inflammatory responses inchicken spleen and brain tissues after infection with very virulent plus Marek'sdisease virus [J]. Viral immunology,2005,18(1):148-161.
    [38] Djeraba A, Musset E, Bernardet N, et al. Similar pattern of iNOS expression, NOproduction and cytokine response in genetic and vaccination-acquired resistanceto Marek's disease [J]. Veterinary immunology and immunopathology,2002,85(1-2):63-75.
    [39] Sarson A J, Abdul-Careem M F, Read L R, et al. Expression ofcytotoxicity-associated genes in Marek's disease virus-infected chickens [J].Viral immunology,2008,21(2):267-272.
    [40] Morimura T, Ohashi K, Sugimoto C, et al. Pathogenesis of Marek's disease (MD)and possible mechanisms of immunity induced by MD vaccine [J]. The Journalof veterinary medical science/the Japanese Society of Veterinary Science,1998,60(1):1-8.
    [41] Omar A R, Schat K A. Syngeneic Marek's disease virus (MDV)-specificcell-mediated immune responses against immediate early, late, and unique MDVproteins [J]. Virology,1996,222(1):87-99.
    [42] Sarson A J, Abdul-Careem M F, Zhou H, et al. Transcriptional analysis of hostresponses to Marek's disease viral infection [J]. Viral immunology,2006,19(4):747-758.
    [43] Haq K, Brisbin J T, Thanthrige-Don N, et al. Transcriptome and proteomeprofiling of host responses to Marek's disease virus in chickens [J]. Veterinaryimmunology and immunopathology,2010,138(4):292-302.
    [44] Heidari M, Sarson A J, Huebner M, et al. Marek's disease virus-inducedimmunosuppression: array analysis of chicken immune response gene expressionprofiling [J]. Viral Immunol,2010,23(3):309-319.
    [45] Kaiser P, Underwood G, Davison F. Differential Cytokine Responses followingMarek's Disease Virus Infection of Chickens Differing in Resistance to Marek'sDisease [J]. Journal of virology,2003,77(1):762-768.
    [46] Djeraba A, Bernardet N, Dambrine G, et al. Nitric oxide inhibits Marek'sdisease virus replication but is not the single decisive factor ininterferon-gamma-mediated viral inhibition [J]. Virology,2000,277(1):58-65.
    [47] Kano R, Konnai S, Onuma M, et al. Cytokine profiles in chickens infected withvirulent and avirulent Marek's disease viruses: interferon-gamma is a key factorin the protection of Marek's disease by vaccination [J]. Microbiology andimmunology,2009,53(4):224-232.
    [48] Abdul-Careem M F, Hunter B D, Parvizi P, et al. Cytokine gene expressionpatterns associated with immunization against Marek's disease in chickens [J].Vaccine,2007,25(3):424-432.
    [49] Tarpey I, Davis P J, Sondermeijer P, et al. Expression of chicken interleukin-2by turkey herpesvirus increases the immune response against Marek's diseasevirus but fails to increase protection against virulent challenge [J]. Avianpathology: journal of the WVPA,2007,36(1):69-74.
    [50] Djeraba A, Kut E, Rasschaert D, et al. Antiviral and antitumoral effects ofrecombinant chicken myelomonocytic growth factor in virally inducedlymphoma [J]. International immunopharmacology,2002,2(11):1557-1566.
    [51] Haq K, Elawadli I, Parvizi P, et al. Interferon-gamma influences immunityelicited by vaccines against very virulent Marek's disease virus [J]. Antiviralresearch,2011,90(3):218-226.
    [52] Gottwein E, Mukherjee N, Sachse C, et al. A viral microRNA functions as anorthologue of cellular miR-155[J]. Nature,2007,450(7172):1096-1099.
    [53] Yu Z H, Teng M, Luo J, et al. Molecular characteristics and evolutionaryanalysis of field Marek's disease virus prevalent in vaccinated chicken flocks inrecent years in China [J]. Virus genes,2013,47(2):282-291.
    [54] Teng L Q, Wei P, Song Z B, et al. Molecular epidemiological investigation ofMarek's disease virus from Guangxi, China [J]. Archives of virology,2011,156(2):203-206.
    [55] Wozniakowski G, Samorek-Salamonowicz E, Kozdrun W. Molecularcharacteristics of Polish field strains of Marek's disease herpesvirus isolated fromvaccinated chickens [J]. Acta veterinaria Scandinavica,2011,53(10.
    [56] Murata S, Hayashi Y, Kato A, et al. Surveillance of Marek's disease virus inmigratory and sedentary birds in Hokkaido, Japan [J]. Veterinary journal,2012,192(3):538-540.
    [57] Wahid F, Shehzad A, Khan T, et al. MicroRNAs: synthesis, mechanism,function, and recent clinical trials [J]. Biochimica et biophysica acta,2010,1803(11):1231-1243.
    [58] Cullen B R. Viral and cellular messenger RNA targets of viral microRNAs [J].Nature,2009,457(7228):421-425.
    [59] Pfeffer S, Zavolan M, Grasser F A, et al. Identification of virus-encodedmicroRNAs [J]. Science,2004,304(5671):734-736.
    [60] Cai X, Schafer A, Lu S, et al. Epstein-Barr virus microRNAs are evolutionarilyconserved and differentially expressed [J]. PLoS pathogens,2006,2(3): e23.
    [61] Cai X, Lu S, Zhang Z, et al. Kaposi's sarcoma-associated herpesvirus expressesan array of viral microRNAs in latently infected cells [J]. Proceedings of theNational Academy of Sciences of the United States of America,2005,102(15):5570-5575.
    [62] Grey F, Antoniewicz A, Allen E, et al. Identification and characterization ofhuman cytomegalovirus-encoded microRNAs [J]. Journal of virology,2005,79(18):12095-12099.
    [63] Pfeffer S, Sewer A, Lagos-Quintana M, et al. Identification of microRNAs ofthe herpesvirus family [J]. Nature methods,2005,2(4):269-276.
    [64] Cui C, Griffiths A, Li G, et al. Prediction and identification of herpes simplexvirus1-encoded microRNAs [J]. Journal of virology,2006,80(11):5499-5508.
    [65] Umbach J L, Kramer M F, Jurak I, et al. MicroRNAs expressed by herpessimplex virus1during latent infection regulate viral mRNAs [J]. Nature,2008,454(7205):780-783.
    [66] Schafer A, Cai X, Bilello J P, et al. Cloning and analysis of microRNAsencoded by the primate gamma-herpesvirus rhesus monkey rhadinovirus [J].Virology,2007,364(1):21-27.
    [67] Buck A H, Santoyo-Lopez J, Robertson K A, et al. Discrete clusters ofvirus-encoded micrornas are associated with complementary strands of thegenome and the7.2-kilobase stable intron in murine cytomegalovirus [J]. Journalof virology,2007,81(24):13761-13770.
    [68] Dolken L, Perot J, Cognat V, et al. Mouse cytomegalovirus microRNAsdominate the cellular small RNA profile during lytic infection and show featuresof posttranscriptional regulation [J]. Journal of virology,2007,81(24):13771-13782.
    [69] Yao Y, Zhao Y, Xu H, et al. Marek's disease virus type2(MDV-2)-encodedmicroRNAs show no sequence conservation with those encoded by MDV-1[J].Journal of virology,2007,81(13):7164-7170.
    [70] Burnside J, Bernberg E, Anderson A, et al. Marek's disease virus encodesMicroRNAs that map to meq and the latency-associated transcript [J]. Journal ofvirology,2006,80(17):8778-8786.
    [71] Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotationand deep-sequencing data [J]. Nucleic acids research,2011,39(Database issue):D152-157.
    [72] Boss I W, Plaisance K B, Renne R. Role of virus-encoded microRNAs inherpesvirus biology [J]. Trends in microbiology,2009,17(12):544-553.
    [73] Yao Y, Zhao Y, Xu H, et al. MicroRNA profile of Marek's diseasevirus-transformed T-cell line MSB-1: predominance of virus-encodedmicroRNAs [J]. Journal of virology,2008,82(8):4007-4015.
    [74] Rivat C, Le Floch N, Sabbah M, et al. Synergistic cooperation between theAP-1and LEF-1transcription factors in activation of the matrilysin promoter bythe src oncogene: implications in cellular invasion [J]. FASEB journal: officialpublication of the Federation of American Societies for Experimental Biology,2003,17(12):1721-1723.
    [75] Skalsky R L, Samols M A, Plaisance K B, et al. Kaposi's sarcoma-associatedherpesvirus encodes an ortholog of miR-155[J]. Journal of virology,2007,81(23):12836-12845.
    [76] Zhao Y, Yao Y, Xu H, et al. A functional MicroRNA-155ortholog encoded bythe oncogenic Marek's disease virus [J]. Journal of virology,2009,83(1):489-492.
    [77] Morgan R, Anderson A, Bernberg E, et al. Sequence conservation and differentialexpression of Marek's disease virus microRNAs [J]. Journal of virology,2008,82(24):12213-12220.
    [78] Rodriguez A, Vigorito E, Clare S, et al. Requirement of bic/microRNA-155fornormal immune function [J]. Science,2007,316(5824):608-611.
    [79] Tam W, Hughes S H, Hayward W S, et al. Avian bic, a gene isolated from acommon retroviral site in avian leukosis virus-induced lymphomas that encodesa noncoding RNA, cooperates with c-myc in lymphomagenesis anderythroleukemogenesis [J]. Journal of virology,2002,76(9):4275-4286.
    [80] Costinean S, Zanesi N, Pekarsky Y, et al. Pre-B cell proliferation andlymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155transgenicmice [J]. Proceedings of the National Academy of Sciences of the United Statesof America,2006,103(18):7024-7029.
    [81] O'connell R M, Rao D S, Chaudhuri A A, et al. Sustained expression ofmicroRNA-155in hematopoietic stem cells causes a myeloproliferative disorder[J]. The Journal of experimental medicine,2008,205(3):585-594.
    [82] Luo J, Teng M, Fan J, et al. Marek's disease virus-encoded microRNAs:genomics, expression and function [J]. Science China Life sciences,2010,53(10):1174-1180.
    [83] Waidner L A, Morgan R W, Anderson A S, et al. MicroRNAs of Gallid andMeleagrid herpesviruses show generally conserved genomic locations and arevirus-specific [J]. Virology,2009,388(1):128-136.
    [84] Yao Y, Zhao Y, Smith L P, et al. Novel microRNAs (miRNAs) encoded byherpesvirus of Turkeys: evidence of miRNA evolution by duplication [J]. Journalof virology,2009,83(13):6969-6973.
    [85] Burnside J, Ouyang M, Anderson A, et al. Deep sequencing of chickenmicroRNAs [J]. BMC genomics,2008,9:185.
    [86] Lambeth L S, Yao Y, Smith L P, et al. MicroRNAs221and222target p27Kip1inMarek's disease virus-transformed tumour cell line MSB-1[J]. The Journal ofgeneral virology,2009,90(Pt5):1164-1171.
    [87] Xu H, Yao Y, Zhao Y, et al. Analysis of the expression profiles of Marek'sdisease virus-encoded microRNAs by real-time quantitative PCR [J]. Journal ofvirological methods,2008,149(2):201-208.
    [88] Luo J, Sun A J, Teng M, et al. Expression profiles of microRNAs encoded by theoncogenic Marek's disease virus reveal two distinct expression patterns in vivoduring different phases of disease [J]. The Journal of general virology,2011,92(Pt3):608-620.
    [89] Morgan R W, Burnside J. Roles of avian herpesvirus microRNAs in infection,latency, and oncogenesis [J]. Biochimica et biophysica acta,2011,1809(11-12):654-659.
    [90] Yao Y, Zhao Y, Smith L P, et al. Differential expression of microRNAs inMarek's disease virus-transformed T-lymphoma cell lines [J]. The Journal ofgeneral virology,2009,90(Pt7):1551-1559.
    [91] Meister G, Landthaler M, Dorsett Y, et al. Sequence-specific inhibition ofmicroRNA-and siRNA-induced RNA silencing [J]. Rna,2004,10(3):544-550.
    [92] Chen J F, Mandel E M, Thomson J M, et al. The role of microRNA-1andmicroRNA-133in skeletal muscle proliferation and differentiation [J]. Naturegenetics,2006,38(2):228-233.
    [93] Muylkens B, Coupeau D, Dambrine G, et al. Marek's disease virus microRNAdesignated Mdv1-pre-miR-M4targets both cellular and viral genes [J]. Archivesof virology,2010,155(11):1823-1837.
    [94] Xu S, Xue C, Li J, et al. Marek's disease virus type1microRNA miR-M3suppresses cisplatin-induced apoptosis by targeting Smad2of the transforminggrowth factor beta signal pathway [J]. Journal of virology,2011,85(1):276-285.
    [95] Strassheim S, Stik G, Rasschaert D, et al. mdv1-miR-M7-5p, located in thenewly identified first intron of the LAT transcript of Marek's disease virus,targets the immediate early genes ICP4and ICP27[J]. The Journal of generalvirology,2012,93(pt8):1731-1742
    [96] Zhao Y, Xu H, Yao Y, et al. Critical role of the virus-encoded microRNA-155ortholog in the induction of Marek's disease lymphomas [J]. PLoS pathogens,2011,7(2): e1001305.
    [97]夏伟,曹国军,邵宁生. MicroRNA靶基因的寻找及鉴定方法研究进展[J].中国科学:生命科学,2009,39(1):121-128.
    [98] Parnas O, Corcoran D L, Cullen B R. Analysis of the mRNA targetome ofmicroRNAs expressed by Marek's disease virus [J]. mBio,2014,5(1):e01060-01013.
    [99] Hosoda F, Nishimura S, Uchida H, et al. An F factor based cloning system forlarge DNA fragments [J]. Nucleic acids research,1990,18(13):3863-3869.
    [100] Shizuya H, Birren B, Kim U J, et al. Cloning and stable maintenance of300-kilobase-pair fragments of human DNA in Escherichia coli using anF-factor-based vector [J]. Proceedings of the National Academy of Sciences ofthe United States of America,1992,89(18):8794-8797.
    [101] Ioannou P A, Amemiya C T, Garnes J, et al. A new bacteriophage P1-derivedvector for the propagation of large human DNA fragments [J]. Nature genetics,1994,6(1):84-89.
    [102] Takashima Y, Otsuka H.[Pathogenesis of animal herpesviruses to human][J].Nihon rinsho Japanese journal of clinical medicine,2000,58(4):957-961.
    [103] Messerle M, Crnkovic I, Hammerschmidt W, et al. Cloning and mutagenesis ofa herpesvirus genome as an infectious bacterial artificial chromosome [J].Proceedings of the National Academy of Sciences of the United States ofAmerica,1997,94(26):14759-14763.
    [104] Warden C, Tang Q, Zhu H. Herpesvirus BACs: past, present, and future [J].Journal of biomedicine&biotechnology,2011,2011(124595.
    [105] Adachi S, Hori K, Hiraga S. Subcellular positioning of F plasmid mediated bydynamic localization of SopA and SopB [J]. Journal of molecular biology,2006,356(4):850-863.
    [106] Tischer B K, Kaufer B B. Viral bacterial artificial chromosomes: generation,mutagenesis, and removal of mini-F sequences [J]. Journal of biomedicine&biotechnology,2012,2012:472-537.
    [107] Brune W, Messerle M, Koszinowski U H. Forward with BACs: new tools forherpesvirus genomics [J]. Trends in genetics: TIG,2000,16(6):254-259.
    [108] Luckow V A, Lee S C, Barry G F, et al. Efficient generation of infectiousrecombinant baculoviruses by site-specific transposon-mediated insertion offoreign genes into a baculovirus genome propagated in Escherichia coli [J].Journal of virology,1993,67(8):4566-4579.
    [109] Zhou F, Gao S J. Recent advances in cloning herpesviral genomes as infectiousbacterial artificial chromosomes [J]. Cell Cycle,2011,10(3):434-440.
    [110] Borenstein R, Frenkel N. Cloning human herpes virus6A genome into bacterialartificial chromosomes and study of DNA replication intermediates [J].Proceedings of the National Academy of Sciences of the United States ofAmerica,2009,106(45):19138-19143.
    [111] Berg D E, Davies J, Allet B, et al. Transposition of R factor genes tobacteriophage lambda [J]. Proceedings of the National Academy of Sciences ofthe United States of America,1975,72(9):3628-3632.
    [112] Reznikoff W S. Transposon Tn5[J]. Annual review of genetics,2008,42:269-286.
    [113] Zhou F, Li Q, Gao S J. A sequence-independent in vitro transposon-basedstrategy for efficient cloning of genomes of large DNA viruses as bacterialartificial chromosomes [J]. Nucleic acids research,2009,37(1): e2.
    [114] Haas R, Kahrs A F, Facius D, et al. TnMax--a versatile mini-transposon for theanalysis of cloned genes and shuttle mutagenesis [J]. Gene,1993,130(1):23-31.
    [115] Kahrs A F, Odenbreit S, Schmitt W, et al. An improved TnMax mini-transposonsystem suitable for sequencing, shuttle mutagenesis and gene fusions [J]. Gene,1995,167(1-2):53-57.
    [116] Wagner M, Ruzsics Z, Koszinowski U H. Herpesvirus genetics has come of age[J]. Trends in microbiology,2002,10(7):318-324.
    [117] Tischer B K, Kaufer B B. Viral Bacterial Artificial Chromosomes: Generation,Mutagenesis, and Removal of Mini-F Sequences [J]. Journal of Biomedicine andBiotechnology,2012,2012:1-14.
    [118] Sternberg N, Hamilton D, Hoess R. Bacteriophage P1site-specificrecombination. II. Recombination between loxP and the bacterial chromosome[J]. Journal of molecular biology,1981,150(4):487-507.
    [119] Sauer B. Manipulation of transgenes by site-specific recombination: use of Crerecombinase [J]. Methods in enzymology,1993,225(890-900.
    [120] Fiering S, Kim C G, Epner E M, et al. An "in-out" strategy using gene targetingand FLP recombinase for the functional dissection of complex DNA regulatoryelements: analysis of the beta-globin locus control region [J]. Proceedings of theNational Academy of Sciences of the United States of America,1993,90(18):8469-8473.
    [121] Tischer B K, Smith G A, Osterrieder N. En passant mutagenesis: a two stepmarkerless red recombination system [J]. Methods Mol Biol,2010,634(421-430.
    [122] Kunec D, Hanson L A, Van Haren S, et al. An overlapping bacterial artificialchromosome system that generates vectorless progeny for channel catfishherpesvirus [J]. Journal of virology,2008,82(8):3872-3881.
    [123] Costes B, Fournier G, Michel B, et al. Cloning of the koi herpesvirus genome asan infectious bacterial artificial chromosome demonstrates that disruption of thethymidine kinase locus induces partial attenuation in Cyprinus carpio koi [J].Journal of virology,2008,82(10):4955-4964.
    [124] Dunn W, Chou C, Li H, et al. Functional profiling of a human cytomegalovirusgenome [J]. Proceedings of the National Academy of Sciences of the UnitedStates of America,2003,100(24):14223-14228.
    [125] Yu D, Smith G A, Enquist L W, et al. Construction of a self-excisable bacterialartificial chromosome containing the human cytomegalovirus genome andmutagenesis of the diploid TRL/IRL13gene [J]. Journal of virology,2002,76(5):2316-2328.
    [126] Zhang Z, Selariu A, Warden C, et al. Genome-wide mutagenesis reveals thatORF7is a novel VZV skin-tropic factor [J]. PLoS pathogens,2010,6(e1000971.
    [127] Schumacher D, Tischer B K, Fuchs W, et al. Reconstitution of Marek's diseasevirus serotype1(MDV-1) from DNA cloned as a bacterial artificial chromosomeand characterization of a glycoprotein B-negative MDV-1mutant [J]. Journal ofvirology,2000,74(23):11088-11098.
    [128] Petherbridge L, Howes K, Baigent S J, et al. Replication-Competent BacterialArtificial Chromosomes of Marek's Disease Virus: Novel Tools for Generation ofMolecularly Defined Herpesvirus Vaccines [J]. Journal of virology,2003,77(16):8712-8718.
    [129] Baigent S J, Petherbridge L J, Smith L P, et al. Herpesvirus of turkeyreconstituted from bacterial artificial chromosome clones induces protectionagainst Marek's disease [J]. The Journal of general virology,2006,87(Pt4):769-776.
    [130] Cui H, Wang Y, Shi X, et al. Construction of Marek's disease virus serotype814strain as an infectious bacterial artificial chromosome [J]. Sheng wu gong chengxue bao=Chinese journal of biotechnology,2008,24(4):569-575.
    [131] Petherbridge L, Brown A C, Baigent S J, et al. Oncogenicity of virulent Marek'sdisease virus cloned as bacterial artificial chromosomes [J]. Journal of virology,2004,78(23):13376-13380.
    [132] Sun A, Lawrence P, Zhao Y, et al. A BAC clone of MDV strain GX0101withREV-LTR integration retained its pathogenicity [J]. Chinese Science Bulletin,2009,54(15):2641-2647.
    [133] Niikura M, Dodgson J, Cheng H. Direct evidence of host genome acquisitionby the alphaherpesvirus Marek's disease virus [J]. Archives of virology,2006,151(3):537-549.
    [134] Smith L P, Petherbridge L J, Baigent S J, et al. Pathogenicity of a very virulentstrain of Marek's disease herpesvirus cloned as infectious bacterial artificialchromosomes [J]. Journal of biomedicine&biotechnology,2011,2011:412829.
    [135] Niikura M, Kim T, Silva R F, et al. Virulent Marek's disease virus generatedfrom infectious bacterial artificial chromosome clones with complete DNAsequence and the implication of viral genetic homogeneity in pathogenesis [J].The Journal of general virology,2011,92(Pt3):598-607.
    [136] Reddy S M, Sun A, Khan O A, et al. Cloning of a very virulent plus,686strainof Marek's disease virus as a bacterial artificial chromosome [J]. Avian diseases,2013,57(2Suppl):469-473.
    [137] Petherbridge L, Xu H, Zhao Y, et al. Cloning of Gallid herpesvirus3(Marek'sdisease virus serotype-2) genome as infectious bacterial artificial chromosomesfor analysis of viral gene functions [J]. Journal of virological methods,2009,158(1-2):11-17.
    [138] Schumacher D, Tischer B K, Trapp S, et al. The protein encoded by the US3orthologue of Marek's disease virus is required for efficient de-envelopment ofperinuclear virions and involved in actin stress fiber breakdown [J]. Journal ofvirology,2005,79(7):3987-3997.
    [139] Dorange F, Tischer B K, Vautherot J F, et al. Characterization of Marek'sDisease Virus Serotype1(MDV-1) Deletion Mutants That Lack UL46to UL49Genes: MDV-1UL49, Encoding VP22, Is Indispensable for Virus Growth [J].Journal of virology,2002,76(4):1959-1970.
    [140] Tischer B K, Schumacher D, Messerle M, et al. The products of the UL10(gM)and the UL49.5genes of Marek's disease virus serotype1are essential for virusgrowth in cultured cells [J]. The Journal of general virology,2002,83(Pt5):997-1003.
    [141] Blondeau C, Chbab N, Beaumont C, et al. A full UL13open reading frame inMarek's disease virus (MDV) is dispensable for tumor formation and featherfollicle tropism and cannot restore horizontal virus transmission of rRB-1B invivo [J]. Veterinary research,2007,38(3):419-433.
    [142] Jarosinski K W, Margulis N G, Kamil J P, et al. Horizontal transmission ofMarek's disease virus requires US2, the UL13protein kinase, and gC [J]. Journalof virology,2007,81(19):10575-10587.
    [143] Sun A J, Xu X Y, Petherbridge L, et al. Functional evaluation of the role ofreticuloendotheliosis virus long terminal repeat (LTR) integrated into the genomeof a field strain of Marek's disease virus [J]. Virology,2010,397(2):270-276.
    [144] Kim T, Mays J, Fadly A, et al. Artificially inserting a reticuloendotheliosis viruslong terminal repeat into a bacterial artificial chromosome clone of Marek'sdisease virus (MDV) alters expression of nearby MDV genes [J]. Virus genes,2011,42(3):369-376.
    [145] Mays J K, Silva R F, Kim T, et al. Insertion of reticuloendotheliosis virus longterminal repeat into a bacterial artificial chromosome clone of a very virulentMarek's disease virus alters its pathogenicity [J]. Avian pathology: journal of theWVPA,2012,41(3):259-265.
    [146]苏帅,李延鹏,孙爱军,等.敲除meq的鸡马立克氏病毒强毒株对超强毒的免疫保护作用[J].微生物学报,2010,03):380-386.
    [147] Cui H Y, Wang Y F, Shi X M, et al. Construction of an infectious Marek'sdisease virus bacterial artificial chromosome and characterization of protectioninduced in chickens [J]. Journal of virological methods,2009,156(1-2):66-72.
    [148] Baigent S J, Petherbridge L J, Howes K, et al. Absolute quantitation of Marek'sdisease virus genome copy number in chicken feather and lymphocyte samplesusing real-time PCR [J]. Journal of virological methods,2005,123(1):53-64.
    [149] Baigent S J, Smith L P, Currie R J, et al. Replication kinetics of Marek's diseasevaccine virus in feathers and lymphoid tissues using PCR and virus isolation [J].The Journal of general virology,2005,86(Pt11):2989-2998.
    [150] Islam A, Cheetham B F, Mahony T J, et al. Absolute quantitation of Marek'sdisease virus and Herpesvirus of turkeys in chicken lymphocyte, feather tip anddust samples using real-time PCR [J]. Journal of virological methods,2006,132(1-2):127-134.
    [151] Renz K G, Islam A, Cheetham B F, et al. Absolute quantification using real-timepolymerase chain reaction of Marek's disease virus serotype2in field dustsamples, feather tips and spleens [J]. Journal of virological methods,2006,135(2):186-191.
    [152] Islam A, Walkden-Brown S W. Quantitative profiling of the shedding rate of thethree Marek's disease virus (MDV) serotypes reveals that challenge with virulentMDV markedly increases shedding of vaccinal viruses [J]. The Journal ofgeneral virology,2007,88(Pt8):2121-2128.
    [153]张颖,刘长军,秦运安,等.应用双重实时荧光定量PCR方法检测鸡马立克氏病血清1型病毒[J].中国预防兽医学报,2007,1:46-51.
    [154] Abdul-Careem M F, Hunter B D, Nagy E, et al. Development of a real-timePCR assay using SYBR Green chemistry for monitoring Marek's disease virusgenome load in feather tips [J]. Journal of virological methods,2006,133(1):34-40.
    [155] Coupeau D, Dambrine G, Rasschaert D. The kinetic expression analysis of thecluster mdv1-mir-M9~M4, genes meq and vIL-8differs between the lytic andlatent phases of Marek's disease virus infection [J]. The Journal of generalvirology,2012,93(pt7):1519-1529
    [156] Tili E, Croce C M, Michaille J J. miR-155: on the crosstalk betweeninflammation and cancer [J]. International reviews of immunology,2009,28(5):264-284.
    [157] Linnstaedt S D, Gottwein E, Skalsky R L, et al. Virally induced cellularmicroRNA miR-155plays a key role in B-cell immortalization by Epstein-Barrvirus [J]. Journal of virology,2010,84(22):11670-11678.
    [158] Zhu X, Wang Y, Sun Y, et al. MiR-155up-regulation by LMP1DNA contributesto increased nasopharyngeal carcinoma cell proliferation and migration [J]. EurArch Otorhinolaryngol,2013,11
    [159] Faraoni I, Antonetti F R, Cardone J, et al. miR-155gene: a typicalmultifunctional microRNA [J]. Biochimica et biophysica acta,2009,1792(6):497-505.
    [160] Calnek B W. Pathogenesis of Marek's disease virus infection [J]. Current topicsin microbiology and immunology,2001,255:25-55.
    [161] Cui Z, Zhuang G, Xu X, et al. Molecular and biological characterization of aMarek's disease virus field strain with reticuloendotheliosis virus LTR insert [J].Virus genes,2010,40(2):236-243.
    [162] Jarosinski K W, Tischer B K, Trapp S, et al. Marek's disease virus: lyticreplication, oncogenesis and control [J]. Expert review of vaccines,2006,5(6):761-772.
    [163] Baumjohann D, Ansel K M. MicroRNA-mediated regulation of T helper celldifferentiation and plasticity [J]. Nature reviews Immunology,2013,13(9):666-678.
    [164] Sedger L M. microRNA control of interferons and interferon induced anti-viralactivity [J]. Molecular immunology,2013,56(4):781-793.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700