用户名: 密码: 验证码:
黑土磷素有效性的微生物调控技术及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对我国土壤潜在磷源丰富而有效磷缺乏的现状,以松辽平原玉米带的黑土为供试土壤,通过室内分析与田间试验、功能菌株的筛选与产品研制、生物技术与常规技术相结合的技术路线,进行了黑土土壤微生物区系变化规律;土壤养分与酶活性的时空变化规律及其相关性;高效溶磷微生物菌株的筛选、鉴定及发酵条件;菌株的代谢产物分析及其溶磷机理;溶磷生物肥料的研制及其应用效果等研究。明确了溶磷生物肥料活化土壤难溶性磷、提高化学磷肥利用率的作用,为磷肥的合理施用提供理论依据。研究结果如下:1、黑土土壤微生物区系与酶活性变化规律
     不同处理黑土微生物区系空间变化结果表明:在玉米整个生育期,细菌、真菌和放线菌的活动,主要集中在0-30cm土层内,30cm以下数量很少。不同处理黑土微生物区系时间变化结果表明:玉米播种前、拔节-抽雄期和收获后,宽窄行处理土壤中的细菌数量显著高于常规耕作;真菌变化在拔节-抽雄期常规耕作明显高于宽窄行处理;放线菌数量在苗期-拔节期和收获后宽窄行休闲种植的处理高于常规耕作,而在拔节-抽雄期则是常规耕作高于宽窄行休闲种植的处理。黑土酶活性在玉米生育期的时间变化结果表明:脲酶活性在玉米灌浆期最高;中性磷酸酶灌浆期降至最低;酸性磷酸酶和碱性磷性酶活性,在播种前宽窄行休闲种植高于常规耕作。
     2、黑土土壤养分的时空变化规律
     玉米整个生育期,不同处理黑土各个土层内均有较高的碱解氮含量,并且在播种前常规耕作明显高于宽窄行处理,生育中期则是宽窄行处理高于常规耕作,收获后处理间水平一致;有效磷不同处理均表现出养分表聚现象,且宽窄行休闲种植,在玉米整个生育期的不同土层内均高于常规耕作;速效钾含量随着土层的加深降低不十分明显;全氮、全磷含量随着土层的加深逐渐降低;全钾含量在播种前和收获后常规耕作高于宽窄行休闲种植,随着土层的加深降低不明显;有机质含量在玉米生育期内基本在2%-3%之间;pH值随着土层的加深有逐渐升高的趋势。
     3、黑土土壤养分与酶活性的相关分析
     土壤脲酶与土壤全氮、碱解氮、十壤有机质和pH值都表现了一定的相关性,与土壤磷、钾养分和土壤微生物区系没有表现出相关性。土壤磷酸酶(酸性、碱性和中性)在玉米关键生育期,与土壤全氮、全磷、有机质、pH值均显著或极显著相关,与土壤全钾含量没有表现出明显的相关性;磷酸酶在播种前与土壤微生物数量均达到极显著相关,在玉米生长后期没有表现有规律的相关性。土壤微生物数量与土壤有机质、土壤全氮和全磷呈显著或极显著正相关,与速效养分相关性不明显。
     4、高效溶磷微生物菌株的筛选、鉴定、溶磷能力测定及发酵条件研究
     从松辽平原丘米带的贫磷黑土中分离筛选了高效溶磷菌80余株。对筛选获得的菌株进行溶磷、产生明胶酶、蛋白酶以及纤维素酶的能力进行综合评价,获得了综合能力较强的菌株24株。通过DNA测序和16SrRNA系统发育树构建,将筛选获得的菌株分别鉴定为枯草芽孢杆菌(Bacillus subtilis Q1)、苏云金芽胞杆菌(Bacillus thuringiensis serovar kurstaki AR-10)、荧光假单胞菌(Pseudomonas fluorescens Pf0-1)、蜡状芽孢杆菌(Bacillus cereus生产禁用菌)、伯克金氏菌(Burkholderia sp. CEB01056附DNA序列及16S rRNA系统发育树)、Oxalobacteraceae bacterium NR186、肠杆菌(Enterobacter ludwigii K9)和解磷巨大芽孢杆菌(Bacillus megaterium)。
     对筛选获得解磷巨大芽孢杆菌(Bacillus megaterium),进行了溶磷圈和发酵液有效磷浓度测定,结果该菌株在以磷酸钙为唯一磷源的培养基上,能够形成明显的溶磷圈;发酵培养到第4天,发酵液的有效磷含量达到420mg/kg。溶磷菌发酵反应条件优化试验表明:溶磷菌发酵液的最适培养温度为28℃,培养时间为72h,接种浓度为0.1%,最佳碳源为10g/L的葡萄糖,最佳氮源为0.5g/L的硫酸钱。
     5、高效溶磷微生物菌株的溶磷机理研究
     通过粒子大小分析仪,测定了溶磷菌发酵液中的磷酸钙颗粒大小,对照处理的磷酸钙粒径,主要集中在132.7nm~181.7nm之间,溶磷菌液处理的磷酸钙粒径,主要集中77.5nm~124.2nm之间,磷酸钙颗粒明显变小;通过扫描式电子显微镜观察,溶磷菌发酵液对磷酸钙表面的破坏作用,结果未经发酵液处理的正常磷酸钙表现光滑坚硬,通过菌液处理的表面凸凹不平,表明发酵菌液对磷酸钙有明显的溶蚀作用;通过高效液相色谱分析仪(HPLC)和傅里叶变换红外光谱分析仪(FTIR),对溶磷菌发酵液代谢产物进行分析,确定了溶磷菌最终的发酵产物为葡萄糖酸。
     6、溶磷生物肥料的研制及其对黑土磷有效性的调控效果
     选择适宜的载体和稳效助剂,将筛选获得的高效溶磷株研制成固态、液态两种剂型5种溶磷生物肥料,并进行田间应用效果试验:结果溶磷生物肥的施入,可使玉米的生物产量增加5.67%-10.02%,籽实产量增加521%—13.18%;溶磷生物肥在大豆上施用,生物产量和籽粒产量分别增加5.45%和9.24%。溶磷生物肥的施入,可明显改善黑土有效磷含量。与基质对照相比,在玉米拔节期土壤有效磷含量增加0.89mg/kg-3.53mg/kg,在玉米收获后土壤有效磷含量增加9.03mg/kg~11.91mg/kg;在大豆开花期溶磷生物肥与化肥配施,有效磷含量比单施化肥增加13.48mg/kg。溶磷菌液的施入,可使玉米整个生育期磷肥利用率达到21.75%~37.98%,可使玉米对土壤难溶性磷的吸收效率达到10.94%。
     溶磷生物肥对作物(玉米、大豆)植株吸磷量,表现出了明显的促进作用,与植株的生物产量和土壤有效磷含量变化趋势相同。尤其是5号溶磷生物肥,在玉米整个生育期单株吸磷量比基质对照高241.77mg;大豆整个生育期单株吸磷量比对照高36.37mg。从对土壤磷的活化效果分析,在玉米整个生育期总吸磷量,高出不施溶磷生物肥处理22026mg,大豆整个生育期单株吸磷总量,高出不施溶磷生物肥44.75mg。充分说明了溶磷生物肥对土壤难溶性磷有明显的活化作用。
     在我省不同生态区域示范应用,溶磷生物肥具有明显的增产效果:在吉林省中部(公主岭)的半湿润半丁旱地区,增产幅度在8.2%~11.7%;在西部(乾安县)的干旱地区增产幅度在4.1%~8.3%;在东部(桦甸市)的湿润冷凉区增产幅度在5.6%~13.0%。溶磷生物对不同生态区域的不同土壤类型有一定的生态适应性。
According to the present status that soil potentially phosphorus was rich, whereas available phosphorus was deficiency, black soil from Corn Belt of Songliao Plain was chosen as study object. Some field trials combined with indoor analysis, screening strains and development of the product, biological control and the cultivation technology were carried out to investigate the mechanism of soil microbiota in black soil, the spatial-temporal change law of soil nutrient and enzyme activities and the correlation, screening and identification of the PSB and their mechanisms on phosphorus solubilization, elevate the ability in phosphorus uptake, and development of phosphorus solubilization microbial fertilizer, and the effects of field experiments, etc. This project wishes to find the mechanisms of soil phosphorus bioactivation and provide theory evidence to scientific utilization of soil phosphorus and rational application phosphorus fertilizer. The research results are as follows:
     1. Variation of soil microflora and enzyme activity in black soil
     The activity of bacterium. Fungi, and actinomycete mainly concentrate in the0-30cm scope with different conservation tillage modes, the quantity of soil microorganisms under30cm are very few, During the different growth period of Maize. The bacterium populations in narrow-row and wide spacing practice methods were more than that of cultivation tillage methods at corn pre-planting, jointing and post-harvest stages, the changes of Fungi populations in cultivation tillage methods were more than that of narrow-row and wide spacing practice methods at jointing stage to tasseling stage, however at seedling stage to jointing stage the actinomycete populations in narrow-row and wide spacing practice methods were more than that cultivation tillage methods, At jointing stage to tasseling actinomycete populations in stage cultivation tillage methods were more than that of narrow-row and wide spacing practice methods, soil urease activity was the most highest in Maize at filling stage,and the activity of soil neutral phosphatase were the lowest, the activities of acid phosphatase and alkaline phosphatase at pre-planting stage in narrow-row and wide spacing practice methods were higher than that of cultivation tillage methods.
     2. The spatial-temporal variation of soil nutrients
     The higher NH4+-N was measured at each soil layer at different growth stages of maize, and that of cultivation tillage methods were higher than that of narrow-row and wide spacing practice methods at pre-planting stage.while higher available phosphorus was measured at table of the poly. For potassium content, a minor change was found at each layer. As well as, total nitrogen, phosphorous was decreased with the soil depth and minor changes were investigated in total potassium. During the growth period, organic matter content was maintained at2~3%and the pH value was positively correlated with the soil depth which demonstrates that both applications may contribute to soil acidification.
     3. Correlation Analysis of black soil nutrients and enzyme activity
     The correlations among soil enzyme activities, soil nutrient and variations of microflora was investigated at black soil are of central Jilin during different developmental stages of maize. Soil urease activity was significantly correlated with soil total N and total P contents (p≦0.01) at post-harvest stage and pH (p≦0.01) after filling stage. As well as. soil urease was significantly correlated with alkali-hydrolyzable N (p≦0.05) at pre-planting, jointing and post-harvest stages. However, soil urease showed no significant correlations with available P, K contents and no correlations with the amount of soil microflora, respectively. Soil phosphatase (acid, alkaline and neutral) activities were significantly correlated with soil total N (p≦0.05) and total P (p≦0.01) during the main development stages of maize. As well as, soil phosphatase (acid, alkaline and neutral) activities showed relatively significant correlations with available P, K contents and pH (negative) except filling stage. It means that, activities of soil phosphatase were mostly infected by the distribution of soil nutrient and pH values. Soil phosphatase activities were significantly correlated with soil microflora (p≦0.01) at pre-planting stages and no continuous regularity correlations were investigated at the end of maize growth. Soil enzyme activities showed relative significant correlation with soil organic matters. While no significant correlation was investigated with soil total K content.
     4. Screening and identification of phosphorus solubilizing microorganisms and Determination of phosphorus solubilization capacity and fermentation conditions of phosphorus solubilizing microorganisms
     The80strains of PSB were screened from phosphorus deficiency black soil samples in maize cultivation belt of northeast china.Then.24strains of microbial were isolated by their abilities in phosphorus solubilization, gelatinase, and protease and cellulose production ability. These strains were identified as Bacillus subtilis strain Q1, Bacillus thuringiensis serovar kurstaki strain AR-10. Pseudomonas fluorescens Pf0-1, Bacillus cereus, Burkholderia sp. CEB01056, Oxalobacteraceae bacterium NR186、Enterobacter ludwigii strain K9and Bacillus megateriun.
     In the following study, Bacillus megaterium was selected by their strong ability in phosphorus solubilizing for this work. The soluble-P concentration continuously increased during the incubation periods and the total amount of soluble P released in culture filtrate was detected at420mg.L-1after4days of inoculation. The optimal culture condition for the phosphatase production by Bacillus megaterium was72hours of cultivation at28℃in a medium composed of0.1%inoculation concentration.1%glucose.0.5g.L-ammonium sulfate at initial pH7.0.
     5. Phosphorus solubilization mechanism of phosphorus solubilizing microorganisms
     The particle size of calcium phosphorus surface was found to destroyed and the size were changed to between77fnm~124.2nm. while no changes in the surface and size were found in the control with the size132.7nm~181.7nm. The bacterium was found to release gluconic acid by the HPLC and FT-IR analysis and the solubilization of hydroxyapatite in the liquid medium by a significant drop in pH to4.1from an initial pH
     6. The development of phosphorus solubilizing fertilizer and the effect of phosphorus solubilizing biofertilizer on improving effectivenessof black soil phosphorus and utilization efficiency
     In this study, insoluble phosphorus could be indented and screened and solubilizing bacillus megaterium and burkholderia were functional strains. The4biological fertilities from different dosage forms were experienced in the field. The vegetative growth, photosynthesis, biomass production and grain yield were improved by utility of biological fertilities. The results showed that biomass productions of maize were increased from5.67%to10.02%and grain yield were escalated from5.21%to13.18%. Under different condition of utility of phosphorus fertility, productions of biomass and grain yield increased2.47%and1.79%respectively by using biological fertility. The biomass and grain yield of soybean increased5.45%and9.24%individually by utility of biological fertility.
     The condition of phosphorus in the soil were improved by the utility of dissolving phosphorus obviously at main growth stage of different crops such as maize and soybean. The effective phosphorus in the soil was increased from0.89mg/kg to3.53mg/kg at jointing of maize by utility of biological fertility. However, after harvesting of maize, effective phosphorus was increased from9.03mg/kg to11.91mg/kg to11.91mg/kg. The available phosphorus in the soil was increased13.48mg/kg dissolving phosphorus fertility than single fertility. The results showed that dissolving biological fertility could enhance utility ratio of fertility and improve the condition of phosphorus in soil. In total, the dissolving biological fertility could improve the phosphorus efficiency in field experience. The results showed that utility ratio of phosphorus was increased from21.75%to37.98%.
     Application amount of chemical phosphorus fertilizer was reduced by1/3~1/2by microbial phosphorus fertilizer amendment and activation rate of insoluble phosphorus in different ecological zone of Jilin province and yield of maize were increased obviously. The scope of yield was increased from8.2%to11.7%in semi moist zone in the middle of Jilin province. The scope of yield was increased from4.1%to8.3%in semiarid zone in the west zone of Jilin province. The scope of yield was increased from5.6to13.0%in most and cold zone in the east zone of Jilin province. These results showed that dissolving biological fertility could reduce the utility of phosphorus and have better ecological function to save energy source, protect environment and increase profits.
引文
[1]赵兰坡,王鸿斌,刘会青,等.松辽平原玉米带黑土肥力退化机理研究.土壤学报,2006,43(1):79-84.
    [2]陈恩凤,周礼恺,武冠云.土壤肥力实质的研究Ⅱ.黑土.土壤学报,1984,21(3):229-237.
    [3 ]丁瑞兴,刘树桐.黑土开垦后肥力演变的研究.土壤学报,1980,17(1):20-30.
    [4]孟凯,张兴义.松嫩平原黑土退化的机理及其生态复原.土壤通报,1998.29(3):100-102.
    [5]黑龙江省统计局,黑龙江省年鉴.北京:中国统计出版社,1978-2004.
    [6]吉林省统计局,吉林省年鉴.长春:中国统计出版社,1978-2004.
    [7]辽宁省统计局,辽宁省年鉴.沈阳中国统计出版社,1978-2004.
    [8]王小兵,吴元元,邓玲.东北黑土区黑土退化防治与保护研究.资源与产业,2008,10(3):81-83.
    [9]许宏健,侯淑涛,刘建英.东北黑土区耕地地力评价因素探讨.河北农业科学,2009,13(2):48-49,116.
    [10]魏丹,杨谦,迟凤琴.东北黑土区土壤资源现状与存在问题.黑龙江农业科学2006,(6):69-72.
    [11]任宪平.东北黑十区合理开发利用存在的问题与对策.水土保持科技情报,2004(2):48-49.
    [12]崔海山,张柏,于磊,等.中国黑土资源分布格局与动态分析.资源科学,2003.25(3):64-68.
    [13]赵其国,孙波,张桃林.土壤质量与持续环境Ⅰ.土壤质量的定义及评价方法.土壤,1997,(3):113-120.
    [14]汀景宽,王铁宁,张旭东,等.黑土土壤质量演变初探Ⅰ.不同开垦年限黑土主要质量指标演变规律.沈阳农业大学学报.2002,33(1):43-47.
    [15]汪景宽,张旭东,王铁宁,等.黑土土壤质量演变初探Ⅱ.不同地区黑土中有机质、氮、硫和磷现状及变化规律.沈阳农业大学学报,2002,33(4):270-273.
    [16]沈善敏.中国十壤肥力.北京:中国农业出版社,1998:220-227.
    [17]宋春,韩晓增.不同土地利用下黑土磷素肥力特征的研究.土壤通报,2007,38(5):928-933.
    [18]张宝贵,李贵桐,土壤生物在土壤磷有效化中的作用.土壤学报,1998,36(1):104-111.
    [19]蒋柏藩,鲁如坤,李庆道.《中国土壤磷素养分潜力概图》及其说明.土壤学报,1979,16(1):17-22.
    [20]赵少华,宇万太,张璐,等.东北黑土有机磷的矿化过程研究。应用生态学报2005,16(10):1858-1861.
    [21]Shen S-M.Fertility of China Soils. Beijing:China Agricultural Press.(in Chinese),1998.
    [22]Sun X,Zhang Y-S. Effects of organic phosphorus in organic manures and paddy soils on rice growth. Acta Pedol Sin,1992,29(4):365-369(in Chinese).
    [23]Oberson,A.,Fardeau, J.C. Besson,J.M.,Stieher,H. Soil PhosPhous dynamics in cropping systems managed according to conventional and biological agricultural methods. Biol. Fertil. Soils,1993,16:111-117.
    [24]Lai L,Hao M-D,Peng L-F. Developments of researches on soil phosphorus. Res Soil Water Cons. 2003.10(1):65-67(in Chinese)
    [25]Song Y-C,Li X-L,Fen G. Effect of VA mycorrhiza inoculation on clover in utilizing soil organic phosphorus. Acta Pratacult Sin,2000,9(2):38-44(inChinese).
    [26]Dalal,R.C.Soil organic PhosPhorus.Adv.Agron.1977,29:83-119.
    [27]Fen G,Yang M-Q,Bai D-S,et al..First discussion on effect of VA mycorrhiza in calcareous soi on mineralization of organic phosphorus and its mechanism. Chin J Soil Sci,1993,24(4):184-186(in Chinese)
    [28]Li H-S,Wang L-Q,Zhao C-S. Relationship between phosphatase and organic phosphorus of wheat rhizosphere. Acta Univ Agric Boreali-Occidentalis,1997.,25(2):47-50(in Chinese)
    [29]Chen L-X. Relationship between soil organic phosphorus forms in larch plantations and tree growth. Chin J Appl Ecol,2003.14(12):2157-2161 (in Chinese)
    [30]Thompson LM. Soils and Soil Fertility.2nd ed. New York:McGraw-Hill Book Company.1957.242-264.
    [31]张素君.张抽岚,刘鸿翔,等.东北黑土地区农业中磷肥残效的研究.土壤通报.1994,25(4):178-180.
    [32]周宝库.张喜林.长期施肥对黑土磷素积累、形态转化及其有效性影响的研究.西南农业学报,2004,17(增刊):285-289.
    [33]郭晓冬,杨玲.张雪琴.甘肃省主要耕地土壤磷素形态及其有效性研究.土壤通报,1998,29(3):119-122.
    [34]王兴仁.李沽茹,苏德纯.等.北京石灰性潮土长期轮作的磷肥合理运筹,中国农业大学学报.1999,4(5):43-49.
    [35]顾益初,钦绳武.长期施用磷肥条件下潮十中磷素的积索、形态转化和有效性.土壤,1997(1):13-17.
    [36]李中阳,徐明岗,李菊梅,李林,高静,长期施用化肥有机肥下我国典型土壤无机磷的变化特征。土壤通报,2010,41(6):1434-1439.
    [37]JIANG D S, ZENG X B, GAO J S, et at. Changes of organic matter, N, P and K content of soils in red soil areas under long-term experiment[J]. Agricultural Sciences in China,2008.7(7):853-859.
    [38]GUO S L, DANG T H, HAO M D. Phosphorus changes and sorption characteristics in a calcareous soil under long-term fertilization. Pedosphere,2008,18(2):248-256.
    [39]王艳玲,吉林玉米带黑十磷素形态及吸附—解吸特性研究.长春:吉林农业大学,2004年.
    [40]束良佐.长期定位施肥对棕壤无机磷形态和有效性的影响.辽宁农业科学,2001,(2):5-6.
    [41]韩晓日.长期定位施肥对棕壤无机磷形态及剖面分布的影响.水土保持学报2007,21(4):51-55.
    [42]Chang S C,Jaekson M L.Fraetionation of soil phosphorous, soil Sei.,1957,84:133-144.
    [43]顾益初,蒋柏藩.石灰性土壤无机磷分级的测定方法.土壤,1990,22(2):101-102.
    [44]沈仁芳,蒋柏藩.石灰性土壤无机磷的形态分布及其有效性.土壤学报,1992,29(1):80-85.
    [45]郭智芬,涂书新,李晓华,等.石灰性土壤不同形态无机磷对作物磷营养的贡献汇.中国农业科学,1997,30(1):26-32.
    [46]冯固,杨茂秋,白灯莎,黄全生.用32P示踪研究石灰性土壤中磷素的形态及有效性的变化,土壤学报,1996,33(3):301-307.
    [47]尹金来,沈其荣.周春林,等.猪粪和磷肥对石灰性土壤无机磷组分及有效性的影响.中国农业科学,2001,34(3):296-300.
    [48]蒋柏藩,顾益初.石灰性土壤无机磷分级体系的研究,中国农业科学,1989,22(3):58-66.
    [49]蒋柏藩,沈仁芳.土壤无机磷分级的研究土壤学进展.1990,18(1):1-8.
    [50]王道中,郭熙盛.刘枫.等.长期施肥对砂姜黑土无机磷形态的影响.植物营养与肥料学报2009.15(3):601-606.
    [51]粱国庆,林葆,林继雄.等.长期施肥对石灰性潮土无机磷形态的影响。植物营养与肥料学报,2001,7(3):241-248.
    [52]李中阳.李菊梅,徐明岗.外源磷对土壤无机磷的影响及有效性.中国土壤与肥料,2007,3:32-35.
    [53]邱兰兰.石元亮,任军.温度对黑土磷形态及有效性影响.土壤通报,2007,(06):1114-1117.
    [54]鲁如坤、时正元、顾益初.土壤积累态磷研究Ⅱ.磷肥的表观积累利用率.土壤,1995,27(6):286-289.
    [55]李志洪,陈丹,曹国军.黑土、黑钙土玉米苗期根际无机磷的形态变化.土壤学报,1999,36(1):127-131.
    [56]鲁如坤.时正元,钱承梁.土壤积累态磷研究儿种典型土壤中积累态磷的形态特征及其有效性. 土壤,1997,(2):57-61.
    [57]周宝库,张喜林.李世龙.等.长期施肥对黑土磷素积累及有效性影响的研究.黑龙江农业科学:2004,(4):5-8.
    [58]王伯仁,徐明岗,文石林.等.长期施肥对红壤旱地磷组分及磷有效性的影响.植物营养与肥料学报,2002,8(增刊):47-52.
    [59]黄庆海,李茶苟,赖涛,等.长期施肥对红壤性水稻土磷素积累与形态分异的影响.土壤与环境,2000,9(4):290-293.
    [60]梁国庆,林葆,林继雄,等.长期施肥对石灰性潮土无机磷形态的影响.植物营养与肥料学报,2001,7(3):241-248.[61]顾益初,钦绳武.长期施用磷肥条件下潮土中磷素的积累、形态转化和有效性.土壤,1997,1:13-17.
    [62]徐万里,刘骅,王讲利.长期定位施肥对无机磷形态转化及其有效性的影响.新疆农业大学学报,2001,24(2):40-44.
    [63]吕家珑,刘文革,王旭东,等.长期施肥对土壤无机磷形态组成的影响.西北农业大学学报,1995,23(3):51-54.
    [64]束良佐,邹德乙.长期定位施肥对棕壤无机磷形态及其有效性的影响Ⅰ.对各形态无机磷含量及比例的影响.辽宁农业科学,2001(1):4-7.
    [65]夏立忠,Roy A.长期施用牛粪条件下草原土壤磷的等温吸附与解吸动力学.土壤,2000,32(2):160-164.
    [66]周宝库,张喜林.长期施肥对黑土磷素积累、形态转化及其有效性影响的研究,植物营养与肥料学报,2005,11(2):143-147.
    [67]宋春,韩晓增.不同土地利用方式下黑土磷素肥力特征的研究.土壤通报,2007,38(5):928-933.
    [68]吕海艳.长期定位施肥黑土土壤无机磷形态及吸附与解析特征的研究.长春:吉林农业大学,2006.
    [69]苏冰莹,颜丽,关连珠,等.长期不同施肥对黑土无机磷组分的影响.中国土壤与肥料2010(3):4-7。
    [70]Abbott L K, Murphy D V. Soil Biological Fertility. Netherlands:Kluwer Academic Publisher,2003.
    [71]Uhlen G, Tveitnes S. Effects of long-term crop rotations, fertilizer,farm, manure and straw on crop productivity. Norw.J. Agric.Sci.,1995,9:143-161.
    [72]宋永林,姚造华,袁锋明,等.北京褐潮土长期施肥对夏玉米产量及产量变化趋势影响的定位研究.北京农业科学,2001,(6):14-17.
    [73]Gianquinto G, Borin M. Yield response of crisphead lettuce andkohlrabi to mineral and organic fertilization in different soils.Adv.Hort. Sci.,1995,9:173-179.
    [74]宋永林,袁锋明,姚造华.不同肥料配比对夏玉米生物性状及产量影响的定位研究.土壤肥料,2001(1):31-33,47.
    [75]张翔,朱洪勋,孙春河.等.有机与无机肥料配施对玉米籽粒品质和生产力的影响.中国农学通报,1997,13(5):31-33.
    [76]沈善敏.长期土壤肥料试验的科学价值.植物营养与肥料学报,1995,1(1):1-9.
    [77]杨玉爱.我国有机肥料研究及展望.土壤学报,1996,33(4):414-421.
    [78]刘丽丽编著.微生物肥料的生物学及生产技术.北京:科学出版社,2008.
    [79]王立刚.李维炯.邱建军.等.生物有机肥对作物生长、土壤肥力及产量的效应研究.土壤肥料,2004(5):12-16.
    [80]胡诚.曹志平,罗艳蕊.等.长期施用生物有机肥对土壤肥力及支微生物生物量碳的影响.中国生态农业学报,2007.15(3):48-51.
    [81]于树,汀景宽,土鑫,等.不同施肥处理的土壤肥力指标及微生物碳、氮在玉米生育期内的动态变化.水土保持学报,2007.21(4):137-140.
    [82]张继宏,汪景宽,穆琳,等.不同措施对棕壤土壤肥力的调控.土壤通报,1998,29(6):250-252,199.
    [83]刘杏兰,高宗.等.有机无机肥配施的增产效应及对土壤肥力的影响的定位研究.土壤学报,1996,33(2):138-147.
    [84]崔文华,卢亚东.化肥和有机肥对作物产量和土壤养分影响的研究.土壤通报,1993,24(6):271-272.
    [85]汪景宽,须相成,张旭东,等.长期地膜覆盖对土壤磷素状况的影响.沈阳农业大学学报,1994.25(3):311-315.
    [86]周广业,阎龙翔.长期施用不同肥料对土壤磷素形态转化的影响.土壤学报,1993,30(4):443-446.
    [87]许月蓉.不同施肥条件下潮十中微生物量及其活性.土壤学报,1995,32(3):349-352.
    [88]蔡晓布.不同培肥方式对西藏中部退化土壤的影响.水土保持学报,2002,16(2):12-15.
    [89]王晶,解宏图,张旭东.等.施肥对黑土土壤微生物生物量碳的作用研究.中国生态农业学报,2004,12(2):118-120.
    [90]李阜棣,胡止嘉.微生物学(第五版).北京:中国农业出版社,2000,228.
    [91]Rivas R, Peix A, Mateos P F, et al. Biodiversity of populations of phosphate solubilizing Rhizobia that nodulates chickpea in different Spanish soils [J]. Plant and Soi,2006,287(1-2):23-33.
    [92]Son H J, Park G T, Cha M X, et al. Solubilization of insoluble inorganic phosphate by a novel salt and Ph-tolerant PantoeaagglomeransR-42 isolated from soybean rhizosphere. loresource Techno.1,2006. 97(2):204-210.
    [93]Sperber J I. Solution of minera phosphates by soilbacteria. Nature,1957,180(4593):994-995.
    [94]Rao A V, Venkateswarelu B, Icaul P. Isolation of a phosphate-dissolving soil actinomycete. Curr. Sc.i (Bangalore),1982,51(23):1117-1118.
    [95]王光华.赵英,周德瑞,等.解磷微生物的研究现状与展望.生态环境,2003,12(1):96-101.
    [96]尹瑞龄.我国旱地土壤的溶磷微生物.土壤,1988.20(5):243-246.
    [97]胡蓉蓉,章家恩.冯丽芳,土壤解磷微生物研究进展.第四次全国土壤生物与生物化学学术研讨会.中国广州.2007年.
    [98]赵小蓉,林启美.小支根际与非根际晰磷细胞的分布(N)华北农学报.2001,16(1):111-¨5.
    [99]王庆仁.李继云.李振声.高校利用土壤磷素的植物营养学研究.生态学报,1999,19(3):417-421.
    [100]林启关.赵小落,孙焱鑫等.四种不同生态系统的土壤解磷细菌数量种群分布.土镶与环境,2000,9(1):34-37
    [101]林启美,赵小蓉,孙焱鑫.四种不同生态环境中解磷细菌的数苗及种群分布.土壤与环境.2000.9(1):34-37.
    [102]WVB. Sundara Rao. M K. Sinha. Phosphate-dissolving inicroorganisium in the rhizosphere and soil. India J.Agric.S..1963.33(4):272-278.
    [103]赵小蓉.林启美,孙焱鑫.玉米根际与非根际解磷细菌的分布.生态学杂志.2001,20(6):62-64.
    [104]Kucye P M N. Phosphate-solubihzing bacteria and fungi in various cultivated and vergin Al beria soil. Canadian Journal soil Science,1983,63:672-678.
    [105]赵小蓉,林启美.微生物解磷的研究进展.土壤肥料,2001(3):7-10.
    [106]Ellintt J.ivi.,Mathre D.E., Sands D.C., Identification and characterization of rhizosphere-competent bacteria of wheat. Appl Environ Microbiol,1987,53(2):2793-2799.
    [107]赵小蓉,林启美.微生物解磷的研究进展.土壤肥料,2001,5(3):7-11.
    [108]赵小蓉,林启美,孙焱鑫,等.小麦根际与非根际解磷细菌的分布.华北农学报,2001,16(1):111-115.
    [109]冯瑞章,冯月红,等.春小麦和苜蓿根际溶磷菌筛选及其溶磷能力测定.甘肃农业大学学报,2005,40(5):604-608.
    [110]陈哲,吴敏娜,秦红灵,等.土壤微生物溶磷分子机理研究进展.土壤学报,2009,46(5):925-931.
    [111]姚晓惠,刘秀花,梁峰.土壤中磷细菌的筛选和鉴定.河南农业科学,2002,7:28-31.
    [112]Agnihotri V P. Solubilization of insoluble phosphates by some soil fungi isolated from nursery seedbeds. Can. J. Microbiol.,1970,877-880.
    [113]Cunningham J E and Kuiack C. Production of citric and oxalicacids and solubilization of calcium phosphate by penicillium bilaii. Applied and Environmental Microbiology,1992,58 (5):1451-1458.
    [114]Whitelaw M A, Harden T J and Helyar K R. Phosphate solubilisation in solution culture by the soil fungus Penicillium radicum. Soil Biol. Biochem.,1999,31:655-665.
    [115 Bajpai P D, SundraraRaoW V B. Phosphate solubilizing bacteria, Part2. Extracellular production of organic acids by selected bacteria solubilizing insoluble phosphate. Soil Sci Plant Nutr.,1971,17(2):44-45.
    [1116]Luo A C. SunX. Effect of organic manure on the biological activities associated with insoluble phosphorus release in a bluepurple paddy soil. Commun. SoilSc.i Plant Ana.l,1994,25:13-14.
    [117]陈廷伟.微生物对不溶性无机磷化合物的分解能力及其接种效果.微生物学,1995,2(5):210-205.
    [118]Duff R B, WebleyDM, ScottR O. Solubilization of mineralsand related materials by 2-ketogluconic acid-produced bacteria. SoilScience,1963,95:105-114.
    [119]杨秋忠,张芝贤,陈立夫,等.台湾土生固氮溶铁磷细菌特性之研究.中国农业化学会志,1998.36(2):201-270.
    [120]范丙全,金继运,葛诚.溶磷草酸青霉筛选及其溶磷效果的初步研究.中国农业科学,2002,35(5):525-530.
    [121]Hilda Rodriguez, Reynaldo Fraga. Phosphate solubilizing bacteria and their role in plant growth promotion[J].Biotechnology Advances,1999,17:319-339.
    [122]Louw H A, WebleyDM. A study of soilbacteria dissolving certainmineral phosphate fertilizers and related compounds. J. Appl Bacteriol,1959,22:227-233.
    [123]Picini D, Azcon R. Effect of phosphate solubilzing bacteria and vesicular-arbuscular mycorrhizal fungi on the utilization of Bayovar rock phosphate by alfalfa plants using a sand-vermiculite medium. Plant and Soil 1987,101:45-50.
    [124]lllmer P. BarbatoA, SchinnerF. Solubilization of hardly soluble AlPO4 with P-solubilizing microorganisms. SoilBiol Biochem., 1995. 27(3): 265-270.
    [125]AhujaA. Ghosh S B. D'Souza S F. Isolation of a starch utilizing, phosphate solubilizing fungus on buffered medium and its characterization. Biores. Techno. 1. 2007. 98 (17): 3 408 -3 411.
    [126]Illmer P and Schinner F. Solubilization of inorganic calcium phosphates sokibilization mechanisms. Soil Bioi. Biochem.. 1995, 27(3):257-263.
    [127]Wenzel C L. Ashford A E and Summerell B A. Phosphate-solubilizing bacteria associated with proteoid root of seedlings of waratah [Telopea speciosissima (Sm.)R.Br. New PhytoL 1994, 128: 487-496.
    [128]Haider A K, BanerjeeA, MishraAK, etal.. RoleofNH^or'NO'.ion release of soluble phosphorus from hydroxyapatite by Rhizobia and Bradyrhizobium. J. Basic Microbiology, 1992, 32(5): 325-330.
    [129]Trolldenier W D. Uptake of P from apatite by Pinus sylvestrisseedlings colonized by different ectomycorrhizal fungi . PlantSoL 2000, 218: 249-256.
    [130]Smith S E, Gianinazzi-Pearson V. Physiological interactions between symbionts invesicular- arbusculr mycorrhizal plants . Ann. Rev. Plant Physiol. Mol. Bioi. 1988, (39): 221-224.
    [131]Maria J, Harrison, Gary R. et al. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate releasedby arbuscularmycorrhizal fungi Plant Cell. 2002, 14:2 413-2 429.
    [132]钟传表,黄为—.不同种类解磷微生物的溶磷效果及其磷酸酶活性的变化.土壤学报.2005.142(12):286-290.
    [133]苏友波.林春,王三根.AM菌根磷酸酶对玉米菌根际十壤磷的影响及其细胞化学定位西南农业大学学报,2003,25(3):115-119、130.
    [134]Tarafdar JC, MarschnerH. Phosphatase activity in the rhizosphere and hyphosphere ofVAmycorrhizalwheat suppliedvvithinorganic and organic phosphorus. Soil Bio.l Biochem.,1994, 26: 387-395.
    [135]Thaller M C. Berlutti F. Schippa S, et al. Characterization and sequence of PhoC, the principal phosphate-irrepressible acid phosphatase of M organella morganii Microbiology, 1994, 140:1341-1350.
    [136]Reilly T J. Baron G S. Nano F. et al. Characterization and sequencing of a respiratory burst-inhibiting acid phosphatase from Francisella lularemis. J. Bioi Chem.. 1996. 271:10 973-10 983.
    [137]Rodriguez H, RossoliniG M. Gonzalez T. et al. Isolation of a gene from Burkholderia cepacialS-\6 encoding a protein that facilitates phosphatase activity. Curr. Microbiol. 2000, 40:362-366.
    [138]Deng S. Elkins JG. DaLH, et al. Cloning and characterization of a second acid phosphatase from Sinorhtobiwn meli/oti strainl04A14. Arch. Microbiol. 2001. 176: 255-263.
    [139]Fraga R. RodriguezH. Gonzalez T. Transfer of the gene encoding the Napa acid phosphatase from Morganella morganii to a Burkholderia cepaciu strain. Acta. Biotechnol, 2001. 21:359~369.
    [140]SaitoM. Enzyme activities of the internal hyphae and germ in atedspores of an arbuscular mycorrhizal fungus, Gigaspora margarila becher and hall New Phytol, 1 995. 129: 425-431.
    [141]Tisserant B. Gianinazzi-pearsonV. GianinazziS, et al. In plant a histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuseular mycorrhizal infectioms. Mycol Res.. 1993. 97(2): 245-250
    [142]Allen M F. The ecology of mycorrhizae Cambridge University Press. Cambridge. 1991.
    [143]Jayachandran K. Schwab A P, Hetrick B D. Mineralization of organic phosphorus by vesicular-arbuscular mycorrhizal fungi. Soil Biol Biochem,1992, (24):897-903.
    [144]何振立.土壤微生物量及其在养分循环和环境质量评估中的意义.土壤,1997,29(2):61-69.
    [145]Powlson D S, Brookes P C, Christensen D S. Measurement of soil microbial biomass provides an early indication of changes in total organicmatter due to straw incorporation. SoilBio.l Biochem.,1987,19:159-164,
    [146]葛诚,等.微生物肥料生产应用基础.中国农业科学出版社,2000.
    [147]李俊,等.我国微生物肥料行业的现状与发展对策.农业质量标准,2003,3:27-29.
    [148]王光祖.微生物肥料对土壤肥力的影响.上海农业科技,2005,(1):101-102.
    [149]喻子牛,等.农业微生物研究及产业化进展.中国农业出版社,2004.
    [150]强学彩,袁红莉,高旺盛.秸秆还田量对土壤CO2释放和十壤微生物量的影响.应用生态学报,2004,15(3):469-472.
    [151]李升东,王法宏,司纪升,等.耕作方式对土壤微生物和土壤肥力的影响.生态环境学报2009,18(5):1961-1964.
    [152]章家恩.试论土壤的生态肥力及其培育.广州:华南农业大学热带亚热带生态研究所,,2007.[153]董炜华,梁品文,郑直,浅析十壤的生物肥力.长春师范学院学报(自然科学版),2010,29(2):88-93.[154]杜伟.不同施肥制度十壤生物肥力特征研究[D].北京:中国农业科学学院,2006.
    [155]白震,张明,宋斗妍等.不同施肥对农田黑土微生物群落的影响.生态学报,2008,28(7):3244-3253.
    [156]肖嫩群,陈冬林,谭周进.等.少免耕对晚稻土生物活性影响的研究.中国生态农业学报,2008,16(3):598-601.
    [157]盘莫谊,谭周进,李倩,等.早稻秸秆还田对次年早稻土微生物及酶的影响.中国生态农业学报,2008,16(2):380-386.
    [158]沈宝明,肖嫩群,杨春晓,等.保护性耕作方式对土壤微生物的影响研究进展.湖南农业科学2010,(1):22-25.
    [159]孙海国,Francis J, Larney.保护性耕作和植物残体对土壤养分状况的影响.生态农业研究,1997,5(1):47-51.
    [160]West T O, Post W M. Soil organic carbon sequestration ratesby tillage and crop rotation:a global data analysis[J]. SoilScience Society of America Journal,2002,66(6):1930-1946.
    [161]HOOKER B A, MORRIS T F, PETERS R. et al. Long-term effects oftillage and corn stalk return on soil carbon dynamics. Soil ScienceSociety of America Journal,2005,69(2):188-196.
    [162]王岩,沈其荣,史瑞和,等.土壤微生物量及其生态效应.南京农业大学学报,1996,19(4):45-51
    [163]张电学,韩志卿,李东坡,等.不同促腐条件下秸秆还田对土壤微生物量碳氮磷动态变化的影响应.应用生态学报,2005,16(10):1903-1908.
    [164]高云超,朱文珊,陈文新.秸秆覆盖免耕土壤微生物生物量与养分转化的研究.中国农业科学,1994.27(6):41-49.
    [165]YADVINDER SINGH, BIJAY SINGH, LADHA J K. Effects of residue decomposition on productivity and soil fertility in rice-wheat rotation[J]. Soil Science Society of America Journal,2004,68(6):854-864.
    [166]严洁.邓良基,黄剑.保护性耕作对土壤理化性质和作物产量的影响.中国农机化.2005,(2):31—34.
    [167]杨瑞吉,杨祁峰,牛俊义.表征土壤肥力主要指标的研究进展.甘肃农业大学学报,2004.39
    (1):86-89.
    [168]Tisdale S L, Nelson W L.土壤肥力与肥料.北京:科学出版社,1984.
    [169]黎孟波,张先婉.土壤肥力研究进展.北京:中国科学技术出版社,1991.208-213.
    [170]吕晓男,陆允甫,王人潮.土壤肥力综合评价初步研究.浙江大学学报(农业与生命科
    版),1999,25(4):378-382.
    [171]周礼恺.土壤酶学.北京:科学出版社,1987.
    [172]Doran JW, Parkin T B. Dfening and assessing soil quality[A]. In:Doran JW, Coleman DC, Bezdicek DF eds. Defining soilQuality fora Sustainable Environment. Soil Society of America SpetialPublication (SSSA Spec. Publ).35. SSSA and ASA, Madison. W isconsin.1994,3-21.
    [173]张玉兰,陈利军,张丽莉,土壤质量的酶学指标研究.土壤通报,2005,36(4):598-604.
    [174]王书锦,胡江春,张宪武.新世纪中国土壤微生物学的展望.微生物学杂志,2002,22(1):36-39.
    [175]周礼恺,土壤酶活性的总体现在土壤肥力水平中的作用.土壤学报,1983,20(4):413-417。
    [176]Sakorn P P.Urease activity and fertility status of some lowland rice soils in the central plain.Thai Journal of Agricultural Science, 1987(20):173-186.
    [177]Knowles R.Denitrification.Microbiol Reve,1982 (46):43-70.
    [178]侯颖,李市场,张素娟,等.洛阳市土壤微调丰富生物数量状况初步研究.河南农业科学,2007.(8):64-66。
    [179]梁文举,闻大中.土壤生物及其对十壤生态学发展的影响.应用生态学报,2001,12(1):137-140.
    [180]中国科学院南京土壤研究所微生物室.土壤微生物研法.北京:科学出版社.1985.
    [181]中国科学院南京土壤研究所,土壤理化分析.上海:上海科学技术出版社,1977.
    [182]严昶升主编,土壤肥力研究方法.北京:农业出版社,1988.
    [183]赵兰坡,姜岩,土壤磷酸酶活性测定方法的讨论.土壤通报,1986,17(3):138-141.
    [184]张星杰,刘景辉,李立军,等.保护性耕作对旱作玉米土壤微生物和酶活性的影响.玉米科学2008,16(1):91~95.100。
    [185]王聪翔,闻杰,孙文涛,富亮等,不同保护性耕作方式土壤酶动态变化的研究初报.辽宁农业科学,,2005(6):16-18.
    [186]牟金明.宋日,姜亦梅,等.不同作物根茬还田对土壤酶活性的影响.吉林农业大学学报,1997,19(4):65-69.
    [187]宋日,吴春胜.牟金明.等.玉米生育期内土壤微生物量碳和酶活性动态变化特征.吉林农业大学学报,2001,23(2):13-16.
    [188]ALLISONS D,VITOUSEKPM. Responses of extracellular enzymesto simple and complex nutrient inputs. Soil Biology and Biochemistry.2005,37(5):937-944.
    [189]OLANDER L P,VITOUSEK P M. Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry.2000,49(2):175-191.
    [190]和文徉,朱铭莪,童江云.周玲,有机肥对土壤脲酶活性特征的影响.西北农业学报,1997.6(2):73-75.
    [191]Schaefer R. Dehydrogenase activity as an index for total biological activity in soils. Ann. Inst. Pasteur. Pair.,1963,105:326-331.
    [192]陈恩风,周礼恺,邱风琼等.土壤肥力实质研究Ⅰ.黑土.土壤学报,1984,21:229-237.
    [193]李双霖,应用聚类—主自元分析检验土壤酶活性作为土壤肥力指标的可能性.土壤通报,1990,6:272-274.
    [194]和文祥,刘恩斌,朱铭莪,土壤脲酶活性与底物浓度定量关系研究.西北农业学报,2001,10(1):62-66.
    [195]ALLISON V J,CONDRON L M,PELTZER D A,et al. Changes inenzyme activities and soil microbial community composition alongcarbon and nutrient gradients at the Franz Josef chrono sequence,NewZealand. Soil Biological and Biochemistry,2007,39(7):1770-1781.
    [196]KR MER S,GREENDM. Acid and alkaline phosphatase dynamic sand their relationship to soil microclimate in a semiarid woodland.Soil(J). Biological and Biochemistry,2000,32(2):179-188.
    [197]耿玉清,白翠霞,赵广亮,余新晓,姚永刚等,土壤磷酸酶活性及其与有机磷组分的相关性.北京林业大学学报,2008,30(增刊2):139-143.
    [198]林葆,李家康,黄照愿.中国肥料.上海:上海科学技术出版社,1994:13-32.
    [199]戎可,土壤解磷微生物研究现状与趋势.呼伦贝尔学院学报.2005,13(1):37-39.
    [200]鲁如坤,等.我国典型地区农业生态系统养分循环和平衡研究Ⅲ,农田养分平衡的评价方法.土壤通报,1996,27(5):197-199.
    [201]邵玉芳.樊明寿,鸟恩.等.植物根际解磷细菌与植物生长发育.中国农学通报,2007,23(4):241-244.
    [202]徐俊兵.扬州市土壤有机质和速效磷钾的分布研究.土壤,2004,36(1):99-103.
    [203]李庆逵,蒋柏藩,鲁如坤.中国磷矿的农业利用[M].南京:江苏科学技术出版社,1992.8-10.
    [204]刘晓芳,黄晓东,孔健.不同的碳源、氮源及碳氮比对微生物溶磷的影响.山东大学学报(理学版),2005,40(2):]21-124.
    [205]周克琴,王光华,金剑,等.土壤微生物对提高植物磷素营养的作用.农业系统科学与综合研究,2003,]9(3):232-236.
    [206]吴鹏飞,张冬明,郝丽,等.解磷微生物研究现状及展望.中国农业科技导报,2008,10(3):40-46.
    [207]Narsian V and Patel H H.Aspergillus aculeatusas a rock phosphate solubilizer. Soil Biol. Biochem., 2000,32:559-565.
    [208]Thomas G V. Occurrence and ability of phosphate-solubilizing fungi from coconut plant soil. Plant and Soil,1985,87:357-364.
    [209]Paul N B and Sundara rao W V B. Phosphate-dissolving bacteria in the rhizosphere of some cultivated legumes. Plant and Soil,1971.35:127-132.
    [210]钟传青.解磷微生物溶解磷矿粉和土壤难溶磷的特性及其溶磷方式研究.南京农业大学博士学位论文.江苏.南京.2004年.
    [2]卢金珍,任俊,熊汉国,解磷突变株E652的发酵条件研究.湖北农业科学,2011,50(7):1353-1555.
    [212]伊鋆.高效解磷细菌的筛选及解磷机理的研究.大连理工大学硕士学位论文,辽宁.大连,2011年.
    [213]章四平,刘圣明.王建新.等.枯草芽孢杆菌生防菌株NJ 18的发酵条件优化.南京农业大学学报,2010.33(2):58-62
    [214]周德庆. 微生物学 教程.第二版.北京:高等教育出版社.2002.84.
    [215]周德庆.微生物学教程(第2版).北京:高等教育出版社.2002.
    [216]张爱华,杨启银,陈育如.等.解磷细菌突变株PS—01P菌株的选育及发酵条件的研究.安徽农业大学学报,2004,31(3):309-314.
    [217]NarsianV and H. H. patel, Aspergillus aculeatus as a rock PhosPhate solubilizer.Biol.Fertil.Soils,2000. 32:559-565.
    [218]paul, N.B.andW.V.B.Sundara Rao,1971.phosphate-dissolving baeteria in the rhizospher of some cultivated legumes.Plant and Soil,35(1):127-132.
    [219]REYES I,BERN IER L, SIMARD R R, et al. Effect of nitrogen source on the solubilization of different inorganic PhosPhates by an isolate of Penicillium rugulosum and two UV-induced mutants. FEMS Microbiology Ecology,1999(28):281-290.
    [220]Asea p.E.A,KueeyR.M.,Stewart J.W B.Inorganic phosphate solubilization by two penicillium species in solution culture and soil.Soil.Biol.Biocheln,1988,20:459-464.
    [221]Sperber J I. Solution of apatite by soil microorganisms producing organic acids. Aust. J. Agric. Res., 1958,9:782-787.
    [222]Asea P E A, Kucey R M N and Stewart J W B. Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biol. Biochem.1988,20:459-464.
    [223]Illmer P and Schinner F. Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biol. Biochem.,1992,24(4):389-395.
    [224]宋建利.石伟勇.磷细菌肥料的研究和应用现状概述.化肥工业,2005(4):18-20.
    [225]林启美,王华,赵小蓉,等.一些细菌和真菌的解磷能力及其机理初探.微生物学通报,2001.28(2):26-30.
    [226]边武英,何振立,黄昌勇.高效解磷菌对矿物专性吸附磷的转化及生物有效性的影响.浙江大学学报:农业与生命科学版,2000,26(4):461-464.
    [227]樊磊,叶小梅,何加骏,等.解磷微生物对土壤磷素作用的研究进展.江苏农业科学,2008,(5):261-263.
    [228]Hilda Rodriguez, Tan ia Gonzalez, Isabel Goire, et al-Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp..Naturwissenschaften,2004,91: 552-555.
    [229]Hameeda B. Harish Kumar Reddy Y. Rupela O P, et al. Effect of carbon substrates on rock phosphate solubilization by bacteria from composts and macrofauna. Current Microbiology.2006,53:298-302.
    [230]Golstein AH. Bacterial phosphate solubilization Historical perspective and future prospects. Am. J. Alt. Agric.1986.1:57-65.
    [231]Kim K Y, Jordan D. M c Donald G A.Enterobacter agglomerans phosphate solubilizing bacteria and microbial activity in soil Effect of carbon sources. SoilBiol Biochem.,1998,30:995-1003.
    [232]Kim K Y. Jordan D, M cDonald G A. Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fertil Soils.1998,26:79-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700