用户名: 密码: 验证码:
滨海盐碱地改良及造林技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滨海盐碱地改良及造林是一项极为艰巨的工作。本文以国家“十一五”科技支撑计划重大项目《困难立地造林》子课题《滨海盐碱地造林技术研究》为依托,通过理论与实践相结合的研究方法,借鉴国内外大量研究成果,遵循循环经济和生态效益优先的原则,将减小环境污染、促进资源再生利用与寻求滨海盐碱地改良和造林的有效方法相结合,旨在为滨海盐碱地区的生态环境建设及几种含钙工业废弃物的循环再利用提供物质支持和技术参考。研究区位于河北沧州临港经济技术开发区。本论文主要从以下几个方面进行了研究:
     一、研究不同盐浓度梯度盐胁迫下丛枝菌根菌摩西球囊霉(Glomus mosseae)提高三叶草瑞文德(Trifolium Riverdel)抗盐性效果,比较单接种摩西球囊霉、幼套球囊霉(Glomus etunicatum)及两者的混合菌剂对植物耐盐性影响。结果表明:随盐胁迫程度的逐渐增大,摩西球囊霉对植物根系的侵染率降低,当盐浓度达到9%o时菌根侵染率骤降,该浓度对摩西球囊霉菌根生理机能产生重要影响,12%o可看做丛枝菌根耐盐极限浓度。菌根能增强植物耐盐性,摩西球囊霉菌根能增加三叶草对Na+的吸收量,抑制盐分向上部运输,降低Na+相对含量,改善植株体内的离子平衡。混合菌剂在侵染能力和对生长促进作用方面都比单菌种好,多菌种间存在竞争关系,但在营养充足的情况下可产生互补功能。
     二、对传统石膏改良盐碱土壤的理论及改良深度进行补充。将0-80cm土层分为0-20cm、20-40cm、40-60cm、60-80cm层4个层次,对石膏与盐碱土混合土柱中发生的化学反应和各种离子去向进行具体探讨,并确定最优土壤改良深度。研究3种含钙工业废弃物脱硫石膏、柠檬酸渣和粉煤灰改良盐碱地土壤的效果。结果表明:石膏改良盐碱土主要体现在难溶性盐类的生成和对碱性离子的置换上,结合大面积改良的可操作性及成本等其他因素,最终确定石膏改良层以40cm深度为宜。粉煤灰、柠檬酸渣、脱硫石膏能降低土壤PH和ESP,缓解土壤的碱化情况,同时还要注意与灌溉措施相结合,完善灌排渠道才能发挥改良材料的最大效能。
     三、对野外滨海盐碱造林地中施入脱硫石膏、粉煤灰、柠檬酸渣、磁化肥、生物有机肥和普通化肥改良盐碱地综合效果效果进行对比研究。将改良后的土壤含水量、土壤容重、土壤全盐、有机质及植物光合参数等多个指标进行主成分分析。结果表明:从改良盐碱地和促进绒毛白蜡生长的综合程度看,磁化肥效果>生物肥>粉煤灰>柠檬酸渣>石膏>化肥。化肥不具备改良土壤的作用,盐碱地中大量使用可加重土壤盐害毒害作用。滨海盐碱地施肥中要结合改良材料,变废为宝,多施磁化肥、有机肥和农家肥,尽量少用化肥。
     四、研究铺设隔盐层、构筑集雨工程、设置防侧渗隔板和布置表面覆盖4项滨海盐碱地造林技术及造林效果。结果表明:在滨海盐碱地造林时树穴底部设炉渣隔盐层,可以隔断毛管力,疏导水分,达到降盐、冼盐、隔盐的目的,减轻过量土壤盐分对植物的毒害作用,促进植物的成活和生长。构筑集雨工程可增加单位面积降雨量,对造林树种的成活和生长有显著影响。防侧渗隔板增加隔板内土壤水分入渗量,处理下白蜡具有良好的适应性,生长旺盛。表面覆盖层有良好的保墒作用,调节浅层土壤温度的变化,对土壤全氮、速效磷和速效钾都有一定补偿能力。
     五、依托近4年理论研究成果,结合传统生物有机肥料加工工艺,顺应市场需求,发明新型肥料,实现科技成果转化。参考传统磁化肥生产工艺,合理调整粉煤灰和硫铁矿灰的比例,强化粉煤灰和硫铁矿灰中铁磁物质的磁功能,调整N、P、K肥和微量元素含量,紧紧围绕土壤改良中离子交换、磁性、微生物、有机质和微量元素5大要素,制造出具有改良盐碱土和提供肥效双重功能的盐碱地专用肥料。肥效试验结果表明:该肥料可以改善土壤物理化学性状,增加土壤团粒结构,影响土壤微生物微环境,有效提高植物对营养元素的吸收,提高其他肥料利用率、作物的产量和品质。
It is a very difficult work for the improvement and afforestation in coastal saline-alkali land.This article was combined with reducing environment pollution, Promoting the use of renewable resources, exploring method of the improvement and afforestation in coastal saline-alkali land, by the means of theory and practice and take example by a large amount of research achievements at home and abroad to provide material support and technical reference for construction of ecological environment and the recycling of several calcium containing industrial wastes.The study area locates at the sets the eco and tech development of Cangzhou Herbei. The main research contents are as follows:
     First of all, the effection of Glomus mosseae improves the salt resistance of Trifolium riverdel and the salt tolerance by Glomus mosseae, Glomus etunicatum and the mixed fungi of them were studied. The results showed that:the infection rate of Glomus mosseae had been reduced with the gradually increasing of single salt stress; the Physiology of Glomus mosseae had been influenced seriously by salinity of 9‰; the Na+ absorption of Trifolium riverdel was increased by Glomus mosseae, most of them was gathered at the underground part thus the relative content of Na+was reduced, so the ionic equilibrium of the plant was improved; the effect of infection rate and growing by mixed fungi were better; though there were competitive relationships with different fungi, it would be complementary effect with sufficient nutrient.
     Secondly, the traditional theory and depth of gesso improved the soil were added,0-20 cm, 20-40 cm,40-60 cm,60-80 cm layers of 0-80 cm layers were divided and to be the designed improved layer, chemical reactions and various ions of the mixed soil column with quantitative gypsum were discussed to determined the optimal soil improvement depth. On this basis, the improvement effect of saline-alkali soil with three calcium industrial waste desulfurization gypsum, citric acid slag and fly ash were researched to propose the optimal Scheme. The results indicated that soil amelioration of Gesso to saline-alkali was mainly reflected on the replacement of alkaline ion and the generation of hard dissolved salts; improved result was bad when the improved level was shallow, while the greater number of reacted magnesium would also weaken the improvement effect and when it was deeper, so the advisable depth of gesso modified layer was 30-50 cm, considering other factors; soil PH and ESP could be reduced by fly ash, citric acid slag and desulfurization gypsum, alleviated the alkaline soil meanwhile combine with irrigation measures and must be paid attention to and the most efficiency would be expressed in 40 cm soil column.
     Thirdly, the comprehensive effect of desulfurization gypsum, fly ash, citric acid slag, magnetic fertilizer, biological organic fertilizer and common fertilizer to the improvement of saline-alkali land was studied. Multiple index after improved such as soil moisture content, soil bulk density, soil organic matter, soil salt and plant PHotosynthesis parameters were reduced to a few irrelevant comprehensive factors to be principal component analysis. The result showed that magnetic fertilizer> biological fertilizer>fly ash>citric acid slag>desulfurization gypsum>chemical fertilizer from the aspects of improved effect. All of desulfurization gypsum, fly ash and citric acid slag could improve soil and promote plant growth. The chemical fertilizer does not have the function of soil improvement, and extensive use of it can aggravate some harmful toxic effects of saline-alkali soil. So soil fertilization of coastal saline-alkali should be combined with improved materials, turned the waste into treasure.more magnetic fertilizer, organic fertilizer and manure should be used, while minimized the use of chemical fertilizers.
     Fourth, improvement of coastal saline soil and afforestation effects of 4 key afforestation technology such as rainwater harvesting project, clapboard of preventing side permeability and surface coverage technology were compared. The results indicated that with salt-isolated layer toxic effects of soil salinity on plant could be reduced to promote survival and growth of plant. Per unit area of rainfall was increased by rainwater harvesting project which had a significant impact on survival and growth of plants. The amount of soil water infiltration was increased by clapboard of preventing side permeability which was helpful for salt-leaching, and tamarix grew better.surface coverage technology had better conservation function, meanwhile it had certain compensation ability of soil total nitrogen, PHosPHorus and rapidly-available potassium
     Fifth, Relying on four years research, combined with the traditional fertilizer processing technology and the market demand, a new fertilizers was invented which realize the transformation of scientific and technological achievements.This new type of fertilizer referenced traditional magnetic fertilizer production process which closely around the ion exchange, magnetism, microorganism, organic matter and trace elements, thus it had double action of improving the soil and providing the effectiveness. The results showed that:unreasonable structure, lack of trace element, biological activities and fertility insufficiency were overcome by the new fertilizer on the market at present. So the fertilizer could improve soil PHysical and chemical properties, increase the soil structure group, affect the soil microbial environmental, effectively improve the plant absorption of nutrition, the fertilizer utilization ratio and crop yield which has the better benefits of economic, social and ecological.
引文
[1]王永清.碱化土壤上磷石膏的施用效果[J].土壤通报,1999,30(2):4-5.
    [2]王伦平,陈亚新.内蒙古河套灌溉排水与盐碱化防治[M].北京:科学出版社,1993.25-32.
    [3]王礼先,朱金兆等.水土保持学(第二版)[M].北京:中国林业出版社,2004.
    [4]王遵亲.中国土壤盐渍过程及盐渍分区.国际盐渍土改良学术讨论会论文集,1985,5:18-25.
    [5]王幼珊,张美庆,张弛,等.VA菌根真菌抗盐碱菌株的筛选[J].土壤学报,1994,31(增刊):79-83.
    [6]王金满,杨培岭,石懿,等.脱硫副产物对改良碱化土壤的理化性质与作物生长的影响[J].水土保持学报,2005,19(3):34-37.
    [7]王金满,杨培岭.脱硫石膏改良碱化土壤过程中的向日葵苗期盐响应研究[J].农业工程学报,2005,21(9):33-37.
    [8]王金满,杨培岭,任树梅,等.烟气脱硫副产物改良碱性土壤过程中化学指标变化规律的研究[J].土壤学报,2005,42(1):98-105.
    [9]王风新,康跃虎等.滴灌条件下马铃薯耗水规律及需水量的研究[J].干旱地区农业研究,2005,23(1):9-15.
    [10]王遵亲,中国盐渍土[M],北京:科学版社.1993.
    [11]王伦平,陈亚新.内蒙古河套灌溉排水与盐碱化防治[M].北京:科学出版社,1993.25-32.
    [12]王文焰,张建丰,汪志荣,等.砂层在黄土中的阻水性及减渗性的研究[J].农业工程学报,1995,11(1):104-108.
    [13]王遵亲.中国盐渍土[M].北京:科学出版社,1993.
    [14]王密侠,李新.北方旱区地下水位调控与盐溃化防治[J].地下水,1994,16(4):172-185.
    [15]万书勤,康跃虎,王丹,等.华北半湿润地区微咸水滴灌番茄耗水量和土壤盐分变化[J].农业工程学报,2008,24(10):29-33.
    [16]马东豪,王全九,来剑斌.膜下滴灌条件下灌水水质和流量对上壤盐分分布影响的田问试验研究[J].农业工程学报,2005,21(3):42-46.
    [17]中国科学院土壤研究所编译室.盐渍土问题译文集(C).北京:科学出版社,253-262.
    [18]毛建华.碱性水和咸水灌溉对上壤的影响及其改造与利用研究[J].土壤学报,1984,(1):20-24.
    [19]毛任钊,张妙仙,张玉铭.海河低平原盐渍涝洼区表层上壤积盐影响因素通径分析[J].中国生态农业学报,2004,12(2):50-53.
    [20]牛东玲,王启基.盐碱地治理研究进展[J].土壤通报,2006,33(6):449-455.
    [21]石万普,俞仁培,土永纯,等.不同物料改良碱化土壤作用的比较[J].土壤学报,1997,34(2):221-224.
    [22]石元春,李保国等.区域水盐运动监测预报[M],北京:河北科学技术出版社,1991.
    [23]石元春,辛德惠.黄淮海平原的水盐运动和早涝盐碱综合治理[M].石家庄:河北人民出版社,1983.
    [24]史文娟,沈冰,汪志荣,等.蒸发条件下浅层地下水埋深夹砂层土壤水盐运移特性研究[J]. 农业工程学报,2005,21(9):23-26.
    [25]冯固,杨茂秋,白灯莎.盐胁迫下VA菌根真菌对无芒雀麦体内矿质元素含量及组成的影响[J].草业学报,1998,7(3):21-28.
    [26]冯固,李晓林,张福锁,等.盐胁追下丛枝菌根真菌对玉米水分和养分状况的影响[J].应用生态学报,2000,11(4):595-598.
    [27]冯永军,陈为峰,张蕾娜,等.滨海盐渍土水盐运动室内实验研究及治理对策[J].农业工程学报,2000,16(3):38-42.
    [28]江华.新疆盐渍土成因分析及盐渍土路基病害处理.[J].路基工程,2008,(4):215-216.
    [29]李保国,李韵珠,石元春.水盐运动研究30年(1973-2003)[J].中国农业大学学报,2003,8:5-19.
    [30]李海英,彭红春,牛东玲等.生物措施对柴达木盆地弃耕盐碱地效应分析[J].草地学报,2002,10(1):63-68.
    [3I]李莲芝.生物磁学在农业上的应用现状刍议[J].河南农业大学学报,1991,25(3):325-3315.
    [32]李学敏,翟玉柱,孙文元.碱化土壤代换性钠允许值与磷石膏施用量的确定[J].河北农业科学,1998,2(3):37-39.
    [33]李学敏,翟玉柱,孙文元.碱化土壤代换性钠允许值与磷石膏施用量的确定[J].河北农业科学,1998,2(3):37-39.
    [34]李麒麟,梁明宏,王云斌,等.疏勒河上游地区土壤盐渍化现状与综合治理分析[J].西北地质,2004,37(1):81-85.
    [35]李作云,齐树亭.河北省盐渍土分类问题刍议[J].河北水利专科学校学报,1990,(1):54-58.
    [36]李韵珠,陆景文,黄坚.蒸发条件下粘土层与土壤水盐运移.国际盐渍土改良学术讨论会论文集,1985:176-190.
    [37]李国华,岳增璧,朱金兆等滨海盐碱地基盘法造林试验[J].中国水土保持科学,2008,6(6):8-13.
    [38]李国华,景峰,朱金兆.不同种子基盘配方造林的成活率[J].中国水土保持科学,2009,7(4):72-76.
    [39]李国华.河北滨海盐碱地和北京土石山区基盘法造林技术研究[D].北京林业大学,2009.
    [40]李焕珍.脱硫石膏改良强度苏打盐渍土的研究[J].生态学杂志,1999,18(1):25-29.
    [41]李焕珍,徐玉佩,杨伟奇,等.脱硫石膏改良强度苏打盐渍土效果的研究[J].生态学杂志,1999,18(1):25-29.
    [42]李焕珍,徐玉佩,杨伟奇,等.脱硫石膏改良强度苏打盐渍土效果的研究[J].生态学杂志,1999,18(1):25-29.
    [43]李天来,李淼.短期昼间高温胁迫对番茄光合作用的影响[J].农业工程学报,2009,25(9):220-224.
    [44]何文义,于涛,蔡玉梅.盐碱地的治理与利用[J].辽宁工程技术大学学报.2010,29(增刊):158-160.
    [45]吕二福良,乌力更.石膏不同施用方法改良碱化土壤浅析[J].内蒙古农业大学学报.2003,24(4):130-133.
    [46]孙振元,刘金,赵梁军.盐碱土绿化技术[M].中国林业出版社,2004.
    [47]刘孝义.磁场对土壤物理性质的影响及土壤磁化率与土壤有机质的相关性[J].沈阳农业 大学学报,1985,16(1):33-40.
    [48]刘亚平.稳定蒸发条件下土壤水盐运动的研究.国际盐渍土改良学术讨论会论文集.1985.
    [49]刘金荣,谢晓蓉.重盐碱地的改造及建植草坪的研究[J].水土保持通报,2004,24(1):19-21.
    [50]刘高斯塔耶夫(杨景辉等译).盐渍土改良[M].上海:上海科学技术出版社,1964.25-31.
    [51]杨国亭,宋关玲,高兴喜,外生菌根在森林生态系统中的意义[J].东北林业大学学报,1999,27(6):72-77.
    [52]杨柳青,付明鑫.糠醛渣对苏打盐渍土的改良效果研究.土壤肥料,1992,(1):13-15.
    [53]杨瑞珍,毕于运.我国盐碱化耕地的防治[J].干旱区资源与环境,1996,10(3):23-30.
    [54]陈恩凤.关于盐碱土改良工作中的几个问题.土壤通报,1965,2(6):21-24.
    [55]陈伏生,曾德慧,王桂荣.泥炭和风化煤对盐碱土的改良效应[J].辽宁工程技术大学学报,2004,23(6):861-864.
    [56]张莉.夹层和覆盖对滨海盐碱地土壤水盐运动的影响[D].北京林业大学,2010.
    [57]张展羽,郭相平.微咸水灌溉对苗期玉米生长和生理性状的影响[J].灌溉排水,1999,18(1):18-22.
    [58]张万钧,郭育文,王斗天,等.滨海海涂地区绿化及排盐工程技术探讨与研究[J].中国工程科学,2001,3(5):79-85.
    [59]张建丰,王文焰,汪志荣,等.具有砂质夹层的土壤入渗计算[J].农业工程学报,2004,20(2):27-30.
    [60]张建锋.中国盐碱地造林绿化的理论与实践[M].北京:气象出版社,2002.
    [61]张建锋.盐碱地的生态修复研究[J].水上保持研究,2008,15(4):74-77.
    [62]张建锋.世界盐碱地资源及其改良利用的基本措施[J].水土保持研究,2005,12(6):28-30.
    [63]张忠远.海滨重盐碱地白刺造林技术研究[J].辽宁林业科技,1999,6:13-23.
    [64]张维成.滨海盐碱地造林模式及土壤水盐运动规律研究[J].2008.
    [65]汪贵斌,曹福亮.盐胁迫对落羽杉生理及生长的影响[J].南京林业大学学报,2003,27(3):11-14.
    [66]汪跃华,董华强,陈景勇,等.真菌对桉树植株的生理影响[J].土壤肥料,2002,(2):39-41.
    [67]凯莱(黄震华译).盐碱土[M].北京:科学出版社,1959.2-10.
    [68]依艳丽.磁场对土壤理化性质的影响[J].中国农业科学,1991,24(2):19-26.
    [69]国家统计局,中华人民共和国2006年国民经济和社会发展统计公报[EB/OL].
    [70]林学政,陈靠山,何培青,等.种植盐地碱蓬改良滨海盐渍土对土壤微生物区系的影响[J].生态学报,2006,26(3):802-807.
    [71]罗家雄.新疆垦区盐碱地改良[M].北京:水利电力出版社,1985:80-83.
    [72]周玉芝,韩桂云,齐玉臣,等.中国外生菌根真菌落叶松树木和造林中的应用[J].林业科学研究,1994,7(2):206-209.
    [73]陆金驰,李东斌.煤粉炉渣在蒸压条件下反应活性研究[J].煤炭科学技术,2011,39(6):122-124.
    [74]岳增璧,张学培,朱金兆.滨海盐碱地丛盘法造林试验初报[J].水L保持研究,2009,6(4):234-238.
    [75]岳增璧,张学培,朱金兆.滨海盐碱地种基盘育苗研究[J].陕西农业科学,2009(4):96-98.
    [76]科夫达,1沙波尔斯(吕国科学院土壤研究所盐渍地球化学研究室译).土地盐化和碱化过 程的模拟[M].北京:科学出版社,1996.21-32.
    [77]赵可夫,盐渍土中碱蓬的脱盐作用[J].植物与土壤,1991,135(8):305-305.
    [78]赵可夫,张万钧,范海,等.改良和开发利用盐渍化土壤的生物学措施[J].土壤通报,2001,32:115-119.
    [79]赵可夫,范海,江行玉,等.盐生植物在盐渍土壤改良中的作用[J].应用与环境生物学报,2002,8(1):1-5.
    [80]赵可夫,李法曾.中国盐生植物[M].北京:科学出版社,1999:26-29,156-157.
    [81]赵名彦,丁国栋,郑洪彬,等.集雨措施对滨海盐碱林地水盐运动影响研究[J].水土保持学报,2008,22(6):52-56.
    [82]赵风岩.土层排列组合与作物产量差异[J].土壤通报,1997,28(3):105-106.
    [83]赵晓进,李亚芳,买文选,等.硫磺改良盐渍土效果初探[J].干旱地区农业研究,2008,26(4):74-78.
    [84]赵锦慧.对石膏改良碱化土壤过程中发生的化学过程和物理过程的研究[D].呼和浩特:内蒙古农业大学,2001.
    [85]赵锦慧,李杨,乌力更.石膏改良碱化土壤的效果[J].长江大学学报(自科版),2005,25(4):8-11.
    [86]贺忠群,贺超兴,张志斌,等.不同丛枝菌根真菌对番茄生长及相关生理因素的影响.沈阳农业大学学报,2006,37(3):308-312.
    [87]贺学礼,刘媞,安秀娟,等.水分胁迫下AM真菌对柠条锦鸡儿生长和抗旱性的影响[J].生态学报,2009,29(1):48-51.
    [88]逢春浩,程维新.“强排强灌”改良重盐碱地及其人工生态系统稳定性的维持[J].地理学报,1996,51(1):70-79.
    [89]姚艳玲,冯固,白灯沙·买买提艾力.NaCl胁迫下VA菌根对玉米耐盐能力的影响[J].新疆农业科学,1999,(1):20-22.
    [90]俞仁培,杨道平.土壤碱化及其防治[M].北京:农业出版社,1984,172-173.
    [91]俞仁培,尤文瑞.土壤碱化的监测与防治[M].北京:科学出版社,1993.85-90.
    [92]俞仁培.对盐渍土资源开发利用的思考[J].土壤通报,2011,32:138-140.
    [93]苏友波,林春,张福锁.不同AM菌根菌分泌的磷酸酶对根际土壤有机磷的影响.土壤,2003,35(4);334-338.
    [94]柴寿喜,杨宝珠,王晓燕等.渤海湾西岸滨海盐渍土的盐渍化特征分析[J].岩土力学,2008,29(5):1218-1226.
    [95]徐炳成,山仑,等.黄土丘林区柳枝稷与白羊草光合生理生态特征的比较.中国草地[J],2003,25(1):1-4.
    [96]徐攸在.盐渍土地基[M].北京:中国建筑工业出版社,1993:1-10.
    [97]殷小琳,丁国栋,张维成.降雨及隔盐层对滨海盐碱地水盐运动的影响[J].中国水土保持科学.2011,9(3):40-44.
    [98]殷小琳,王冬梅,丁国栋,等.菌根对植物抗盐碱性的影响机理研究[J].北方园艺,2010(5):229-233.
    [99]唐治学.柠棣酸渣改良碱化土壤的研究[J].河南农业科学,1986,(12):8-9.
    [100]黄领梅,沈冰.水盐运动研究述评[J].西北水资源与水工程,2000,11(1):6-12.
    [101]黄艺,姜学艳,梁振春,等.外生菌根真菌接种和施磷对油松苗抗盐性的影响[J].生态环境,2004,13(4):622-625.
    [102]盛云飞.崇明农业园区滨海盐渍土上园林树木的生长适应性研究[D].南京农业大学,2004.
    [103]龚洪柱.盐碱地造林学[M].北京:中国林业出版社,1986.
    [104]韩淑敏,田魁祥,刘小京,等.点源人渗与蒸发条件下土壤水盐运移试验研究[J]-河北农业大学学报,2002,25(1):24-28.
    [105]鹿金颖,毛永民,申连英,等.菌根真菌对酸枣实生苗抗旱的影响[J].园艺学报,2003,30(1):29-33.
    [106]景峰,朱金兆,张学培等.滨海泥质盐化土台田水盐动态对比研究[J].水土保持研究,2009,16(5):104-109.
    [107]彭成山.黄河三角洲暗管改碱工程技术实验与研究[M].黄河水利出版社,2006.12.
    [108]鲁晓勇,朱小燕.粉煤灰综合利用的现状与前景展望[J].辽宁工程技术大学学报.2005,24(4):295-298.
    [109]詹尼(李孝芳等译).土壤资源起源与性状[M].北京:科学出版社,1988.394-399.
    [110]蔡阿兴.沼气肥改良碱土及其增产效果研究[J].土壤通报,1999,30(1):4-6.
    [111]蔡阿兴,俞仁培.低矿化碱性水灌溉引起土壤次生碱化的防治[J].土壤通报,1993,24(3):149-153.
    [112]熊伟,王彦辉,于澎涛.树木水分利用效率研究综述[J].生态学杂志,2005,24(4):417-421.
    [113]蔺海明.干旱半干旱地区盐渍土的形成与改良[J].世界农业,1994,(12):23-25.
    [114]黎立群.盐渍土基础知识[M].北京:科学出版社,1986.
    [115]冀媛媛.天津滨海新区海岸带盐碱地生态化发展研究[D].天津大学,2009.
    [116]Allen E B, Cunningham G L, Effect of vesicular-arbuscular mycorrhizal on Disfichl spicata under three salinity levels [J]. New PHytologist,1983,93:227-236.
    [117]ABBOTT L K, ROBERSON A D. Effectiveness of vesicular-mycorrhizal fungi in different soil [J]. Environment Ecosystem,1991,3(2):21-25.
    [118]AI-Karaki G N. Growth water use efficiency and mineral acquisition by tomato cuhivars grown under salt stress [J]. Journal of Plant Nutrition,2000,23(1):1-8.
    [119]Aahraf M, Mcneilly t, bradshsw A D. Selection and heriability of tolerance to sodium chloride in foreforage species [J]. Crop Sci,1987,26:232-234.
    [120]Al-Karaki G N, Hammad R. Mycorrhizal influence of fruit yield and mineral content of tomato grown under salt stress. Journal of Plant Nutrition,2001,24(8):1311-1323.
    [121]Brusseau M L, Rao P S. Modeling solute transport in structured soils:a review,46:169-192, 1990.
    [122]Biricoh S, Ferrini F, Rinaldelli E, et al. VAM fungi and soil lime content influence rootstock growth and nutrient content. Am. Vitic.1997,48(1):93-99.
    [123]Colpaert J V, Vanvssehe J A. Heavy metal tolerance in some ectomyeorrhizal fungi [J]. Funct. Ecol,1987,1:415-421.
    [124]COOKE J C, LEFOR M W. Comparison of vesicular-arbuscular mycorrhizae in plants from disturbed and adjacent undisturbed regions of a coastal salt marsh in Clinton, Connecticut, USA[J].Environmental Management,1990,14:131-137.
    [125]Chun S, Nishiyama M. Sodic Soils Reclaimed with Byproduct from Flue Gas Desulfurization:Corn production and soil quality [J]. Environmental Pollution,2001, 114:453-459.
    [126]Chen C, Thoma, Green R E, et al. Two adomain estimation of hydraulic properties in macropore soils, Soil Sci.Soc.Am.J.1993,57:680-686.
    [127]DEWAR R C. A simple model of light and water use evaluated for Pinus radiate [J]. Tree PHysiology,1997,17:259-265.
    [128]Flowers T J, Yeo A R. Breeding for salinity resistance in cropplants:where next Australian Journal of Plant PHysiology,1995,22 (6):875-884.
    [129]Franco D, Mannino I, Zanetto G. The impact of agroforestry networks on scenic beauty estimation [J]. Landscape and Urban Planning,2003,62:119-138.
    [130]Gupta R K. Comparison between the top soils and the inner soils using gypsum and CaCl2 for alkali soils improvemen [J]. Soil Sci,1988,146(4):277-283.
    [131]Gisela Cuenca, Zita De Andrade, Milagros Lovera, Laurie Fajardo. The effect of two arbuscular mycorrhizal inocula of contrasting richness and the same mycorrhizal potential on the growth and survival of wild plant species from La Gran Sabana, Venezuela.Proquest Biology Journals,2004,82(5):582-588.
    [132]Groenevelt P H, Van Straaten P, Rasiah V, et al. Modifications in evaporation parameters by rock mulches [J]. Soil Technology,1989,2(3):279-285.
    [133]Gong Z, Yamazaki M, Sugiyama M, Tanaka Y, Saito K. Cloning and molecular analysis of structural genes involved in anthocyanin biosynthesis and expressed in a form a-specificm anner in Perilla frutescens.Plant Mol Biol,1997,35(4):915-927.
    [134]Garraway M O, Akhtar M. Effect of high temperature stress on peroxidase activity [J]. PHytopathology,2003,9(7):800-805.
    [135]Hartmond U, Schaesberg N V, Graham J H, et al. Salinity and flooding stress effects on mycorrhizal and non-VA mycorrhizal citrus rootstock seedlings. Plant and Soil.1987, 104:37-43.
    [136]H Frenk, et al. Improvement of sodium soils and gypsum dissolution duet interact ion [J]. Journal of soil science,1989,40(3):599-611.
    [137]HIRREL M C, GERDEMANN J W. Improved growth of onion and dell pepper in saline soils by two vesicular-arbuscular mycorrhizal fungi [J]. Soil Sci Soc Amer J,1980,44: 654-657.
    [138]Iyer S, Caplan A. Products of proline catabolism can induce osmotically regulated genes in rice. Plant PHysiolo,1998,116:203-211
    [139]Kasuga M, Liu Q, Miura S, Yam aguchi-Shinozaki K. Improving plant drought,salt and freezing tolerance by gene transfer of a single stress-inducible transcriptional factor.Nature Biotech,1999,17:287-291.
    [140]Lamhamedi M S, Bernier P Y. Growth, nutrition and response to water stress of pinus Pinaster inoeulated with ten dikaryotic strains of Pisolithussp [J]. Tree PHysiol. 1992:10(3):153-167.
    [141]Mohammed S S, Negro M A, Rehan M G. GyPsum amendment against alkalinity in relation to Tomato Plants.Ⅱ. Change in agro-chemical Properties and nutrient availability ofthe soil [J]. Science,1997,37(1):93-11
    [142]Narasimhan. Hydraulic characterization of aquifers, reservoir rocks and soils:A history of ideas, Water Resources Research,1998,34(1):33-46.
    [143]Ojala J C, Jarrell W M, Menge J A, et al. Influence of mycorrhizal Fungi on the mineral nutrition and yield of onion in saline soil. Agcon. J,1983,75:255-259.
    [144]Peck AJ.Development and Reclamation of secondary Salinity [J]. University of Queensland press,1975:301-307.
    [145]R ichards, L.A.Capillary conduct ion of liquids in porous mediums, PHysic,1931:318-333.
    [146]Sakai Y, Matsumotos D, Sadakata M. Alkali soil reclamation with flue gas desulfurizati on gypsum in China and assessment of metal content in corn grains [J]. Soil & Sediment Contamination,2004,13(1):65-80.
    [147]Winicov I. Alfinl transcription factor over espression enhances plant root grow thunder normal and saline conditions and improves salt tolerance in alfalfa [J]. Planta,2000, 210(8):416-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700