用户名: 密码: 验证码:
肉苁蓉、草苁蓉活性成分和指纹图谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肉苁蓉(Cistanche deserticola Ma)和草苁蓉(Boschniakia rossica)均是我国传统著名中药,二者同为列当科药用植物,分属肉苁蓉属和草苁蓉属,均具有补肾壮阳、保护肝脏、润肠通便和滋补强身等功效。但是,大量现代研究表明,肉苁蓉和草苁蓉中化学成分的组成和含量均有较大差别。由于近年来对草苁蓉的开发力度不足、重视不够,使草苁蓉的研究明显滞后于对肉苁蓉的开发。而对肉苁蓉功效的过度宣传,使得国内外市场需求急剧增加,出现极为严重的乱挖滥采现象,导致肉苁蓉野生资源几近丧失殆尽。《中国药典》(2010年版)中收载的肉苁蓉质量标准指标单一且缺乏专属性,不能真正反映其内在质量;而对于草苁蓉并未被收录。五味子是传统的抗肝损伤中药材,药理作用明确,疗效显著,广为熟知。
     本文将以肉苁蓉多糖和草苁蓉多糖为研究对象,对其提取方法进行优化筛选、所得粗多糖进行精制纯化、并测定精制多糖的理化性质以及其在体内外的药理活性;以五味子木脂素成分作为阳性对照药材,以评价肉苁蓉药材和草苁蓉药材的生物学活性。此外,本文将采用光谱手段、色谱手段和DNA分子标记技术对肉苁蓉和草苁蓉建立全面的中药指纹图谱库,为二者的评价和质量控制提供更全面、科学、有效的方法。
     本研究获得国家科技部重大专项课题-重大新药创制“中药药效物质基础及物质资源库研究关键技术”资助,主要研究内容如下:
     1.通过对不同提取方式的比较,最终采用热回流的方式对肉苁蓉和草苁蓉中粗多糖进行提取。在采用回流提取的基础上,使用单因素实验考察和[L9(34)]正交实验设计对回流过程中涉及的影响条件进行优化,通过对结果的分析以及优化结果的验证,最终得到二者多糖组分的最佳提取工艺。肉苁蓉多糖的最佳提取工艺:回流提取,料液比为1:12,石油醚提取2次,每次1小时,80%乙醇溶液回流提取2次,每次1小时;将两次回流所得提取物过滤,所得滤渣使用蒸馏水再次回流提取2次,每次2小时;90%终浓度的乙醇进行沉淀反应。最终肉苁蓉粗多糖得率为12.35%。草苁蓉多糖的最佳提取工艺:回流提取,料液比为1:10;石油醚提取2次,每次1小时;80%乙醇回流提取2次,每次1小时;两次回流所得残渣蒸馏水回流提取3次,每次1.5小时;90%终浓度的乙醇进行沉淀反应。最终草苁蓉粗多糖得率达7.95%。通过对回流法提取肉苁蓉粗多糖和草苁蓉粗多糖的优化,该方法很适合在实验室中操作,并具有设备简单、操作方便、提取率较高的优点。该提取工艺的建立为后续的粗多糖纯化获得精制多糖以及进行肉苁蓉多糖和草苁蓉多糖的药理实验奠定了坚实的物质基础。优化筛选五味子木脂素的最佳提取工艺,同样选定回流的提取方式,对提取条件进行了优选:分别选择提取溶剂浓度、溶媒倍数、提取次数、提取时间四个因素,进行L9[(34)]正交实验设计,通过正交分析和方差分析确定各因素对五味子木脂素提取率的影响。确定了最佳提取条件为:使用12倍的95%的乙醇回流提取3次,每次1.5h,并对优化方案进行了实验验证。
     2.对肉苁蓉多糖、草苁蓉多糖同五味子木脂素成分的抗急性肝损伤活性比较。以CC14所致急性肝损伤小鼠为模型,以上述多糖和木脂素对CCl4致急性肝损伤小鼠进行治疗,观察正常小鼠同肝损伤小鼠的肝脏和血液中生物指标的不同。实验过程中,不同剂量的肉苁蓉多糖、草苁蓉多糖和五味子木脂素对小鼠血液中ALT和AST的含量有不同程度的降低作用,并可不同程度降低肝组织中MDA的含量,降低肝组织中NO的活性,提高肝组织中SOD的活性。通过对小鼠肝组织HE染色切片观察可以发现,多糖可以减轻肝细胞肿胀、炎细胞浸润的程度。综上这些指标数据,与传统的抗肝损伤中药材五味子相比较,均提示肉苁蓉多糖和草苁蓉多糖对CC14致急性肝损伤有一定的抵抗作用。
     3.肉苁蓉粗多糖和草苁蓉粗多糖的纯化。首先,对多糖中的蛋白质成分进行清除,本实验中采用Sevag法脱蛋白,在反复考察萃取次数的基础上,获得去除蛋白质成分的纯化肉苁蓉和草苁蓉粗多糖。其次,通过多种层析色谱柱相结合的方式,对粗多糖逐步纯化。肉苁蓉粗多糖经DEAE-cellulose柱层析和Sepharose CL-6B柱层析,最终获得肉苁蓉多糖CDPS-A1和CDPS-A2,得率分别为1.25%和2.79%。草苁蓉多糖经DEAE-Sepharose和Sepharose CL-6B柱层析,终得草苁蓉多糖BRPS-A1、BRPS-B1和BRPS-B2,得率分别为1.75%,1.97%,0.89%。
     4.精制多糖理化性质的测定。使用高效体积排阻色谱(HPSEC)法测定各精制多糖的纯度和分子量分布,结果显示,肉苁蓉精制多糖CDPS-A1和CDPS-A2,草苁蓉精制多糖BRPS-A1、BRPS-B1和BRPS-B2在HPSEC色谱图中色谱峰呈单一对称色谱峰,这表明所得5份精制多糖纯度较高,且分子量分布均一,其分子量(Mw)分别为:4.52×10~4Da、1.1×10~5Da、1.2×10~4Da、3.0×10~4Da和2.1×10~5Da。对五种分子量均一的精制多糖理化性质进行测定,首先测定多糖中糖醛酸含量,结果为CDPS-A2和BRPS-A1中不含有糖醛酸成分,CDPS-A1、BRPS-B1和BRPS-B2中含有的糖醛酸含量分别为0.82%,23.2%和25.3%。其次,使用气相色谱法测定精制多糖的单糖组成,结果为肉苁蓉多糖CDPS-A1由鼠李糖(Rha)、阿拉伯糖(Ara)、半乳糖(Gal)和葡萄糖(Glu)以12:15:37:26组成;CDPS-A2由阿拉伯糖(Ara)、半乳糖(Gal)和葡萄糖(Glu)以20:38:41的比例组成。草苁蓉多糖BRPS-A1由阿拉伯糖(Ara)、甘露糖(Man)、半乳糖(Gal)、葡萄糖(Glu)和木糖(Xyl)以13:22:26:30:10的比例组成;BRPS-B1由甘露糖(Man)、半乳糖(Gal)、葡萄糖(Glu)和葡萄糖醛酸(Glu acid)以8:20:50:21组成;BRPS-B2由半乳糖(Gal)、葡萄糖(Glu)和葡萄糖醛酸(Gluacid)以23:52:24组成。再次,对五种精制多糖中的蛋白质百分含量进行测定,结果CDPS-A1、CDPS-A2、BRPS-A1、BRPS-B1和BRPS-B2的蛋白含量分别为3.2%、1.8%、6.0%、3.8%和5.5%。经查询相关文献比对,肉苁蓉多糖CDPS-A1、CDPS-A2和草苁蓉多糖BRPS-A1、BRPS-B1、BRPS-B2均为首次从肉苁蓉和草苁蓉中分离纯化得到的产物。
     5.肉苁蓉和草苁蓉多糖的抗氧化活性。将多糖CDPS-A1、CDPS-A2、BRPS-A1、BRPS-B1和BRPS-B2进行体外抗氧化作用测试,测试项目包括:对DPPH、超氧阴离子和氢自由基的清除作用。测定结果显示各种多糖组分均具有一定的抗氧化活性,但抗氧化能力有一定差异。肉苁蓉多糖和草苁蓉多糖明显的清除自由基作用,有可能是其在动物体内保护受损肝脏组织的生物学基础。
     6.建立了肉苁蓉和草苁蓉红外(IR)指纹图谱,并用该方法对共计16批样品(肉苁蓉药材10批,草苁蓉药材6批)进行指纹图谱分析。以各批次药材的平均光谱作为红外参考光谱(R),使用“OPUS”软件进行相似度分析。10批肉苁蓉药材指纹图谱与参考图谱(R)相似度范围为(98.09~99.85%),6批草苁蓉药材指纹图谱与参考图谱(R)相似度为(99.45~99.92%),两种药材的参考图谱进行相似度比较,相似度为89.43%。可见红外指纹图谱可有对肉苁蓉药材和草苁蓉药材进行有效区分。同时,应用聚类分析法对各批次药材进行分析,两种药材被相应分为两大类,这更加说明了红外指纹图谱法可快速、有效对肉苁蓉和草苁蓉药材进行区分鉴别。
     7.建立了肉苁蓉和草苁蓉HPLC指纹图谱。对肉苁蓉的研究,共确定了10个共有峰为特征色谱峰,指认了其中3种成分,用所建立的方法对10批药材进行相似度分析,相似度范围在85.39~98.63%之间。对草苁蓉的研究,共确定了6个共有峰为特征色谱峰,指认了其中2种成分,用所建立的方法对6批药材进行相似度分析,相似度范围在97.64~99.98%之间。
     8.应用随机扩增DNA多态性分析(RAPD)技术对3批肉苁蓉药材和3批草苁蓉药材样品进行DNA指纹分析,从40条引物中筛选出4条重复性好、扩增条带多且清晰的引物。其中引物S19扩增结果多态性丰富、扩增条带特异性强,可区分肉苁蓉和草苁蓉药材。
     综上所述,本课题以肉苁蓉和草苁蓉为主要研究对象,对二者中主要的活性成分,即多糖组分进行研究。利用急性肝损伤动物模型,通过传统经典抗肝损伤中药五味子中木脂素成分作为阳性对照,评价二种多糖组分的预防和治疗急性肝损伤的能力。在确定其中多糖组分的最佳提取分离及纯化工艺的基础上,针对获取的精制多糖组分,研究了它们的理化性质及相关药理活性,证实所得肉苁蓉多糖和草苁蓉多糖均为首次发现,且这些多糖在体内具有保护肝脏的作用,在体外具有抗氧化活性。对肉苁蓉和草苁蓉药材建立相应指纹图谱,将两种易混淆药材进行快速、有效的鉴别,以便获取品质优秀的药材进行成分研究和活性测定。本研究为建立中药药效物质基础及物质资源库提供了肉苁蓉和草苁蓉药材的多糖资料,为深入开发这两种药材多糖组分成为保肝新药物及抗氧剂提供了理论依据;对我国传统中药肉苁蓉、草苁蓉的系统、深入开发研究,提供了一定的理论参考。
Chinese medicine in China, both for the orobanchaceae medicinal plants, belong todesertliving Cistanche genus and Boschniakia, having kidney strong sun, runchangpurge and nourishing strength etc.However, a large number of modern research showsthat c.deserticola and boschniakia have significant difference between thecomposition and content of the chemical composition.Because in recent years toBoschniakia development dynamics is insufficient, and the attention is not enough,make Boschniakia research significantly lags behind the development ofc.deserticola.And efficacy of c.deserticola excessive publicity, make domestic andinternational market demand has increased dramatically, appear very seriousdisorderly dig coyoting phenomenon, lead to wild resources of c.deserticola nearlylost."Chinese pharmacopoeia (2010edition), which contains quality of c.deserticolasingle standard index and lack of specificity, can't really reflect its intrinsic quality.ForBoschniakia not included.This paper will use the spectrum method andchromatographic method and DNA molecular marker techniques of c.deserticola andBoschniakia traditional medicine fingerprint library, establish a comprehensiveevaluation and quality control for both to provide a more comprehensive, scientificand effective method.In addition, this paper will with polysaccharide cistanchedeserticola and Boschniakia polysaccharide as the research object, the extractionmethod was optimized screening, the crude polysaccharides were refined purification,and determination of physical and chemical properties of purified polysaccharide andits pharmacological activities in the body.This research obtains the national ministryof science and technology major special project-significant drug discovery"traditional Chinese medicine medicinal material base and material database keytechnology research", the main research content is as follows:
     1.By comparing different ways of extract, eventually adopt the way of hot refluxof c. deserticola and Boschniakia coarse polysaccharide in the extraction. In by reflux extraction, on the basis of using the single factor experiment investigation and [L9(34)] orthogonal design of experiment involving in the reflow process conditions wereoptimized, the influence of by the results of the analysis and the optimization resultsof validation, finally got the best extraction technology of polysaccharide composition.The best extraction technology of polysaccharide cistanche deserticola: refluxextraction, ratio of feed liquid1:12, petroleum ether extract2times, each time1hour,80%ethanol solvent reflux extraction2times, each time1hour; Will return twice theextract filter, the filter residue with distilled water reflux extraction again2times,each time2hours; Final concentration of90%ethanol precipitation reaction. C.deserticola eventually crude polysaccharide yield of12.35%. Boschniakia: the bestextraction process of polysaccharides extracted, and solid-liquid ratio of1:10;Petroleum ether extract2times, each time1hour;80%ethanol reflux extraction2times, each time1hour; Two return the residual distilled water reflux extracting3times,1.5hours every time; Final concentration of90%ethanol precipitation reaction.Eventually Boschniakia coarse polysaccharide yield of7.95%. By reflux extraction ofcistanche deserticola crude polysaccharide and Boschniakia crude polysaccharidesoptimization, this method is very suitable for operation in the laboratory, and has theadvantages of simple equipment, convenient operation, high extraction yield. Theestablishment of the extraction process for subsequent coarse polysaccharide purifiedto obtain refined sugar and polysaccharide cistanche deserticola and Boschniakiapolysaccharide of pharmacological experiment laid a solid material foundation.Optimum extraction technology of optimization screening wooden fat element alsoselected reflux extraction method, the optimum extraction conditions: concentrationof extraction solvent, selected solvent ratio and extraction times, extracting time, fourfactors, carries on the L9(34) orthogonal experiment design, determined by orthogonalanalysis and variance analysis on various factors mixed ZiMu influence the extractionrate of fat. The best extraction conditions were determined as follows: using12times95%ethanol reflux extraction3times, each time1.5h, and experiments have beencarried out to verify the optimization scheme.
     2. C. deserticola polysaccharide, polysaccharide Boschniakia and mixed graincomposition of ZiMu fat comparing activity against acute liver damage. Is model withacute liver injury in mice caused by CC14, polysaccharide and wooden fat element intreatment of CCl4induced acute liver injury in mice, and observe the normal mice with liver injury in mice liver and blood biological indicators. Experiments, differentdoses of c. deserticola polysaccharide, polysaccharide Boschniakia and tasty ZiMu fatin mice blood ALT and AST levels have different degrees of lower effect, and canreduce MDA content in liver tissue in varying degrees, reducing the activity of livertissues NO, improve the activity of SOD in the liver tissue. Based on mice liver HEstaining observation can be found that the polysaccharide can reduce the degree ofliver cell swelling, inflammatory cells infiltration. All these indicators data, comparedwith the traditional Chinese medicinal materials of anti liver injury fructusschisandrae, suggests that c. deserticola and Boschniakia polysaccharide with CC14toacute liver injury has certain resistance.
     3. C. deserticola coarse polysaccharide and Boschniakia coarse polysaccharidepurified. First of all, to remove the protein in crude polysaccharide composition, thisexperiment adopts the Sevag method protein, in repeatedly inspected extractionnumber of times, on the basis of removing proteins purification of c. deserticola andBoschniakia coarse polysaccharide. Secondly, through a variety of chromatographiccolumn chromatography is a combination of, the coarse polysaccharide purificationstep by step. C. deserticola crude polysaccharides by DEAE cellulose columnchromatography and Sepharose CL-6b column chromatography, and eventually getpolysaccharide cistanche deserticola CDPS-A1and CDPS-A2, yield of1.25%and2.79%respectively. Boschniakia polysaccharide by DEAE Sepharose and Sepharosecolumn chromatography CL-6b, she gains Boschniakia polysaccharide BRPS-A1,BRPS-B1and BRPS-B2, rate were1.75%,1.97%,0.89%.
     4. The refined polysaccharide content determination of physical and chemicalproperties. Using efficient size exclusion chromatography (HPSEC) method fordetermining the purity and molecular weight distribution of the purifiedpolysaccharide, results showed that c. deserticola CDPS refined polysaccharides A1and CDPS-A2, Boschniakia BRPS refined polysaccharides A1, B1and BRPS BRPS-B2in HPSEC chromatographic peak in the chromatogram is single symmetricalchromatographic peak, which suggests that the five refined polysaccharide purity ishigher, and uniform molecular weight distribution, its molecular weight (Mw)respectively as follows:4.52×104Da、1.1×105Da、1.2×104Da、3.0×104Da和2.1×105Da. The physical and chemical properties of five kinds of molecular weight ofuniformly refined polysaccharide were determined, the determination of uronic acid in polysaccharide content in the first, the results of CDPS-BRPS-A1and A2does notcontain uronic acid composition, CDPS-A1, B1and BRPS BRPS--B2containuronic acid content was0.82%,23.2%and25.3%. Secondly, the use of gaschromatography determination of monosaccharide composition of polysaccharidepurified results of polysaccharide cistanche deserticola CDPS-A1composed ofrhamnose (Rha), Arabian sugar (Ara), galactose (Gal) and glucose (Glu) to12:15:37:26; CDPS-A2by Arab (Ara), sugar galactose (Gal) and glucose (Glu) inproportion of20:38:41. BRPS Boschniakia polysaccharides A1by Arab (Ara) sugar,mannose and galactose (Man)(Gal), glucose (Glu) and xylose (Xyl) to13:22:26:"theproportion of composition; BRPS-B1by mannose, galactose (Man)(Gal), glucose(Glu) and glucuronic acid (Glu acid) with8:20:50:21; BRPS-B2by galactose (Gal),glucose (Glu) and glucuronic acid (Glu acid) to23:52:24composition. Again, proteinpercentage of five kinds of refined polysaccharides were determined, the results ofCDPS-A1, the CDPS-A2, BRPS-A1, B1and BRPS BRPS--B2protein were3.2%,1.8%,6.0%,3.8%and5.5%. The query literature, polysaccharide cistanchedeserticola CDPS-A1, the CDPS-BRPS-A1, A2and Boschniakia polysaccharidesBRPS-B1, BRPS-B2were first isolated from c. deserticola and Boschniakiapurified product.
     5. C. deserticola and Boschniakia polysaccharide antioxidant activity.Polysaccharide to CDPS-A1, the CDPS-A2, BRPS-A1, B1and BRPS BRPS--B2in vitro antioxidant effect test, test items include: on DPPH, superoxide anion andhydrogen free radical scavenging effect. Measurement results show that all kinds ofall have certain antioxidant activity of polysaccharide component, but antioxidantcapacity has a certain difference. C. deserticola polysaccharide and Boschniakiaobvious scavenging free radicals, may be in the damaged liver tissue the biologicalbasis of animal protection.
     6. Set up c. deserticola and Boschniakia infrared (IR) fingerprints, using themethod of a total of16samples (c. deserticola10batches of herbs, Boschniakia herbs6batch) fingerprint analysis. With an average spectrum of each batch herbs asinfrared reference spectra (R), use the "OPUS" software for similarity analysis.10batches of c. deserticola herbs fingerprint reference map (R) and similarity range(98.09~99.85%),6batch Boschniakia herbs fingerprint reference map (R) andsimilarity of (99.45~99.92%), two kinds of medicinal materials of reference map compare similarity, similarity of89.43%. Visible infrared fingerprint can have to thedistinction between c. deserticola medicinal materials and Boschniakia medicinalmaterials effectively. At the same time, the application of clustering analysis methodto analyze each batch herbs, corresponding to two kinds of medicinal materials weredivided into two categories, the more shows the infrared fingerprint method canquickly and effectively to distinguish identify c. deserticola and Boschniakiamedicinal materials.
     7. C. deserticola and Boschniakia HPLC fingerprint is established. Studies of c.deserticola, determines the characteristics of10common peak peak, identified threekinds of ingredients, using the method of10batches of herbs for similarity analysis,similarity range between85.39~98.63%. Boschniakia research, has identified sixcommon peak characterized chromatographic peaks, identifying the two kinds ofingredients, using the method of the6batch of similarity analysis, similarity rangebetween97.64~99.98%.
     8. Application of random amplified polymorphic DNA analysis (RAPD)technique on3batches of c. deserticola medicinal materials and2batch Boschniakiamedicinal materials samples for DNA fingerprinting, selected from40primer5repeatability and the clear primer amplification bands. With S28amplification resultsrich, amplification bands polymorphic primers specificity is strong, can distinguishbetween cistanche deserticola and Boschniakia medicinal materials.
     To sum up, this topic in cistanche deserticola and Boschniakia as the mainresearch object, the main active ingredient of the two, namely the polysaccharidecomponents were studied. With acute hepatic injury animal model, through thetraditional classic anti liver damage wooden fat element compositions in Chinesetraditional medicine fructus schisandrae as positive control, evaluation of twopolysaccharide components of the ability of prevention and treatment of acute liverdamage. In determining the optimum extraction and separation and purification ofpolysaccharide composition, on the basis of to obtain refined polysaccharidescomponents, their physical and chemical properties was studied and the relatedpharmacological activity, confirmed that the polysaccharide cistanche deserticola andBoschniakia polysaccharide were found for the first time, and the polysaccharides inthe protective effect of liver in vivo and in vitro antioxidant activity. Of c. deserticolaand Boschniakia medicinal materials to establish fingerprint, corresponding to two kinds of confusing in the identification of medicinal materials for rapid, effective, inorder to obtain good quality of medicinal materials studied the composition andactivity determination. This study in order to establish Chinese medicine medicinalmaterial base and material resource provides the cistanche deserticola andBoschniakia herbs polysaccharides material, for the further development of these twokinds of medicinal herbs polysaccharides components become a new drugs andantioxidants protect liver to provide a theoretical basis; To our country system andindepth development of the traditional Chinese medicine cistanche deserticola,Boschniakia research, provides certain theoretical reference.
引文
[1] Varki A, Cummings R, EskoJ, Freeze H, Stanley P, Bertozzi C, Hart G, Etzler M(2008).
    [2]张树政.糖生物学:生命科学中的新前沿[J].生命的化学,1999,19(3):103-107.
    [3] FRANZ G.Polysaccharides in pharmacology.Current application and futureconcepts[J].Planta Med,1998,55(6):493-497.
    [4] TANG W,HEMM I,BERTRAM B.Recent development of antitumor agentsfrom Chinese herbal medicines,Part II.High molecular compounds[J].PantaMed,2003,69(3):193-201.
    [5]叶涛,叶湘漓,贺建华.植物多糖功能与作用机理的研究进展[J].农产品加工,2012,268:22-39.
    [6]张难,吴远根,莫莉萍,等.多糖的分子修饰研究进展[J].贵州科学,2008,26(3):66-71.
    [7]张彦民,李宝才,朱利平,等.多糖化学及生物活性研究进展[J].昆明理工大学学报(理工版),2003(6):140-149.
    [8]彭宗根,陈鸿珊,郭智敏,等.牛膝多糖硫酸酯体外和体内抗艾滋病病毒作用[J].药学学报,2008,43(7):702-706.
    [9] Han S B,Yoon Y D,Ahn HJ,et al.Toll-like receptor-mediated activation of Bcells and macrophages by polysaccharide isolated from cell culture ofAcanthopanax senticosus[J].Int Lmmunopharmacol,2003,3(3):130-132.
    [10] KimJin-Kyung, Cho Myoung Lae, Karnjanapratum Supatra, et al.In vitro and invivo immunomodulatory activity of sulfated polysaccharides from Enteromorphaprolifera [J].INTERNATIONALJOURNAL OF BIOLOGICAL MACROMO-LECULES,2011,49(5):1051-1058.
    [11]宋超,宋淑亮,刘学红.天然降血糖多糖的研究进展[J].山东医药,2011,51(41):113-114.
    [12] Chen X M,JinJ,TangJ,et al.Extraction,purification,characterization andhypoglycemic activity of a polysaccharide isolated from the root ofOphiopogonJaponicas[J].Carbohydr Polym,2011,83(2):749-754.
    [13] Liu M,Wu K,Mao X Q,et al.Astragalus polysaccharide improves insulinsensitivity in KKAy mice:Regulation of PKB/GLUT4signaling in skeletalmuscle[J].J Ethnopharmacol,2010,127(1):32-37.
    [14] Xue S X,Chen X M,LuJ X,et al.Protective effect of sulfated Achyranthesbidentata polysaccharides on streptozotocin-induced oxidative stress inrats[J].Carbohydr Polym,2009,75(3):415-419.
    [15]孔庆胜,王彦英,蒋滢.南瓜多糖的分离、纯化及其降血脂作用[J].中国生化药物杂志,2000,21(3):130-132.
    [16]王稳航,李玉,刘安军.松木层孔菌多糖的提取及抗氧化研究[J].食品研究与开发,2006,27(11):53-56.
    [17]赵琳静,宋小平,黎方雅.多糖及其衍生物抗氧化性质的研究进展[J].上海工程科技大学学报,2008,22(1):44-47.
    [18] KARDOSOVA A,MACHOVA E.Antioxidant activity of medicinal plantpolysaccharide[J].Fitoterapia,2006,77(5):367-373.
    [19] WangJing, Zhang Quanbin, Zhang Zhongshan, et al.Antioxidant activity ofsulfated polysaccharide fractions extracted from LaminariaJaponica [J].InternationalJournal of Biological Macromolecules,2008,42(2):127-132.
    [20]王发选,宋琦如,杨正贵,等.枸杞多糖对中波紫外线致人皮肤成纤维细胞损伤的保护作用[J].宁夏医学报,2006,28(6):501-503.
    [21]宋智君,乐学义.多吡啶氨基酸铜配合物研究进展[J].广东化工,2004,31(6):22-24.
    [22]庞春红.多糖药理作用研究进展[J].浙江中医药大学学报,2011,35(4):639-640.
    [23]王专,张兰威,易华西,等.几种真菌多糖的提取及生物活性[J].中国甜菜糖业,2006,16(2):102-104.
    [24]张婷婷,尹鸿萍,盛玉清,等.杜氏藻多糖抗病毒及免疫活性研究[J].药物生物技术,2009,16(4):330-333.
    [25]邓雪玉.中药多糖抗肿瘤作用研究进展[J].中国现代药物应用,2011,5(20):119-121.
    [26]张海英,何旭,杨旭芳,等.桑黄灵芝UE-1对肿瘤生长及血管新生的抑制作用,肿瘤防治研究,2010,37(4):369-372.
    [27] Schepetkin IA,Xie G,Kirpotina LN,et al.Macrophage immunomodulatoryactivety of polysaccharides isolated from opuntia polyacantha[J].Int Immunopharmacol,2008,8(10):1455-1466.
    [28]赵先英,刘毅敏,赵华文.多糖抗辐射作用研究进展[J].西南国防医药2007,17(2):253-254.
    [29]陈立,董俊兴.多糖抗辐射作用研究进展[J].癌变畸变突变,2004,16(6):380-382.
    [30]姜世权,叶飞,苏士杰,等.黄蘑多糖的辐射防护作用及其机理的初步探讨[J].中国辐射卫生,2001,10(2):67-68.
    [31]梁英,何雯娟,韩鲁佳.二次回归正交旋转组合设计对黄芩多糖提取工艺的优化[J].食品科学,2009,30(24):104-107.
    [32]向东,赖凤英,梁平.碱法提取南瓜多糖的人研究[J].食品工业科技,2004,25(11):120-121.
    [33]韦朝阳,徐财泉,茆广华,等.灰树花多糖的分步酶解法提取工艺研究[J].中国林福特产,2011,6(115):1-4.
    [34] Xu Bin, Chen Ping, Chen Xin.Study on extraction process of polysaccharideconstituents from PanaxJaponicus by enzyme method[J].ChinaJournal ofChinese materia medica,2008,33(13):1549-1551.
    [35]韩伟,黄兮,张玲玲,等.中药多糖的提取、分离纯化及分析方法的研究进展[J].工程工艺与设备,2012,14(332):19-25.
    [36]杨小舟,张继,杨晓龙,等.微波辅助提取黄参多糖的工艺研究[J].食品工业科技,2012,9(33):319-323.
    [37] Chen, Ruizhan; Li, Yuan; Dong, Hang,et al.Optimization of ultrasonicextraction process of polysaccharides from Ornithogalum Caudatum Ait andevaluation of its biological activities[J].Ultrasonics sonochemistry,2012,19(6):1160-8.
    [38]孙婕,吕灵娟,尹国友,等.植物多糖的提取技术与功能研究进展[J].农产品加工,2011,7:63-64.
    [39]朱俊玲.超临界流体萃取芦荟多糖的研究[J].农产品加工,2011,7:67-68.
    [40] Marston A, Slacanin I, Hosttmann K.Centrifugal partition chromatography inthe separation of natural products[J].Phytochemical Anal,1990,1(1):3-5.
    [41] Song Guanglei, Du Qizhen.Isolation of a polysaccharide with anticancer activityfrom Auricularia polytricha using high-speed countercurrent chromatographywith an aqueous two-phase system[J].Journal of Chromatography A,2010,1217(38):5930-5934.
    [42] Huang Gang L, Yang Qin, Wang Zhong B.Extraction and Deproteinization ofMannan Oligosaccharides[J].ZEITSCHRIFT FUR NATURFORSCHUNGSECTION CAJOURNAL OF BIOSCIENCES,2010,65(5):387-390.
    [43]贾琳璐,王岸娜,吴里根.植物多糖的提取及分离的研究进展[J].ResearchProgress on Plant Polysaccharide extraction and Isolation,2010:432-435.
    [44] Mu Lu-xia, Zhu Lu, Zhao Ai-hua, et al.Study on extraction and purification ofpolysaccharides from Astragalus membranaceus[J].Journal of Chinesemedicinal materials,2009,32(11):1741-1745.
    [45] Song Xian Hong.Microporous Filtration Of Powder Acive carbon[J].ChineseJournal Of Pharmaceuticals,1999,30(6):276-278.
    [46] Zhang Nu.The Study of chemical separation and the immunoenhancementactivity on Isatis Root polysaccharide.Huazhong University of Science andTechnology,2008.
    [47] Nie linghong.Study on Isolation,Purification,Structure and Biological Activityof Active Polysaccharides from Dioscorea.[D].Journal of South ChinaUniversity of Technology,2004
    [48]贾亮亮,袁丁,何毓敏,等.多糖提取分离及含量测定的研究进展[J].食品研究与开发,2011,32(3):189-192.
    [49]廖铭能,苏伟明,于立坚.SephadexG-25用于YML-1脱盐条件优化[J].湛江海洋大学学报,2006,26(01):94-95
    [50]杨跃辉,姜清华,丁平田.植物中多糖分析方法的研究进展[J].中草药,2011,42(6):1239-1242.
    [51] Yamashita K,Ohkura T,Okada S,et al.Urinary oligosaccharides of gm-gangliosidosis different excretion paterm of oligosaccharides in the urine oftypel and type2subgroups[J].Journal of Biological Chemistry,1981,256(10):4789-4798.
    [52] LI Juanmei, NIE Shaoping, LI Jingen, et al.Ethanol Fractional Precipitation andCharacterization of Polysaccharides from Herba Moslae[J].Food Science,2010,31,(19):182-185.
    [53]刘芳,刘桂友,周晶,等.冬凌草多糖RPPSIIa的分离纯化及其性质研究[J].中草药,2011,42(2):241-243.
    [54]杨立明,王永中.柴胡多糖的制备及部分理化性质测定[J].安徽农业技术师范学院学报,2000,14(3):27-29.
    [55]马秀俐,赵德超,孙允秀,等.西洋参多糖PPQI-1~4的分离和表征[J].中草药,2000,31(3):165-167.
    [56]韩美艳.桔梗多糖的提取、分离纯化和结构研究[D].郑州市:郑州大学药学院,2010.
    [57]于广利,嵇国利,冯以明,等.刺松藻水溶性多糖的提取分离及理化性质研究[J].中国海洋大学学报,2011,40(11):90-94.
    [58]杨云,刘翠平,王浴铭,等.山茱萸多糖的化学研究[J].中国中药杂志,1999,24(10):614-617.
    [59]李妍,魏建和,许旭东,等.苯酚-硫酸法定量测定桔梗多糖的研究[J].时珍国医国药,2009,20(1):5-7
    [60]陈平,陈新,王珲,等.硫酸-蒽酮法测定鄂产竹节参多糖含量[J].中国医院药学杂志,2007,27(12):1654-1656
    [61]方积年.多糖的分离纯化及其纯度鉴别与分子质量测定[J].药学通报,1984,19:46.
    [62]陈轶兰,王友茹,马立人.用高效凝胶渗透色谱法测定多糖的分子量[J].军事医学科学院刊,1988,45(1):70-73.
    [63]魏远安,方积年.高效凝胶渗透色谱法测定多糖纯度及分子量[J].药学学报,1989,24(7):532-536.
    [64] Pelkonen S., FinneJ.Polyacrylamide gel electrophoresis of capsularpolysaccharides of bacteria[J].Methods in Enzymology,1989,179:104-110.
    [65]盛瑜.桔梗、五味子多糖的分离纯化及活性研究[D].吉林大学,2012.
    [66]宋萍,于军.中药指纹图谱技术的研究与应用[J].中国医学杂志,2006,4(3):71-74.
    [67]柴逸峰,朱臻宇.中药指纹图谱的研究进展[J].药学服务与研究,2006,6(4):241-245.
    [68]单义曼,辛宁.中药指纹图谱的研究进展[J].中国中医信息杂志,2006,13(8):85-87.
    [69]吴燕,杨海勇,陈丕英,等.中药指纹图谱研究进展[J].中国动物保健,2006,4:35-37.
    [70]王丽.虎杖指纹图谱和多糖的初步研究[M].福建农林大学,2009.
    [71]张倩茹,娄方明,王强.红外指纹光谱法鉴定黔产苦丁茶的植物来源[J].中国野生植物资源,2012,
    [72]张瑜,袁永志.关黄柏的1H-NMR指纹图谱研究[J].中南药学,2012,
    [73]徐海星,许沛虎,林世和,等.中药材白英XRD指纹图谱及相似度分析[J].中药材,2012,
    [74] Tan XF,Li XJ,Wang Q,et al.HPLC fingerprint spectrum of xinjiang uyghurmedicine Nigella glandulifera seed[J].Zhong Yao Cai,2011,34(12):1857-60.
    [75] Lucio-GutiérrezJR, Garza-Juárez A, CoelloJ,et al.Multi-wavelengthhigh-performance liquid chromatographic fingerprints and chemometrics topredict the antioxidant activity of Turnera diffusa as part of its qualitycontrol[J].J Chromatogr A.2012,1235:68-76.
    [76]周逸芝,韩乐,刘训红,等.甘草饮片HPCE指纹图谱研究[J].中国现代应用药学,2012,
    [77]杨俊宝,彭正松.半夏与其伪品掌叶半夏的RAPD鉴别[J].现代中药研究与实践,2012.
    [78]李贺敏,夏至,李潮海.白花蛇舌草群居AFLP分析[J].河南农业大学学报,2010,
    [79] Sharma SN, Jha Z, Sharma DK.Chemometrics evaluation of the herbal drugAndrographis paniculata[J].Nat Prod Commun,2011,6(12):1929-32.
    [80] Simirgiotis MJ, Schmeda-Hirschmann G..Direct identification of phenolicconstituents in Boldo Folium(Peumus boldus Mol.)infusions byhigh-performance liquid chromatography with diode array detection andelectrospray ionization tandem mass spectrometry[J].J Chromatogr A,2010,1217(4),443-9.
    [81]苑广信.五味子质量控制方法及其提取物体外抗氧化活性研究[D].长春:吉林大学药学院,2012.
    [82]王嗣雷,朱青芝.中药指纹图谱研究现状及应用进展[J].卫生职业教育,2006,15:153-155.
    [83]中国科学院中国植物志编辑委员会.中国植物志(第六十九卷)[M].北京:科学出版社,1990:86-87.
    [84]许小英,裴丽霞,李冬梅,等.荒漠肉苁蓉的人工栽培技术[J].内蒙古林业,2008,(10):30.
    [85]李媛,宋媛媛,张洪泉.肉苁蓉的化学成分及药理作用研究进展[J].中国野生植物资源,2010,1(29):7-11.
    [86]郝媛媛,岳利君,康建军,等.“沙漠人参”肉苁蓉和锁阳研究进展[J].草业学报,2012,21(2):286-293.
    [87]吴晓春,史颖.肉苁蓉的研究与临床应用[J].甘肃中医,2007,20(12):49-51.
    [88]成喜雨,郭斌,倪文,等.肉苁蓉研究进展[J].天然产物研究与开发,2005,17(2):235-241.
    [89] Xu WH, Qiu SX, ZhaoJH, et al.Study of chemical components of Cistachtedeserticola.Chin Tradit H erbal Drugs,1994,25(10):509-513.
    [90] Tu PF,He YP, Lou ZQ, et al.Chemical components study of Cistanchedeserticola.Chin Tradit Her bal Drugs,1994,25(9):451-452
    [91] Song ZH, Mo SH, Chen Y, et al.Studies on chemical constituents ofCistanche tubulosa(schenk) R.wight.ChinaJ Chin Materia Med,2000,25(12):728-730.
    [92]雷丽,宋志宏,屠鹏飞.肉苁蓉属植物的化学成分研究进展[J].中草药,2003,34(5):473-476.
    [93]王志强,尹刚.肉苁蓉对败血症大鼠肝线粒体ATP酶变化的影响[J].四川中医,2003,21(10):15.
    [94]张涛,柳朝阳,王建杰,等.肉苁蓉总苷对D-半乳糖所致衰老模型小鼠免疫功能的影响[J].中国老年学杂志.2004,24(5):441.
    [95]商小英,王晓雯,王雪飞,等.肉苁蓉总苷对60Co损伤小鼠免疫功能的防护作用[J].中草药,2001,32(2):139.
    [96]陈华,董利森.肉苁蓉多糖抗衰老作用的研究进展[J].中国煤炭工业医学杂志,2012,15(2):310-311.
    [97]王新源,王晓雯,王雪飞,等.肉苁蓉总苷对D-半乳糖脑老化模型小鼠的保护作用[J].中国行为医学科学,2004,13(6):613.
    [98]潘玉荣,闵凡印.肉苁蓉醇提物对阳虚动物模型肾脏、肾上腺的影响[J].实用中医药杂志,2004,20(7):356-357.
    [99]张百舜,赵学文,陈双厚,等.肉苁蓉分离部位通便作用的实验研究[J].中国中医药信息杂志,2003,10(11):31.
    [100]陈绍淑,和圣湖,曹晓真,等.肉苁蓉药理及化学成分的研究进展[J].综述与专论,35(8):41-43.
    [101]刘景河,梁忠岩.草苁蓉化学成分与药理研究进展[J].特产研究,2001,4:55-58.
    [102]孙仓,常桂英,张桂荣.草苁蓉现代研究进展[J].特产研究,1997,2:37-39.
    [103] Konishi T, Shoji T.Studies on the constituents of Boschniakia rossicaFedtsch.Et Flerov I.Isolation and structures of new phenylpropanoid g lycosides,rossicaside B,C, D.Chem Phar m Bull,1981,29,2807.
    [104] Konishi T, Narumi, Watanabe K, et al.Comparative studies on the constituentsof a parasitic plant and its host.III.On the constituents of Boschniakia rossicaFedtsch.et Flerov.Chem Phar m Bull,1987,35,4155
    [105] Gui MY, Zhang HG,Jin YR, et al.Studies on the chemical constituents ofBoschniakia rossica[J].Chin PharmJ,1997,32:204.
    [106] Gui MY, Zhang HG, Wu GX, et al.Analysis of fattic acid of Boschniakiarossica[J].JN orman Bethune Univ M ed Sci,1995,21:149.
    [107] Li SD, Qiu C.Studies on the chemical constituents of Boschniakia rossica.I IIAnalysis of inorganic compounds.J Chin Med Mater,1988,11:40.
    [108] Li SD, Wu K, ZhangJW.Studies on the chemical constituents of Boschniakiarossica.II Sugars from B.Rossica.J Chin Med Mater,1987,10:42.
    [109]杨秀伟,楼之岑,严仲铠.草苁蓉乙醇提取物对四氯化碳中毒小鼠肝组织的抗脂质过氧化作用[J].中国药学杂志,1995,30(2):84-86.
    [110]姜勇男,郑承勋,李红花等.草苁蓉对小鼠抗体分泌细胞的影响[J].延边医学院学报,1992,15(3):170-172.
    [111]李向高,郑友兰.草苁蓉生药学及其化学成分的研究[J].吉林农业大学学报,1985,(7):92-95.
    [112]金美善,李莲花,姜逢春等.草苁蓉对体外培养乳鼠肝抗衰老作用的研究[J].延边大学医学院学报.1997,20(4):223-226.
    [113]沈明花,尹宗柱,金明等.草苁蓉提取物对二乙基亚硝胺诱发的肝癌前病变大鼠血清超氧化物歧化酶及丙二醛含量的影响[J].延边大学医学院学报,1998,21(12):206-208.
    [114]郑汉臣,蔡少青.药用植物学与生药学[M].北京:人民卫生出版社,2005:244.
    [115]刘继永,王英平,刘洪章.五味子化学成分及药理研究进展[J].中国科技核心期刊,2005,(3):49-50.
    [116]李海涛,胡刚.五味子醇甲抑制6-羟基多巴胺诱导PC12凋亡的研究[J].南京中医药大学学报,2004,20(2):96.
    [117]张明华,陈虹,李灵芝.五味子甲素和五味子醇甲对四氯化碳所致肝脏损伤的保护作用[J].武警医学,2002,13(7):395-396.
    [118]肖飞,罗焕敏,李晓光,等.五味子乙素对M146L细胞分泌β淀粉样蛋白的影[J]中国新药杂志,2005,14(3):290.
    [119]李凌,王韬,许志良,等.五味子乙素对转染多药耐药基因的MCF-7细胞的多药耐药逆转作用[J].中华医学志,2005,85(23):1633.
    [120]王建华,李力更,李恩.五味子乙素对大鼠成骨细胞增殖分化的影响[J].天然产物研究与开发,2003,15(5):446.
    [121]刘超,朱宏吉.五味子研究现状[J].研究进展,2007,4(32):15
    [122]王云晶.黄连素对CCl4诱导的小鼠慢性肝损伤保护作用研究[M].吉林大学,2012.
    [123] OzerJ,Ratner M,Shaw M,et al.The current state serum biomarkers ofhepatotoxieit[J].Toxicology,2008,245(3):194-205.
    [124]吴希美,周汉良,卞如濂.一氧化氮与肝细胞氧化应激.国外医学(生理、病理科学与临床分册),1997,17(3):279.
    [125] Wu J, Norton PA.Animal models of liver fibrosis[J].Scand J Gastroenterol,1996,31(12):1137-1143.
    [126] PLAA G L.Chorinated methanol and liver injury:highlights of the past50years[J].Annu Rev Pharmacol Toxicol,2000,4042-4065.
    [127] Brent JA, Rumaek BH.Role of free radiea1s in toxic hepatic injury[J].ClinicalToxicology,1993,31:173-196.
    [128] Rocke DC, Chung JJ.Regulation of inducible nitric oxide synthase and nitricoxide hepatic injury and fibrogenesis[J].Am J Physiol,1997;273(1Pt1):124-30.
    [129]孙设宗,唐微,张红梅,等.山药多糖对小鼠CCl4肝损伤的保护作用[J].郧阳医学院学报.2008,27(6):502-504.
    [130] FukudaK,UematsuT,HamadaA,et.al.ThePolysaecharidefromUmPteromycesJaPonicus [J].Chem Phann.Bull(TOkyo),1975,23(9):1955-1959.
    [131]徐大伦,欧昌荣,黄晓春,等.浒苔多糖脱蛋白方法的研究[J].水产科学,2005,24(5):26-27.
    [132] N.Blumenkrantz, G.Asboe-Hansen, Anal.Biochem.54(1973)484–489.
    [133] J.J.Sedmark, S.E.Grossberg, Anal.Biochem.79(1979):544–552.
    [134] Y.X.Sun,J.C.Liu, X.D.Yang,J.F.Kennedy, Process Biochem.45(2010):874–879.
    [135] J.Lehrfeld, Anal.Chem.57(1985)346–348.
    [136] Mavundza EJ, Tshikalange TE, Lall N, et al.Antioxidant activity andcytotoxicity effect of flavonoids isolated from athrixia phylicoides[J].Med.Plants Res,2010,4(23):2584-2587.
    [137] Hakkim FL, Arivazhagan G, Boopathy R.Antioxidant property of selectedOcimum species and their secondary metabolite content[J].Journal Of MedicinalPlants Research,2008,2(9):250-257.
    [138] WangJ, Zhang QB, Zhang ZS, Li ZE.Antioxidant activity of sulfatedpolysaccharide fractions extracted from Laminaria Japonica Int[J]. Biol.Macromol,2008,42:127-132.
    [139]聂少平,谢明勇,罗珍.用清除有机自由基DPPH法评价茶叶多糖的抗氧化活性[J].食品科学,2006,27(3):34-36.
    [140] BAYDAR N G, OZKAN G, YASAR S.Evaluation of the antiradical andantioxidant potential of grape extracts[J].Food Control,2007,18:1131-1136.
    [141]马虎飞,王思敏,杨章民.陕北野生枸杞多糖的体外抗氧化活性[J].食品科学,2011,32(3):60-63.
    [142]邓源,袁伯俊,张淑英.解酒灵对乙醇致鼠肝急性损伤的保护作用及机制的探讨[J].中国新药杂志,2000:9(6):388-391.
    [143]邓源,袁伯俊,张淑英.解酒灵对乙醇致鼠肝急性损伤的保护作用及机制的探讨[J].中国新药杂志,2000;9(6):388-391.
    [144] Constantin M, Bromont C, FickatR, et al.Studies on the activity of bepridil as ascavenger of free radicals[J].Biochem Pharmacol.1990,40(7):1615-1622.
    [145] Rekka E, et al.Effect of hydroxyethyl rutosides and related compounds on lipidperoxidation and free radical scavenging activity.Some structural aspects.TheJournal of pharmacy and pharmacology.1991,43(7):486-491.
    [146] CHEN P, GUO Y H, WANG B M.SDS-PAGE of soluble proteins in four plantsof Cistanche Hoffing.et Link.[J].Chinese Traditional and Herbal Drugs (中草药)2006,37(9):1399-1402.
    [147] ZHANG M, FU X L, WANG S Y.Microscopic Identification of CommercialHerba Cistanches by Digital Imaging Technique [J].Journal of ChineseMedicinal Materials (中药材),2004,27(6):400-402.
    [148]金鑫,李晓波,屠鹏飞.肉苁蓉指纹图谱的构建[M].中国当代新医药论丛,60-63.
    [149]夏鹏霄,杨瀚春,袁洪泽,郭东桓.肉苁蓉的HPLC指纹图谱研究[M].中国药物应用与监测,2006,5:29-31.
    [150]刘晓明,姜勇,孙永强,等.肉苁蓉化学成分研究[J].中国药学杂志,2011,46(14):1053-1058.
    [151]曹振杰,赵文军,吴雪萍.肉苁蓉中苯乙醇苷类化合物的LC-MS分析[J].中药材,2004,27(3):175-177.
    [152]周秀娟.草苁蓉化学成分和HPLC指纹图谱的研究[M].内蒙古医学,2008.
    [153]郑毅男.草苁蓉化学成分的研究[J].吉林农业大学学,1987,9(1):31-37.
    [154]易以军,曹正中,吴厚铭,赵守训.草苁蓉化学成分的研究[J].药学学报,1999,34(9):686-689.
    [155]周延清,杨清香,张改娜,等.生物遗传标记与应用[M].北京:化学工业出版社,2008.
    [156]党荣理,马永红,吴霞,等.新疆产中药肉苁蓉的RAPD分析[J].药物生物技术,2003,10(1):48-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700