用户名: 密码: 验证码:
水稻细菌性条斑病抗性标记辅助选择研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子标记辅助选择(Marker-assisted Selection,MAS)应用在水稻质量性状的辅助选择已比较成熟,但对数量性状的辅助选择还在探索中。本研究对利用分子标记辅助选择改良由多基因控制的水稻细菌性条斑病抗性的有关问题进行了研究: 1)在筛选与抗病基因紧密连锁的SSR分子标记的基础上,通过回交或混合选择结合MAS技术的方法,把来自水稻品种Dular中的细条病抗性QTL qBlsr-11-1导入新的遗传背景中,并对分子标记辅助选择的效果作了评价;2)对利用标记辅助聚合技术选育抗细条病新品种的可行性进行分析,探讨在水稻细条病抗病育种过程中抗性鉴定和标记辅助选择如何有效结合的问题。主要结果如下:
     1、在前人对水稻细条病抗性QTL qBlsr5a、qBlsr3d、qBlsr5b和qBlsr-11-1定位的基础上,利用已公布的水稻基因组信息,获得了2个与qBlsr5a紧密连锁的标记RM153和RM17769; 2个与qBlsr3d紧密连锁的分子标记RM523和RM231;2个与qBlsr5b紧密连锁的标记RM440和RM173。这6个标记均在抗性亲本Dular和H359R间存在多态性。得到3个与qBlsr-11-1紧密连锁的标记RM120、RM26267和RM552,其中RM120和RM26267在供体亲本Dular、H359R和受体亲本Ⅱ-32B间存在多态性,RM26267和RM552在供体亲本Dular和受体亲本明恢2155间存在多态性。上述标记与相应的目标QTL的推测距离在0.4-4.9cM之间,基本可以满足MAS对标记选择准确率的要求。
     2、在利用回交结合MAS技术把qBlsr-11-1导入II-32B的过程中,运用位于该目标QTL双侧紧密连锁的标记RM120和RM26267,或仅用RM120对杂合抗病标记基因型进行选择均有效,但利用双标记选择的效果比单标记的选择效果好;而在该回交群体中仅用RM26267单独对杂合抗病标记基因型进行选择是无效的。
     3、在Dular×明恢2155的F3:4群体中,运用双标记RM552和RM26267或各单标记选出的纯合抗病标记基因型(BBCC、CC和BB)间的病斑平均值差异不显著,但是它们与感病亲本明恢2155、三种杂合标记基因型(BbCc,Bb和Cc)及三种纯合感病标记基因型(cc,bb和bbcc)的病斑长度差异均达极显著水平。BbCc和Cc这两种杂合标记基因型与纯合感病标记基因型(cc,bb和bbcc)和感病亲本明恢2155的病斑长度差异也均达到极显著水平。但单独利用RM26267选出的杂合标记基因型与纯合感病基因型的病斑长度差异不显著。
     4、先进行抗性鉴定再进行标记基因型选择或直接进行标记基因型选择两种不同的途径均可以获得携带4个、3个、2个抗性QTL的个体,但效率不同。仅在30株极端抗病个体中即可选出含有4个和3个抗性QTL的纯合抗病标记基因型单株3株和4株,而利用标记基因型选择从未抗性鉴定的300株的群体中,仅选出含4个和3个QTL抗性QTL的纯合抗病标记基因型单株1株和7株。可见,在利用MAS技术对数量抗病性状的改良中,在抗性鉴定结果较理想的情况下,先进行抗性鉴定再进行标记基因型选择,能选育出更多聚合多个抗性QTL的抗病单株,并且可以大大减小分子标记的工作量和费用。
     5、含有2个以上抗性QTL的单株(株系),其抗性均比感病亲本H359有极显著提高。含有4个抗性QTL的L1类型和含有3个抗性QTL的L2、L3类型以及含有2个抗性QTL的L6类型内单株的总平均病斑长度与原始抗源Acc8558和Dular的抗性差异不显著,表明只要对已定位的2~4个细条病抗性QTL的聚合,即有可能选育出与抗源抗性相当的新品系。
Molecular marker-assisted selection (MAS) has been successfully used in improving qualitive traits of crops, and gradurally used in quantitative traits. In this study, we researched the genetic improvement of bacterial leaf streak disease in rice by means of molecular marker-assisted selection. 1) On the basis of screening SSR markers closely linked to resistant QTL, we introgressed the QTL qBlsr-11-1(from rice variety Dular)for the bacterial leaf streak resistance into new genetic backgrounds of rice by means of backcross method combined with MAS or by bulk method combined with MAS,and evaluated the efficiency of MAS. 2) We analyzied the feasibility to pyramid QTLs for improving bacterial leaf streak resistance by the use of marker-assisted selection, and explored some issues concerning breeding of bacterial leaf streak resistance. The main results are as follows:
     1. On the basis of located QTL qBlsr5a, qBlsr3d, qBlsr5b and qBlsr-11-1 for bacterial leaf streak resistance and the rice genome information published before, we obtained two SSR markers RM153 and RM17769 closely linked to the qBlsr5a, two SSR markers RM523 and RM231 closely linked to the qBlsr3d, and two SSR markers RM440 and RM173 closely linked to the qBlsr5b. These six SSR markers perform polymorphisms between the donor parents Dular and H359R. We also got three SSR markers RM120, RM26267and RM552 linked to the qBlsr-11-1. The markers RM120 and RM26267 exist polymorphisms between two donor parents Dular and H359R and the recipient parentⅡ-32B; the markers RM26267 and RM552 exist polymorphisms between the donor parental Dular and the recipient parent Minghui 2155. Their distances from the markers to the target QTLs estimated at 0.4-4.9cM, which will meet the basic requirements for MAS.
     2. In the prosess of introgressing qBlsr-11-1 into II-32B by combining backcross method with MAS, both of selection methods are efficiency by use either duoble side markers RM120 and RM26267or one side marker RM120 closely linked the qBlsr-11-1 to select the resistantly heterozygous marker genotypes; but selection is not efficiency by use the marker RM26267 only.
     3. In the F3:4 population derived from Dular×Minghui 2155, the difference was not significant in average lesion lengths of homozygous resistant genotypes (BB, CC and BBCC) selected by use both double side markers RM552 and RM26267 or one side marker. But the average lesion lengths were significantly difference between the homozygous resistant genotypes (BBCC,CC and BB) and infectious parent Minghui 2155, the heterozygous marker genotypes (BbCc, Bb and Cc), and the susceptibly homozygous marker genotypes (cc, bb and bbcc). The average lesion lengths were significantly difference between heterozygous marker genotype (BbCc and Cc) and the susceptibly homozygous marker genotypes (cc, bb and bbcc) and the infectious parent Minghui 2155 too. The difference was not significant in average lesion lengths between heterozygous marker genotype selected by RM26267 marker and the infectious parent Minghui 2155.
     4. We could obtain resistant plants with 4 resistant QTLs, 3 resistant QTLs and 2 resistant QTLs respectively, by means of the methods both through identifing disease resistance first and then select the marker genotype or direct select the marker genotype, but the efficiency is different. We obtained homozygous marker genotypes 3 plants and 4 plants which were with 4 resistant QTLs and 3 resistant QTLs respectively, in the 30 extremely resistant plants. And by the method of direct marker genotypes selection,we obtained homozygous marker genotype 1 plants and 7 plants with 4 resistant QTLs and 3 resistant QTLs respectively, in the population comprises 300 plants. Above results indicated that,it would be an ideal method to identify disease resistance first and then select the marker genotype, in improving the quantitative traits such as bacterial leaf streak resistance, as this could select more ideal plants and greatly reduce work and costs.
     5. The plants(lines)containing more than 2 resisitant QTLs were significantly higher than susceptible parent H359 in resistant level. The difference was not significant in average lesion lengths among the plants carrying 4 resistant QTL (L1), 3 resistant QTL (L2 and L3), 2 resistant QTL (L6) and their resistant donor parents Acc8558 and Dular. The results indicating that, we can breed a new rice variety similar with their resistant donor parents in resistant level, as long as 2 ~ 4 resistant QTL been pyramided.
引文
边银丙,宋小亚.几种新型DNA分子标记及其在食用菌研究中的应用[J].食用菌学报,2006,13(1):73-81.
    陈罡,钟鸣,徐正进. SSR标记及其在水稻抗稻瘟病研究中的应用[A]中国植物病理学第七届青年学术讨论会论文集[C], 2005.
    成国英,黄昌华.水稻品种对稻细条病菌的抗性测定.湖北植保,1996,(3):22-25.
    陈红旗,陈宗祥,倪深,等.利用分子标记技术聚合3个稻瘟病基因改良金23B的稻瘟病抗性.中国水稻科学,2008,22(1):23-27.
    陈冰嬬,石英尧,高用明,等.利用BC2F2高代回交群体定位水稻籽粒大小和形状QTL.作物学报. 2008,34(8):1299-1307.
    曹立勇,庄杰云,占小登.抗白叶枯病杂交水稻的分子标记辅助育种[J].中国水稻科学,2003,17(2):184-186.
    陈志伟,吴为人,周元昌,等.水稻细菌性条斑病抗性微卫星(SSR)标记的筛选及其在标记辅助选择中的应用.福建农林大学学报(自然科学版),2004,33(2):202-205.
    陈志伟,吴为人,周元昌,等.利用近等基因系验证水稻细菌性条斑病抗性QTL.福建农林大学学报(自然科学版),2005,34(3):273-277.
    陈彦楼,周代友.水稻细菌性条斑病流行因素分析与综防措施.安徽农学通报.2007,13(4):191.
    陈志伟,郑燕,吴为人,等.抗稻瘟病基因Pi-2(t)紧密连锁的SSR标记的筛选与应用[J].分子植物育种,2004,002(003):321-325.
    陈大洲,钟平安,肖叶青,等.利用SSR标记定位东乡野生稻苗期耐冷性基因[J].江西农业大学学报(自然科学版).2002,24(6):753-756.
    陈玉奇.水稻细条病发生程度与损失率的关系.植物保护,1990,16(4):52.
    邓其明,周宇爝,蒋昭雪,等.白叶枯病抗性基因Xa21、Xa4和Xa23的聚合及其效应分析[J].作物学报,2005,31(9):1241-1246.
    邓启云,袁隆平,王斌,等.野生稻高产基因及其分子标记辅助育种研究.杂交水稻, 2004,19(1):6-10.
    段世华,毛加宁,朱英国.用微卫星DNA标记对我国杂交水稻主要恢复系遗传差异的检测分析.遗传学报, 2002,20(3):171-178.
    邓云.水稻细菌性条斑病抗性QTL的精细定位.福建农林大学硕士学位论文(硕士),2007.
    范吉星,邓用川.分子标记辅助育种研究.安徽农业科学.2008,36(24):10348-10350,10358.
    方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].科学出版社,2001.
    郭晶心,陈忠正,刘耀光.水稻抽穗期数量性状基因的定位及遗传效应分析.分子植物育种,2004,2(6):788-794.
    龚勋,蔡海亚,章志宏,等.水稻芽期耐冷主效QTLqST-11的分子标记定位.毕业学院学报,2008,4(26):71-74.
    高冠军,李桂菊,何予卿,等.水稻全生育期稻瘟病抗性遗传及其基因定位研究.分子植物育种, 2008, 6(5): 825-829.
    何月秋,文艳华.杂交水稻对细菌性条斑病抗性遗传的研究.江西农业大学学报, 1994,16(1):62-65.
    韩庆典,陈志伟,吴为人,等.利用基因芯片检测水稻细菌性条斑病抗性相关基因.分子植物育种,2008,6(2): 239-244.
    黄大辉,岑贞陆,李容柏,等.野生稻细菌性条斑病抗性资源筛选及遗传分析.植物遗传资源学报,2008, 9(1):11-14.
    郝伟,金健,孙世勇,等.覆盖野生稻基因组的染色体片段替换系的构建及其米质相关数量性状基因座位的鉴定[J].植物生理与分子生物学学报,2006, 32 (3): 354-362.
    韩月澎,邢永忠,张启发.等.杂交水稻亲本明恢63对纹枯病水平抗性的QTL定位.遗传学报,2002,29(7): 622-626.
    姬广海,许志刚.水稻品种对细菌性条斑病的抗性研究.西南农业大学学报,2001,23(2):164-166.
    柯昉,李维明.水稻细条病、白叶枯病的抗性遗传及其若干农艺性状的相关分析.福建农业科技,1997,(4):2-3.
    李小辉.水稻细菌性条斑病抗性QTL的精细定位.福建农林大学硕士学位论文(硕士),2005.
    刘友勋,成国英,李耀洪,等.水稻细菌性条斑病菌致病型鉴别品种的筛选.华中农业大学学报,2004,23(4): 403-405.
    蓝贤勇,陈宏,雷初朝,等.一种新的分子标记方法—随机微卫星扩增多态DNA (RMAPD ). 遗传, 2006,28(1):78-84.
    林荔辉,陈志伟,张积森,等.利用回交和MAS技术改良珍汕97B的白叶枯病抗性[J].福建农林大学学报(自然科学版),2004,33(3):280-253.
    李喜煌,刘国振,刘国庆,等.水稻PCD相关基因的定位研究[J].作物学报,2003,29(6):942-946.
    李晓辉,李新海,李文华,等.SSR标记技术在玉米杂交种种子纯度测定中的应用[J].作物学报,2003,29(1):63-68.
    黎世龄,李润根,陈云风,等. D38S系列组合对水稻细菌性条斑病的田间抗性表现.安徽农业科学. 2008,36(2): 610-611.
    李汝玉,李群,谭振馨,等.利用SSR标记鉴定玉米杂交种纯度技术规程[J].种子,2005,24 (9) :54-56.
    刘士平,李信,何予卿,等.基因聚合对水稻稻瘟病的抗性影响[J].分子植物育种,2003,001(001):22-26.
    刘国庆,颜辉煌,傅强,等.栽培稻的紧穗野生稻抗褐飞虱主效基因的遗传定位.科学通报,2001,46(9):738-742.
    柳武革,王丰,金素娟,等,利用分子标记辅助选择聚合Pi-1和Pi-2基因改良两系不育系稻瘟病抗性.作物学报,2008,34(7):1128-1136.
    李进波,王春连,赵开军,等.分子标记辅助选择Xa23基因培育杂交稻抗白叶枯病恢复系.作物学报,2006,32(10 ):1423-1429.
    林兴祖,周文豪.海南南繁基地水稻细菌性条斑病的发生情况与防控措施.农业科技通讯,2007,10.
    刘立峰,张洪亮.李自超,等.水、旱稻根基粗、千粒重主效QTL近等基因系的构建及鉴评.农业生物技术学报, 2007,15(3):469-476.
    龙菊英,张桂英,王金生,等.水稻条斑病菌和白叶枯病菌致病相关基因的敲除.南京农业大学学报, 2006, 29(2) : 50-56.
    农秀美,廖恒登,刘志明.水稻品种对细菌性条斑病抗性鉴定方法研究.广西植保,1992,(3):5-9.
    倪新强,王忠华.分子标记辅助选择及其在水稻育种中的应用.中国农学通报,2001,17(3):58-61.
    倪大虎,易成新,李莉,等.利用分子标记辅助选择聚合水稻基因Xa21和Pi9(t).分子植物育种,2005,3(3):329-334.
    倪大虎,易成新,杨剑波,等.利用分子标记辅助选择聚合Pi9(t)和Xa23基因.分子植物育种,2007,5(4):491-496.
    倪大虎,易成新,李莉,等.分子标记辅助培育抗白叶枯病和稻瘟病三基因聚合系.作物学报,2008,34(1):100-105.
    彭应财,李文宏,方又平,等.采用分子标记技术育成优质抗病杂交稻新组合中优218.杂交水稻,2004,19(3):13-16.
    彭应财,李文宏,樊叶扬,等.利用分子标记辅助选择技术育成抗白叶枯病杂交稻协优218.杂交水稻,2003,18(5):5-7.
    秦钢,李杨瑞,郑希,等.水稻白叶枯病抗性基因Xa4、Xa23聚合及分子标记检测.分子植物育,2007,5(5):625-630
    邱福林,庄杰云,程式华,等.北方杂交粳稻骨干亲本遗传差异的SSR标记检测.中国水稻科学,2005,19(2):101-104.
    任新国,向建国,廖晓兰.水稻细菌性条斑病菌血清型的初步研究.湖南农业科学,1994,(1):37-38.
    孙黛珍,江玲,张迎信,等.水稻抗条纹叶枯病数量性状座位分析.中国水稻科学,2007,21(1):95-98.
    沈圣泉,舒庆尧,包劲松,等.利用分子标记辅助选择育成抗螟虫籼稻不育系科龙A.杂交水稻,2008,23(2): 15-18.
    苏昌潮,翟虎渠,王春明,等.利用SSR定位籼稻品种Kaharamana中抗褐飞虱基因Bph9 [J].遗传学报,2006,33(3):262-268.
    谭彩霞.水稻抗纹枯病近等基因系的构建[D].中国优秀博硕士学位论文全文数据库(硕士), 2004, (04).
    谭彩霞,纪雪梅,杨勇,等.水稻回交世代中两个抗纹枯病主效数量基因的鉴定与标记辅助选择.遗传学报.2005,32(4):399-405.
    唐定中,李维明.水稻细菌性条斑病的抗性遗传.福建农业大学学报,1998,27(2):133-137.
    谭祖猛,李云昌,程计华,等.分子标记在油菜杂种优势利用中的研究进展.植物学通报.2008,25(2):230-239.
    谭光轩,任翔,翁清妹,等.药用野生稻转育后代一个抗白叶枯病新基因的定位[J].遗传学报, 2004,31(7): 724-729.
    童贤明,徐鸿润,徐富康,等.水稻细菌性条斑病产量损失估计.浙江农业大学学报,1995,21(4):357-360.
    谭禄宾,张培江,付永彩,等.云南元江普通野生稻株高和抽穗期QTL定位研究[J].遗传学报,2004,31(10):123-1128.
    王国兵. 2008年国内检疫对象水稻细菌性条斑病发生与综合治理情况.盱眙农业网,2008.
    王金友.水稻细菌性条斑病对产量结构的影响.植物检疫,1995,9(2):73-74.
    吴朝晖. SSR标记及其在水稻遗传育种中的研究进展.湖南农业科学.2007,(2):36-39.
    王胜军,万建民,陆作楣.利用SSR分子标记划分杂交籼稻亲本群的研究.作物学报,2006,32(10):1437-1443.
    王汉荣,谢关林.水稻细菌性条斑病及其防治.上海科学技术出版社,1995,80-112.
    王军,谢皓,郭二虎,等.DNA分子标记及其在谷子遗传育种中的应用[J].北京农学院学报,2005,20(1):76-80.
    危文亮,赵应忠.分子标记在作物育种中的应用.生物技术通报,2000(2):12-16.
    万建林,翟虎渠,万建民,等.水稻耐亚铁毒QTLs的定位[J].遗传学报, 2005, 32(11): 1156-1166.
    徐建农,王汉荣,林贻滋,等.水稻细菌性条斑病和白叶枯病的抗性连锁遗传研究.遗传学报,1997,24(4):330-335.
    谢关林.水稻细菌性条斑病抗性鉴定技术评价.水稻文摘,1991,10(5):10-l4.
    夏怡厚,林维英,陈藕英.水稻细菌性条斑病菌的致病力变异和菌系鉴别.福建农学院学报,1992,21(2):278-282.
    许志刚,钱菊梅.水稻细菌性条斑病的适生性和控制研究进展.植物检疫, 1995,9(4):239-244.
    张晓葵,杨念军.稻种资源水稻抗细菌性条斑病的抗性鉴定.湖北农业科学,1992,(2):33-35.
    徐羡明,曾列先.广东水稻细菌性条斑病菌致病力分化研究初报.广东农业科学,1992,(6):31-32.
    薛庆中,张能义,熊兆飞,等.应用分子标记辅助选择培育抗白叶枯病水稻恢复系[J].浙江大学学报,1998,24(6):381-386.
    肖珂,左海龙,董彦君,等.中国农学通报,2008,24(5):95-99.
    薛庆中,张能义,熊兆飞,等.用分子标记作辅助选择育成抗白叶枯病杂交水稻新组合[J].云南大学学报(自然科学版),1999,21:187.
    杨益善,邓启云,陈立云,等.野生稻高产QTL的分子标记辅助育种进展[J].杂交水稻,2005,20(5):1-5.
    杨益善,邓启云,陈立云,等.野生稻高产QTL导入晚稻恢复系的增产效果.分子植物育种,2006,4(1):59-65.
    杨益善,邓启云,熊跃东,等.野生稻高产QTL高效表达的光合生理基础.植物生理学通讯, 2006,42(2):133-137.
    游均,李强,岳兵,等.水稻种子萌发和苗期ABA敏感性的QTL定位分析[J].遗传学报,2006, 33(6):532-541.
    杨勇,王鹏文,张树光,等. SSR标记在糯玉米遗传多样性研究上的应用[J].玉米科学,2006,14 (6):62-65.
    殷跃军,左示敏,潘学彪,等.利用近等基因系研究3个抗水稻纹枯病QTL的聚合效应.中国水稻科学,2008,22(4) :340-346.
    张士陆.分子标记辅助改良中籼协优57直链淀粉含量的研究[D],安徽农业大学,2005.
    周宇爝,邓其明,李平,等.利用MAS技术改良四个水稻恢复系及其抗病性分析.分子植物育种,2008,6(3),:480-490.
    曾建敏,林文雄.水稻细菌性条斑病及其抗性研究进展.分子植物育种,2003(2):257-263.
    郑景生,李义珍,方宣钧.水稻第2染色体上细菌性条斑病抗性QTL的检测.中国农业科学, 2005, 38(9):1923-1925.
    郑景生,李义珍,林文雄. SSR标记定位水稻再生力和再生产量及其构成的QTL[J].分子植物育种, 2004, 2(3):342-347.
    赵姝华,李玥莹,邹剑秋.高粱分子遗传图谱的构建[J]杂粮作物, 2005,25(1):11-13.
    张红生,陆志强,朱立宏,等.四个籼稻品种对细菌性条斑病的抗性遗传研究.中国水稻科学,1996,0(4):193-196.
    周元飞,戚华雄,万丙良,等.运用分子标记辅助选择技术改良9311白叶枯病抗性研究[J].分子植物育种,2003,1(3):343-349.
    曾亚文,申时全,徐绍忠,等.云南软米低直链淀粉含量及其相关性状遗传分析[J].植物遗传资源学报,2004,59(1):12-16.
    张帆,万雪琴.玉米F2群体分子标记偏分离的遗传分析.作物学报.2006,32(09):1391-1396.
    周明华,许志刚,粟寒,等.两个籼稻品种对水稻细菌性条斑病抗性遗传的研究.南京农业大学学报,1999,22(4):27-29.
    翟文学,朱立煌.水稻白叶枯抗性基因的研究和分子育种.生物工程进展, 1999, 19(6): 9-15
    詹庆才,朱克永,曾曙珍,等.利用分子标记进行水稻苗期耐冷性相关性状的QTLs研究[J].杂交水稻,2005(01):53-58.
    章琦,赵炳宇,赵开军,等.普通野生稻的抗水稻白叶枯病新基因xa23 (t)的鉴定和分子标记定位[J].作物学报,2000, 26(3):536-542.
    Ali S,MullerC R, Epplen J T. DNA fingerprinting byoligonu cleotide probes spe cific for simple repeats[J]. Hum Genet, 1986,74:239 - 243.
    ADAM-BLONDON A F,ROUX C,et al. MERDINOGLU D,THIS P.Mapping 245 SSR markers on the Vitis vinifera genome:a tool for grape genetics[J].Theor Appl Genet,2004,109:1017-1027.
    BrondaniC,Rangel P, Ferreira M, et al. QTL mapping and introgression of yield-related traits fromOryza glumaepatulato to cultivated rice(Oryza sativa) using microsatellite markers.Theoretical and Applied Genetics, 2002,104:1192-1203
    C. N. Neeraja,R Maghirang-Rodriguez, D. J. Mac, et al. A marker-assisted backcross approach for developing submergence-tolerant rice cultivars, Theor Appl Genet (2007) 115:767-C776.
    Chen S,Xu C G,et al.Improving bacterial blight resistance of‘6078’an elite restorer line of hybrid rice by molecular marker-assisted selection[J]. Plant Breeding,2001,120:133-137.
    Chen C H, Zheng W, Lin X H, et al.Major QTL conferring resistance to rice bacterial leaf streak. Agricultural Sciences in China, 2006,5(3):101-105.
    Domingo P J,Mew T V,Kumaravidivel N G,et al.Breeding of near iso-genic lines resistant to rice blast and bacterial blight[J].The Philippine Journal of Crop Science,1995,20(1):3.
    Fukuoka S, Okuno K. QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice[J]. Theor Appl Genet, 2001,103: 185-190.
    Hamada H.,M.Pitrino,T.Kakunaga. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes[J]. Pron.Natl.Acad.Sci,U S A,1982,79:646-649.
    Hittalmani S, Parco A, Mew T V, et al. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice[J] .Theor Appl Genet, 2000,100:1121-1128.
    Khush GS.In The Genetic Basis of Epidemics in Agriculture (Ed. By R Day),New York Academy of Sciences.New York,1977,296.
    K.Datta,N.Baisakh,K.MatingThet,et1a.Pyramidingtrans genesofrmultipleresistancein irce againstbacteiralbilght,yellowstem borernad sheathbilght.Theor Appl Genet,2002,106:1-8.
    Liu shi-ping,Li xin,Wang chao-yang,et al.Improvement of resistance to rice B1ast in Zhenshan 97 by molecular marker-aided selection[J].Acta Botanica Sinica,2003,45(11):1346-1350.
    Li Renhua.Resistance to bacterial leaf streak in hybrid rice and parental lines.IRRN,1988,13(5):13.
    Lande R, Thompson R. Efficiency of marker-assisted selection in the improvement of quantitative traits [M],Genetics,1990.
    Miesfeld R,Krystal M,Arnheim N.A member of new repeated sequence family which is conserved throughout eucaryotic evolution is found between the human delta- and beta-globin genes[J].Nuc Acids Res,1981,9:5931.
    Makino S, Sugio A , W hite F F, et al Inhibition of resistance.gene2mediated defense in rice by X an thom onas oryzae pv oryzi.cola. Mol Plant icrobe Interact, 2006,19: 240-249.
    Narayanar N N, Vera Cruz C.M,Vera Cruz C.M.Molecular breeding for the development of blast and bacterial blight resistance in rice. Crop Sci.2002,42(06):2072-2079.
    Shekhawat G S. Host specialization in bacterial leaf streak pathogen of rice.Indian Journal ofAgriculture Science, 1972, 42(1):11-15.
    Mccouch S R,Temnykh S,Lukashova A,et al.Microsatellite markers in rice:abundance, diversity, and applications.Rice Genetics IV [C].New Delhi(India).Science Publishers, Inc, (IRRI SPl), 2001,117-135.
    Ma H L, Zhang SB, Ji L, et al Finemapping and in silico isolation of the Euil gene controlling upper internode elongation in rice [J]. PlantMolecularBiology, 2006, 60(1):87-9.
    Sanchez A C,Bar D S,Huang N,et al. Sequence tagged site markerassisted selection for three bacterial blight resistance genes in rice [M].Crop Scince.2000.
    Sharma TR, MadhavMS, Singh BK, et a.l High-resolutionmapping, cloning and molecular characterization of the Pi-kh gene of rice, which confers resistance to Magnaporthe grisea[J]. Mo.l Gen. Genomics., 2005,274:569-578.
    Singh S,Sidhu J S,Huang N,et al.Pyramiding three bacterial blight resistance genes(Xa-5,Xa-13,and Xa-2l)using marker-assisted selection into indica rice cultivar PR106[J].Theor Appl Genet,2001,102:1011-1015.
    Temnykh S,Park W D,Ayres N,et al.Mapping and genome organization of microsatellate sequence in rice (Oryzasativa L.).Theor Appl Genet,2000,100:697-712.
    Tang D,Wu W, Li W,et al. Mapping of QTLs conferring resistance to bacterial leaf streak in rice. Theor Appl Genet, 2000,101:286–291.
    Walker D,Boerma HR,All J,Parrott W.Combining cry1Ac with QTLalleles from PI229358 to improve soybean resistance to lepidopteran pests.Molecular Breeding, 2002,9:43-51
    Weber,May.Abundant class of human DNA polymorphism which can be typed using the polymerase chain reaction[J].Am J Hum Genet,1989,44: 388-396.
    WangGW, HeYQ, Xu CG, et al Finemapping off 5-Du, a gene conferringwide-compatibility forpollen fertility in intersubspecific hybrids of rice (Oryza sativaL.) [J]. Theor. Appl Gene.t,2006, 112(2):382-387.
    Wang G L,Mackill D J,Bommon J M,et al.RFLP mapping of the genes conferring complete and partial resistance to blast in a durably resistance cultivar[J]. Genetics,1994,136:1421-1431.
    Wang L, Makino S, Subedee A , et al.Novel candidate virulence factors in rice pathogen X anthom onas oryzae pv oryzicola as revealed by mutational analysis Appl Environ Microbiol, 2007,73(24): 8023-8027.
    WanXY, Wan JM, JiangL, et al. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects [ J]. Theor. Appl Gene, 2006, 112: 1258-1270.
    Yeetoh Chaweewna,JutarutJnataboon,Chanakam Wongsaprom,et al.Marker-sasisted Selection and Anther Cultuer Generatee G netically Fixed Lines of Rice Bereding Program.Proceeding of the 1st International Confeernce on Rice for the Future,2004,183.
    Yu SB, Li JX, Xu CG, et al Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid[J]. Proc. Nat Acad., 1997, 94(17):9226-9231.
    Yue B, Xue WX, Xiong LZ, et al Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance [J]. Genetics, 2006, 172:121-1228.
    Zhou WC,Kolb FL, Smith NJ, et al.Validation of a major QTL for scabresistance with SSR markers and use of marker-assisted selection in wheat.Plant Breeding, 2003,122:40-44.
    Zhou P,Tan Y,He Y,Zhang Q.Simultaneous improvement for four quality traits of Zhenshan 97,an elite parent of hybrid rice by molecular marker-assisted selection.Theoretical and Applied Genetics, 2003,106:326-331.
    Zhou YC,Wu WR,Qi JM.Approximate estimation of minimal sample size required for marker-assisted backcross breeding.Acta Genetica Sinica, 2003,30:625-630.
    Zou L F, W ang X P, Xiang Y, et al.Elucidation of the hrp clusters of X anthom onas oryzae pv oryzicola that control the hypersensitive response in nonhost tobacco and pathogenicity in suscep tiblehost rice. Appl Environ M icrobiol. 2006,72(9):6212-6224.
    Zhao W J, Zhu S F, L iao X L, et al Detection of X an thom onasoryzae pv oryzae in seeds using a specific TaqManprobe. Mol Biotechnol, 2007, 35( 2):119-128.
    Zhang ZH,Su L, Zhu YG, et al. A major QTL conferring cold tolerance at the early seedling stage using recombinatant inbred lines of rice(Oryza sativa L.) [J].Plant Science,2005,168:527-534.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700