用户名: 密码: 验证码:
番茄耐寒种质低温胁迫下的转录组分析及相关基因功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
番茄CSolanum lycopersicum)属非冷驯化植物,在生长发育的各个阶段都容易遭受低温伤害。提高番茄的抗寒性可降低低温对植株及果实的伤害,延长生长周期,减少设施栽培的投入等。筛选番茄耐低温材料,培育抗寒番茄新品种具有重要的实际应用价值。
     CBF低温应答途径是目前研究最为清楚,也是冷驯化植物最重要的低温应答调控途径。番茄中同样存在CBF低温响应途径,但其在低温应答中发挥的作用较小。非冷驯化的番茄对低温适应的分子机制可能不同于冷驯化植物。
     野生多毛番茄(S. habrochaites)的抗寒性显著高于栽培番茄。过去几十年里,对多毛番茄和普通番茄在低温胁迫下的生理生化差异进行了大量研究,并取得了重要进展。但关于多毛番茄和普通番茄在低温胁迫下的基因表达差异,多毛番茄抗寒的分子机制知之甚少。
     本研究以多毛番茄LA1777、栽培番茄LA4024及由二者渐渗系(IL)群体为材料,对苗期植株抗寒性进行评价和筛选。为揭示番茄抗冷的分子机理,利用TOM2基因芯片对抗寒材料(供体亲本LA1777和渐渗系LA3969)和冷敏感材料(受体亲本LA4024)在低温胁迫下的基因表达差异进行了分析。根据芯片分析结果,从多毛番茄中克隆了3个抗寒相关基因,并进行了功能鉴定。主要研究结果如下:
     1.鉴定了多毛番茄中贡献抗寒性的染色体区段:通过比较多毛番茄LA1777和普通番茄LA4024在低温胁迫表型及相关生理指标差异,建立了番茄抗寒性鉴定体系。利用该体系对LA1777渐渗系群体幼苗进行耐低温鉴定,发现22个IL系在低温(4℃)处理3d时萎焉程度较受体亲本LA4024轻,在多毛番茄的第1、2、3、4、5、6、7、9、11及12条染色体上可能含有抗寒相关的QTLs。其中,渐渗系LA3969在整个低温处理及恢复过程中具有与供体亲本LA1777相近的表型,抗寒性显著高于受体亲本LA4024及其它IL系。低温胁迫下,LA3969和LA1777细胞膜受伤害程度较轻。低温处理10d恢复一周后,LA3969和LA1777的存活率显著高于LA4024。LA3969的抗寒性来源于导入了野生多毛番茄的第12条染色体片段。这表明在多毛番茄第12条染色体上可能含有一个或多个控制抗寒性的关键QTL/基因。
     2.抗/感番茄材料低温应答的分子差异:利用TOM2芯片分析了LA1777、 LA3969和LA4024幼苗在低温胁迫下的基因表达差异。低温胁迫处理3d后,在LA1777、LA3969和LA4024中分别鉴定了1613、1456和1523个低温应答基因。其中,103个低温应答基因仅在LA1777和LA3969检测到,196个低温应答基因仅在LA4024中检测到。这些基因可能在决定番茄对低温的抗或敏感性中起着重要作用。功能聚类分析表明,更多与逆境应答、内源刺激应答、信号转导、转录调控、生物合成、次生代谢、蛋白代谢等相关的基因在两抗性材料中上调表达。而更多与光合作用相关的基因在冷敏感材料中被抑制。GO (Gene Ontology)生物学进程富集分析发现更多的生物学进程在两抗性材料中被加强,而更多的生物学进程在冷敏感材料中被抑制。低温胁迫下,茉莉酸生物合成、油菜素内酯代谢过程、苯丙素生物合成、淀粉降解、亮氨酸生物合成、卡尔文循环和超氧自由基清除等7个代谢途径在抗感材料间发生了显著调整。
     3.番茄抗寒的分子机制:差异统计分析表明,92个基因在两抗性材料与冷敏感材料间表达变化差异显著。126个基因在LA1777中的表达变化显著不同于LA3969和LA4024。这些基因基因可能在贡献LA3969和/或LA1777的抗性中起着重要作用。对这218个差异表达基因进行染色体定位分析,发现80个基因被定位到22个筛选的抗性渐渗系染色体替换区段或已报道的多毛番茄抗寒相关QTLs区域。其中,11个位于LA3969染色体渗入的片段上,这些基因可能在贡献LA3969的抗寒性中起着重要作用。GO生物学进程富集分析表明差异表达基因中许多参与了钙信号调控、激素和ROS的动态平衡调节及信号应答。钙离子、激素及ROS作为信号分子可能在调控番茄低温应答中具有重要作用。这些信号途径在抗感材料间的调整引起下游一系基因表达的改变,包括转录因子(如HSFs、MYBs、NACs等)、翻译后修饰蛋白(如SKP2A、LAP-A1、XERICOs等)、功能蛋白(如HSPs、PRs及脱水素等)、代谢相关的酶(如GSTs、LOXs、BAM等)等。这一系列基因表达的改变使得LA1777和LA3969的抗寒性显著较LA4024提高。
     4.差异表达基因ShDHN的功能鉴定:根据芯片分析结果,从多毛番茄中克隆了一脱水素基因,命名为ShDHNo芯片及实时定量PCR分析表明,该基因的表达受低温胁迫诱导,且在抗性材料中的表达高于冷敏感材料。同时,该基因也受干旱、高盐、渗透胁迫、ABA和JA诱导。在普通番茄LA4024中超量表达ShDHN显著提高了植株的抗寒和抗旱性,促进了幼苗在高盐及渗透胁迫下的生长发育。同野生型相比,转基因株系在低温和干旱胁迫下积累更多的脯氨酸,具有更高的SOD和CAT活性,逆境条件下质膜的伤害程度降低。低温胁迫下,转基因株系植株叶片中H2O2和O2-的积累明显少于野生型植株。超量表达ShDHN提高了SOD1、GST和PRl的表达,降低了POD、LOX和PR2的表达。这些结果表明ShDHN可能通过提高植株在逆境条件下ROS的清除能力、促进渗透调节物质的积累、调节其它信号途径及相关基因的表达来增强植株对非生物逆境的抗性。
     5.差异表达基因ShCHL P的功能鉴定:根据芯片分析结果,从LA1777中克隆了一牻牛儿基牻牛儿基还原酶基因,命名为ShCHL P。组织表达谱分析表明,该基因在叶和茎中表达量较高,在根中基本不表达。干旱、高盐、低温、高温及氧化胁迫下,该基因的表达被显著抑制。我们构建了ShCHL P超量表达的载体,并转化普通番茄LA4024。在获得超量表达株系的同时,也发现了几个共抑制株系。超量表达ShCHLP提高了植株叶片叶绿素含量,促进了幼苗在正常、高盐及渗透胁迫下的生长发育;而共抑制株系植株叶片黄化,茎、叶及果实中的叶绿素含量明显降低,幼苗在高盐及渗透胁迫下的生长发育显著受到抑制。超量或抑制该基因的表达均降低了氧化胁迫对植株的伤害,导致这种表型的分子机制有待于进一步分析。这些结果表明,CHLP是植物叶绿素生物合成所必需的,该基因在植物生长发育及非生物逆境应答中起着重要作用。
     6.差异表达转录因子ShNAC的功能鉴定:根据芯片结果,从LA1777中克隆了一NAC转录因子,命名为ShNAC。该基因编码405个氨基酸,在其蛋白N端有一NAM保守结构域。ShNAC在LA1777各组织中呈组成型表达,以果实和花中的表达量最高,在茎中的表达最低。低温、干旱和高盐胁迫均能诱导该基因的表达。正常生长条件下,超量表达ShNAC转基因植株较野生型LA4024植株变矮,且茎基部变软,植株不能直立。超量表达ShNAC转基因植株较野生型对低温和干旱更敏感。ShNAC可能是植物生长发育及非生物逆境应答的一个负调节因子。
The cultivated tomato(Solanum lycopersicum) is unable to cold acclimate, and easily suffers cold injury at all stages of plant growth and development. Several practical benefits of increased cold tolerance in cultivated tomato would be:prevention of plant and fruit damage from cold stress, extension of the growing season, and reduction of input of facility cultivation. Thus, screening of cold tolerant tomato resources, and breeding new varieties that can tolerate cold stress have important practical value.
     The C-repeat binding factor (CBF) cold response pathway is currently the best documented system that plays a pivotal role in gene regulation during cold acclimation. Tomato also has the CBF cold response pathway, but its function appears to be considerably smaller. The molecular basis of cold adaptation in non-cold-acclimated tomato may differ from that of the cold-acclimated plants.
     The wild tomato S. habrochaites is more tolerant to low temperature than cultivated tomato. Significant progress has been made in the past decade in elucidating the differences in physiological responses under cold stress between S. habrochaites and S. lycopersicum. However, the differences in global gene expression under cold stress between the two genotypes and the molecular mechanisms responsible for cold tolerance in S. habrochaites are largely unknown.
     In this study, seedlings of S. habrochaites LA1777, S. lycopersicum LA4024, and introgression lines (ILs) of them, were evaluated for their tolerance to low temperature. To explore the molecular mechanisms of cold tolerance in tomato, the TOM2array was used to compare the transcriptome differences between the tolerant genotypes (the donor parent LA1777and the sleeted IL LA3969) and the sensitive one (the recurrent parent LA4024) under cold stress. Based on the microarray results, three cold-responsive genes were cloned from S. habrochaites and functionally analyzed. The main results are as follows:
     1. Identification of chromosomal regions conferring cold tolerance in S. habrochaites. A system for cold tolerance evaluation of the tomato seedlings was developed by comparing phenotypic and physiological responses of seedlings of S. habrochaites LAI777and S. lycopersicum LA4024under cold stress. Seedlings of LAI777ILs were evaluated under low temperature (4℃) using this system. Twenty-two ILs with S. habrochaites introgressions on chromosomes1,2,3,4,5,6,7,9,11, and12exhibited less severe wilting than LA4024after3d of cold treatment. Among these, the phenotypic performance of LA3969was quite close to that of LA1777during cold stress and recovery, and showed stronger cold tolerance than LA4024and other ILs. LA3969and LA1777suffered less membrane damage during cold stress and showed significantly higher survival rates than LA4024after10d of cold stress and recovery for one week. LA3969contains a large introgressed segment from S. habrochaites on chromosome12. This indicates that at least one major QTL/gene responsible for cold tolerance is located on S. habrochaites chromosome12.
     2. The molecular differences between tolerant and sensitive tomato in reponse to cold stress. Transcriptome analysis of LA1777, LA3969, and LA4024seedlings under cold stress were performed using TOM2array. After3d of cold stress (4℃), a total of1613,1456, and1523cold-responsive genes were identified in LA1777, LA3969, and LA4024, respectively. Among these,103cold-responsive genes were exclusively identified in both LA1777and LA3969, whereas196cold-responsive genes were uniquely observed in LA4024. These genes may play important roles in conferring tolerance or sensitivity to chilling in tomato. Functional classification of cold responsive genes showed that more genes involved in 'response to stress','response to endogenous stimulus','signal transduction','transcription','biosynthetic process','secondary metabolic process', and 'protein metabolic process' were up-regulated in the two tolerant genotypes, whereas more genes involved in photosynthesis were down-regulated in the sensitive genotype. Gene ontology (GO) term enrichment analysis revealed that more GO biological process terms were significantly enriched among the up-regulated genes in the two tolerant genotypes, whereas more biological processes were significantly repressed by cold stress in the sensitive one. A total of7biochemical pathways varied significantly between tolerant and sensitive genotypes under cold stress, including jasmonic acid biosynthesis, brassinosteroid metabolic process, phenylpropanoid biosynthesis, starch degradation, leucine biosynthesis, Calvin cycle, and removal of superoxide radicals.
     3. The molecular mechanisms of cold tolerance in tomato. A total of92cold-responsive genes with statistically significant differences in expression between the two tolerant and sensitive genotypes were identified. In addition, the expression of126 genes in L1777showed significantly different from that in LA3969and LA4024under cold stress. These genes may play important roles in conferring cold tolerance in LA3969and/or LA1777. Among these,80genes were located on the introgressed chromosomal segments of the22selected cold-tolerant ILs and/or cold tolerance QTLs identified previously in S. habrochaites. Of these,11genes were localized to the introgressed chromosomal segment of LA3969. These genes may play critical roles in conferring cold tolerance in LA3969. GO term enrichment analysis showed that many genes involved in calcium-mediated signaling, ROS and hormone homeostasis were differentially expressed. Calcium, ROS, and hormones as signaling molecules may play important roles in regulating gene expression in response to cold stress in tomato. The modulation of these signaling pathways caused differential expression of many transcripts between tolerant and sensitive genotypes under cold stress, including transcription factors (e.g., MYBs, HSFs, and NACs), post-translational modification proteins (e.g., SKP2A, LAP-A1, and XERICOs), functional proteins (e.g., HSPs, PRs, and dehydrin), and metabolic enzymes (e.g., GSTs, LOXs, and BAM), and etc. These specific modifications make LA1777and LA3969more cold tolerant than LA4024.
     4. Functional characterization of differentially expressed gene ShDNN. Based on the microarray results, a dehydrin gene was isolated form S. habrochaites and designated ShDHN. Both microarray and quantitative real-time RT-PCR analysis indicated that the expression of this gene was more strongly induced by cold stress in the tolerant genotype than the sensitive one. In addition, ShDHN expression was also induced by drought, salt, osmotic stress, ABA, and MeJA. Overexpression of ShDHN in LA4024increased tolerance to cold and drought stress, and improved the early seedling development under salt and osmotic stress. Compared with the wild type, the transgenic lines accumulated more proline, maintained higher activities of SOD and CAT, and suffered less membrane damage under cold and drought stress. Under cold stress, the accumulation of H2O2and O2-was less in the transgenic plants than in the wild type. The expression of SOD1, GST, and PR1were increased in the ShDHN overexpression lines, while the transcripts of POD, LOX, and PR2were inhibited. These results indicate ShDHN confers abiotic stress tolerance by enhancing ROS scavenging capacity, accumulating higher amounts of compatible solutes, and regulating other signaling pathways and genes expression.
     5. Functional characterization of differentially expressed gene ShCHL P. Based on the microarray results, a geranylgeranyl reductase gene, was isolated from LA1777and designated ShCHL P. ShCHL P is highly expressed in the leaf and stem, and nearly no expression in root. Its expression was suppressed by drought, salt, low or high temperature, and oxidative stress. The overexpression vector of ShCHL P was constructed and translated into the cultivated tomato LA4024. Interestingly, we got both overexpression and co-suppression of CHL P in transgenic tomato plants. Overexpression of ShCHL P increased the leaf chlorophyll content, improved the early seedling development under normal, slat and osmotic stress conditions. Whereas the leaves of the co-suppression lines were yellow, the contents of chlorophyll in leaf, stem, and even fruit were decreased, and the early seedling development was significantly inhibited in co-suppression lines under slat and osmotic stress conditions. Both overexpression and co-suppression of CHL P transgenic plants enhanced oxidative stress tolerance. The molecular machines lead to this need to be further analysis. The results indicate that CHL P is required for chlorophyll biosynthesis, and it plays an important role in growth and development, and abiotic stress response in plants.
     6. Functional analysis of differentially expressed transcription factor ShNAC. Based on the microarray results, a NAC transcription factor (ShNAC) was isolated from LA1777. ShNAC encodes a protein of405amino acids, which has a conserved NAM domain in N-terminal. ShNAC is constitutively expressed in various tissues of LA1777, and the expression in fruit and flower is the highest, whereas the transcript abundance in stem is the lowest. Under normal growth condition, the plant height of ShNAC overexpression lines was significant lower than that of the wild type. The bottom of stem of the transgenic plant was flexible, and the plant was unable to stand erect. The ShNAC transgenic plants were hypersensitive to drought and cold stress compared with wild type. The results indicate ShNAC may act a negative regulator of growth and development, and abiotic stress responses in tomato.
引文
1.段伟,李新国,孟庆伟,赵世杰.低温下的植物光抑制机理.西北植物学报,2003,6:1012-1023
    2.弓鹏娟.基于潘那利番茄渐渗系发掘干旱胁迫响应基因及功能分析.[博士论文].武汉:华中农业大学图书馆,2010
    3.郭彩杰,侯丽霞,崔娜,韩明利.番茄耐低温相关基因的SRAP标记筛选.植物生理学报,2011,1:102-106
    4.林多.番茄低温耐受性机理及遗传规律的研究.[博士论文].沈阳:沈阳农业大学图书馆,2000
    5.刘冰,杜永臣,王孝宣,国艳梅,高建昌,朱德蔚,戴善书.利用高代回交群体定位醋栗番茄发芽期与幼苗期耐冷QTL.园艺学报,2010,7:1093-1101
    6.刘磊,宋燕,李君明.利用渐渗系群体初步定位番茄苗期耐旱QTL.园艺学报,2011,10:1921-1928
    7.刘玉凤,李天来,焦晓赤.短期夜间亚低温及恢复对番茄光合作用和蔗糖代谢的影响.园艺学报,2011,4:683-691
    8.路平.番茄渐渗系抗旱性研究.[博士论文].兰州:甘肃农业大学图书馆,2008
    9.欧阳波.几种病程相关蛋白基因转化番茄的研究.[博士论文].武汉:华中农业大学图书馆,2003
    10.潘卫东,李晓峰,陈双燕,刘公社.植物维生素E合成相关酶基因的克隆及其在体内功能研究进展.植物学通报,2006,1:68-77
    11.齐红岩,华利静,赵乐,汤羽凡.夜间低温对不同基因型番茄叶绿素荧光参数的影响.华北农学报,2011,4:222-227
    12.王恩旭.四个番茄抗旱相关基因的功能分析.[硕士论文].武汉:华中农业大学图书馆,20011
    13.王富.番茄(Lycopersicon esculentum)耐低温研究.哈尔滨:东北农业大学图书馆,2000
    14.王平荣,张帆涛,高家旭,孙小秋,邓晓建.高等植物叶绿素生物合成的研究进展.西北植物学报,2009,3:629-636
    15.王孝宣,李树德,东惠茹,高振华,戴善书.低温胁迫对番茄苗期和花期若干性状的影响.园艺学报,1996,4:349-354
    16.余庆辉,刘磊,王柏柯,杨生保,杨涛,李君明,侯喜林.利用Solanum pennellii LA716渐渗系群体对番茄苗期耐盐QTLs进行定位及QTL效应的初步分析。中国农业科学,2010a,4:761-768
    17.余庆辉,王柏柯,刘磊,杨生保,杨涛,李君明,侯喜林.番茄芽期耐盐QTL定位及其效应的初步分析.西北植物学报,2010b,9:1792-1798
    18.张春芝,刘磊,孙玉燕,迟庆勇,徐光,甘中祥,周国龙,李君明.番茄渐渗系群体及其利用研究进展.园艺学报,2010,11:1863-1872
    19.张一弓,张丽静,傅华.植物维生素E合成酶基因克隆及其逆境生理研究进展.草业学报,2009,5:235-242
    20.赵福宽,杨瑞,林成,高遐虹,程继鸿.番茄耐冷性RAPD分子标记的筛选及特异片段的克隆.中央民族大学学报(自然科学版),2004,1:70-74
    21.郑东虎,黄俊轩,王丽娟.番茄低温生态学的研究进展.北方园艺,2002,3:36-37
    22. Abbasi AR, Hajirezaei M, Hofius D, Sonnewald U, Voll LM. Specific roles of alpha-and gamma-tocopherol in abiotic stress responses of transgenic tobacco. Plant Physiol,2007,143:1720-1738
    23. Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, Zhu JK. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem,2006,281:37636-37645
    24. Airaki M, Leterrier M, Mateos RM, Valderrama R, Chaki M, Barroso JB, Del Rio LA, Palma JM, Corpas FJ. Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress. Plant Cell Environ,2012,35:281-295
    25. Al-aghabary K, Zhu Z, Shi Q. Influence of Silicon Supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition,2005,27:2101-2115
    26. Allakhverdiev SI, Murata N. Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem II in Synechocystis sp. PCC 6803. Biochim Biophys Acta,2004,1657:23-32
    27. Allen DJ, Ort DR. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci,2001,6:36-42
    28. Amara I, Odena A, Oliveira E, Moreno A, Masmoudi K, Pages M, Goday A. Insights into Maize LEA proteins:from proteomics to functional approaches. Plant Cell Physiol,2012,53:312-329
    29. An D, Yang J, Zhang P. Transcriptome profiling of low temperature-treated cassava apical shoots showed dynamic responses of tropical plant to cold stress. BMC Genomics,2012,13:64
    30. Andaya VC, Mackill DJ. QTLs conferring cold tolerance at the booting stage of rice using recombinant inbred lines from a japonica x indica cross. Theor Appl Genet, 2003,6:1084-1090
    31. Baena-Gonzalez E, Gray JC, Tyystjarvi E, Aro EM, Maenpaa P. Abnormal regulation of photosynthetic electron transport in a chloroplast ycf9 inactivation mutant. J Biol Chem,2001,276:20795-20802
    32. Barakat A, Sriram A, Park J, Zhebentyayeva T, Main D, Abbott A. Genome wide identification of chilling responsive microRNAs in Prunus persica. BMC Genomics, 2012,13:481
    33. Barclay KD, McKersie BD. Peroxidation reactions in plant membranes:effects of free fatty acids. Lipids,1994,29:877-883
    34. Barrera-Figueroa BE, Gao L, Wu Z, Zhou X, Zhu J, Jin H, Liu R, Zhu JK. High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice. BMC Plant Biol,2012,12:132
    35. Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant and soil,1973,1:205-207
    36. Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA. The enigmatic LEA proteins and other hydrophilins. Plant Physiol,2008,148:6-24
    37. Bita CE, Zenoni S, Vriezen WH, Mariani C, Pezzotti M, Gerats T. Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants. BMC Genomics,2011,12:384
    38. Brini F, Hanin M, Lumbreras V, Irar S, Pages M, Masmoudi K. Functional characterization of DHN-5, a dehydrin showing a differential phosphorylation pattern in two Tunisian durum wheat (Triticum durum Desf.) varieties with marked differences in salt and drought tolerance. Plant Sci,2007,172:20-28
    39. Brini F, Yamamoto A, Jlaiel L, Takeda S, Hobo T, Dinh HQ, Hattori T, Masmoudi K, Hanin M. Pleiotropic effects of the wheat dehydrin DHN-5 on stress responses in Arabidopsis. Plant Cell Physiol,2011,52:676-688
    40. Cabello JV, Arce AL, Chan RL. The homologous HD-Zip I transcription factors HaHBl and AtHB13 confer cold tolerance via the induction of pathogenesis-related and glucanase proteins. Plant J,2012,69:141-153
    41. Campbell SA, Close TJ. Dehydrins:genes, proteins, and associations with phenotypic traits. New Phytol,1997,137:61-74
    42. Campos PS, Quartin V, Ramalho JC, Nunes MA. Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. J Plant Physiol,2003,160:283-292
    43. Canady MA, Meglic V, Chetelat RT. A library of Solanum lycopersicoides introgression lines in cultivated tomato. Genome,2005,48:685-697
    44. Chao WS, Gu YQ, Pautot VV, Bray EA, Walling LL. Leucine aminopeptidase RNAs, proteins, and activities increase in response to water deficit, salinity, and the wound signals systemin, methyl jasmonate, and abscisic acid. Plant Physiol,1999,120: 979-992
    45. Chen L, Song Y, Li S, Zhang L, Zou C, Yu D. The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta,2012a,1819:120-128
    46. Chen L, Zhang Y, Ren Y, Xu J, Zhang Z, Wang Y. Genome-wide identification of cold-responsive and new microRNAs in Populus tomentosa by high-throughput sequencing. Biochem Biophys Res Commun,2012b,417:892-896
    47. Chen RD, Campeau N, Greer AF, Bellemare G, Tabaeizadeh Z. Sequence of a novel abscisic acid- and drought-induced cDNA from wild tomato (Lycopersicon chilense). Plant Physiol,1993,103:301
    48. Cheng C, Yun KY, Ressom HW, Mohanty B, Bajic VB, Jia Y, Yun SJ, de los Reyes BG An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice. BMC Genomics,2007,8: 175
    49. Chi Y, Cheng Y, Vanitha J, Kumar N, Ramamoorthy R, Ramachandran S, Jiang S Y. Expansion mechanisms and functional divergence of the glutathione s-transferase family in sorghum and other higher plants. DNA Res,2011,18:1-16
    50. Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK. ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev,2003,17:1043-1054
    51. Chinnusamy V, Zhu J, Zhu JK. Cold stress regulation of gene expression in plants. Trends Plant Sci,2007,12:444-451
    52. Choi H, Hwang B. The pepper extracellular peroxidase CaPO2 is required for salt, drought and oxidative stress tolerance as well as resistance to fungal pathogens. Planta,2012,6:1369-1382
    53. Choi HW, Kim YJ, Lee SC, Hong JK, Hwang BK. Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. Plant Physiol,2007,145:890-904
    54. Christiansen MW, Holm PB, Gregersen PL. Characterization of barley (Hordeum vulgare L.) NAC transcription factors suggests conserved functions compared to both monocots and dicots. BMC Res Notes,2011,4:302
    55. Chung E, Kim SY, Yi SY, Choi D. Capsicum annuum dehydrin, an osmotic-stress gene in hot pepper plants. Mol Cells,2003,15:327-332
    56. Ciftci-Yilmaz S, Mittler R. The zinc finger network of plants. Cell Mol Life Sci, 2008,65:1150-1160
    57. Clement M, Leonhardt N, Droillard MJ, Reiter I, Montillet JL, Genty B, Lauriere C, Nussaume L, Noel LD. The cytosolic/nuclear HSC70 and HSP90 molecular chaperones are important for stomatal closure and modulate abscisic acid-dependent physiological responses in Arabidopsis. Plant Physiol,2011,156:1481-1492
    58. Cole CN, Scarcelli JJ. Transport of messenger RNA from the nucleus to the cytoplasm. Curr Opin Cell Biol,2006,18:299-306
    59. Cosio C, Dunand C. Specific functions of individual class Ⅲ peroxidase genes. J Exp Bot,2009,60:391-408
    60. Craig W, Lenzi P, Scotti N, De Palma M, Saggese P, Carbone V, McGrath Curran N, Magee AM, Medgyesy P, Kavanagh TA, Dix PJ, Grillo S, Cardi T. Transplastomic tobacco plants expressing a fatty acid desaturase gene exhibit altered fatty acid profiles and improved cold tolerance. Transgenic Res,2008,17:769-782
    61. Dal Cin V, Kevany B, Fei Z, Klee HJ. Identification of Solanum habrochaites loci that quantitatively influence tomato fruit ripening-associated ethylene emissions. Theor Appl Genet,2009,119:1183-1192
    62. Davik J, Koehler G, From B, Torp T, Rohloff J, Eidem P, Wilson RC, Sonsteby A, Randall SK, Alsheikh M. Dehydrin, alcohol dehydrogenase, and central metabolite levels are associated with cold tolerance in diploid strawberry (Fragaria spp.). Planta,2012,10.1007/s00425-012-1771-2
    63. Delage E, Ruelland E, Guillas I, Zachowski A, Puyaubert J. Arabidopsis type-Ⅲ phosphatidylinositol 4-kinases betal and beta2 are upstream of the phospholipase C pathway triggered by cold exposure. Plant Cell Physiol,2012,53:565-576
    64. Delk NA, Johnson KA, Chowdhury NI, Braam J. CML24, regulated in expression by diverse stimuli, encodes a potential Ca2+ sensor that functions in responses to abscisic acid, daylength, and ion stress. Plant Physiol,2005,139:240-253
    65. Dharmasiri N, Dharmasiri S, Estelle M. The F-box protein TIR1 is an auxin receptor. Nature,2005,435:441-445
    66. Dias PM, Brunel-Muguet S, Durr C, Huguet T, Demilly D, Wagner MH, Teulat-Merah B. QTL analysis of seed germination and pre-emergence growth at extreme temperatures in Medicago truncatula. Theor Appl Genet,2011,122: 429-444
    67. Dominguez T, Hernandez ML, Pennycooke JC, Jimenez P, Martinez-Rivas JM, Sanz C, Stockinger EJ, Sanchez-Serrano JJ, Sanmartin M. Increasing omega-3 desaturase expression in tomato results in altered aroma profile and enhanced resistance to cold stress. Plant Physiol,2010,153:655-665
    68. Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci USA,2006,103:8281-8286
    69. Dong MA, Farre EM, Thomashow MF. Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis. Proc Natl Acad Sci USA,2011,108:7241-7246
    70. Du J-B, Yuan S, Chen Y-E, Sun X, Zhang Z-W, Xu F, Yuan M, Shang J, Lin H-H. Comparative expression analysis of dehydrins between two barley varieties, wild barley and Tibetan hulless barley associated with different stress resistance. Acta Physiologiae Plantarum,2011,2:567-574
    71. Dunker AK, Silman I, Uversky VN, Sussman JL. Function and structure of inherently disordered proteins. Curr Opin Struct Biol,2008,18:756-764
    72. Duque P. A role for SR proteins in plant stress responses. Plant Signal Behav,2011, 6:49-54
    73. Eriksson SK, Kutzer M, Procek J, Grobner G, Harry son P. Tunable membrane binding of the intrinsically disordered dehydrin Lti30, a cold-induced plant stress protein. Plant Cell,2011,23:2391-2404
    74. Fan W, Zhang M, Zhang H, Zhang P. Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PLoS One,2012,7:e37344
    75. Fei Z, Joung JG, Tang X, Zheng Y, Huang M, Lee JM, McQuinn R, Tieman DM, Alba R, Klee HJ, Giovannoni JJ. Tomato Functional Genomics Database:a comprehensive resource and analysis package for tomato functional genomics. Nucleic Acids Res,2011,39:D1156-1163
    76. Feng XM, Zhao Q, Zhao LL, Qiao Y, Xie XB, Li HF, Yao YX, You CX, Hao YJ. The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple. BMC Plant Biol,2012,12:22
    77. Fernandez P, Di Rienzo J, Fernandez L, Hopp HE, Paniego N, Heinz RA. Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis. BMC Plant Biol,2008, 8:11
    78. Foolad MR, Chen FQ, Lin GY. RFLP mapping of QTLs conferring cold tolerance during seed germination in an interspecific cross of tomato. Molecular Breeding, 1998,6:519-529
    79. Foolad MR, Lin GY. Relationship between cold tolerance during seed germination and vegetative growth in tomato:germplasm evaluation. Journal of the American Society for Horticultural Science,2000,125:679-683
    80. Foolad MR, Lin GY. Genetic analysis of cold tolerance during vegetative growth in tomato, Lycopersicon esculentum Mill. Euphytica,2001,1:105-111
    81. Foolad MR, Lin GY, Chen FQ. Comparison of QTLs for seed germination under non-stress, cold stress and salt stress in tomato. Plant Breeding,1999,118:167-173
    82. Fowler JH, Narvaez-Vasquez J, Aromdee DN, Pautot V, Holzer FM, Walling LL. Leucine aminopeptidase regulates defense and wound signaling in tomato downstream of jasmonic acid. Plant Cell,2009,21:1239-1251
    83. Fowler S, Thomashow MF. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell,2002,14:1675-1690
    84. Frary A, Gol D, Keles D, Okmen B, Pinar H, Sigva HO, Yemenicioglu A, Doganlar S. Salt tolerance in Solanum pennellii:antioxidant response and related QTL. BMC Plant Biol,2010,10:58
    85. Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD. fw2.2:a quantitative trait locus key to the evolution of tomato fruit size. Science,2000,289:85-88
    86. Fujino K, Sekiguchi H, Sato T, Kiuchi H, Nonoue Y, Takeuchi Y, Ando T, Lin SY, Yano M. Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.). Theor Appl Genet,2004,108:794-799
    87. Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S, Kanamori N, Umezawa T, Fujita M, Maruyama K, Ishiyama K, Kobayashi M, Nakasone S, Yamada K, Ito T, Shinozaki K, Yamaguchi-Shinozaki K. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol,2009,50:2123-2132
    88. Fukao T, Xu K, Ronald PC, Bailey-Serres J. A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell,2006,18:2021-2034
    89. Fung RW, Wang CY, Smith DL, Gross KC, Tao Y, Tian M. Characterization of alternative oxidase (AOX) gene expression in response to methyl salicylate and methyl jasmonate pre-treatment and low temperature in tomatoes. J Plant Physiol, 2006,163:1049-1060
    90. Galant A, Preuss ML, Cameron JC, Jez JM. Plant glutathione biosynthesis:diversity in biochemical regulation and reaction products. Front Plant Sci,2011,2:45
    91. Giannino D, Condello E, Bruno L, Testone G, Tartarini A, Cozza R, Innocenti AM, Bitonti MB, Mariotti D. The gene geranylgeranyl reductase of peach (Prunus persica [L.] Batsch) is regulated during leaf development and responds differentially to distinct stress factors. JExp Bot,2004,55:2063-2073
    92. Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem,2010,48:909-930
    93. Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J,1998,16: 433-442
    94. Gong P, Zhang J, Li H, Yang C, Zhang C, Zhang X, Khurram Z, Zhang Y, Wang T, Fei Z, Ye Z. Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. J Exp Bot, 2010,61:3563-3575
    95. Gong Z, Dong CH, Lee H, Zhu J, Xiong L, Gong D, Stevenson B, Zhu JK. A DEAD box RN A helicase is essential for mRN A export and important for development and stress responses in Arabidopsis. Plant Cell,2005,17:256-267
    96. Gong Z, Lee H, Xiong L, Jagendorf A, Stevenson B, Zhu JK. RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc Natl Acad Sci USA,2002,99:11507-11512
    97. Goulas E, Schubert M, Kieselbach T, Kleczkowski LA, Gardestrom P, Schroder W, Hurry V. The chloroplast lumen and stromal proteomes of Arabidopsis thaliana show differential sensitivity to short- and long-term exposure to low temperature. Plant J,2006,47:720-734
    98. Grant EH, Fujino T, Beers EP, Brunner AM. Characterization of NAC domain transcription factors implicated in control of vascular cell differentiation in Arabidopsis and Populus. Planta,2010,232:337-352
    99. Gulick PJ, Drouin S, Yu Z, Danyluk J, Poisson G, Monroy AF, Sarhan F. Transcriptome comparison of winter and spring wheat responding to low temperature. Genome,2005,48:913-923
    100. Hamid Badawi G, Yamauchi Y, Shimada E, Sasaki R, Kawano N, Tanaka K, Tanaka K. Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci,2004,166: 919-928
    101. Han H, Gao S, Li B, Dong XC, Feng HL, Meng QW. Overexpression of violaxanthin de-epoxidase gene alleviates photoinhibition of PSⅡ and PSⅠ in tomato during high light and chilling stress. J Plant Physiol,2010,167:176-183
    102. Hand SC, Menze MA, Toner M, Boswell L, Moore D. LEA proteins during water stress:not just for plants anymore. Annu Rev Physiol,2011,73:115-134
    103.Hanin M, Brini F, Ebel C, Toda Y, Takeda S, Masmoudi K. Plant dehydrins and stress tolerance:versatile proteins for complex mechanisms. Plant Signal Behav, 2011,6:1503-1509
    104. Hannah MA, Heyer AG, Hincha DK. A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genet,2005,1:e26
    105. Hanson P, Sitathani K, Sadashiva A, Yang R-y, Graham E, Ledesma D. Performance of Solanum habrochaites LA1777 introgression line hybrids for marketable tomato fruit yield in Asia. Euphytica,2007,158:167-178
    106. Hao YJ, Wei W, Song QX, Chen HW, Zhang YQ, Wang F, Zou HF, Lei G, Tian AG, Zhang WK, Ma B, Zhang JS, Chen SY. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J,2011, 68:302-313
    107.Hara M, Shinoda Y, Tanaka Y, Kuboi T. DNA binding of citrus dehydrin promoted by zinc ion. Plant Cell Environ,2009,32:532-541
    108.Hara M, Terashima S, Fukaya T, Kuboi T. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta, 2003,217:290-298
    109. Hase S, Takahashi S, Takenaka S, Nakaho K, Arie T, Seo S, Ohashi Y, Takahashi H. Involvement of jasmonic acid signalling in bacterial wilt disease resistance induced by biocontrol agent Pythium oligandrum in tomato. Plant Pathology,2008,57: 870-876
    110.Hauser F, Waadt R, Schroeder JI. Evolution of abscisic acid synthesis and signaling mechanisms. Curr Biol,2011,21:R346-355
    111.Havaux M, Lutz C, Grimm B. Chloroplast membrane photostability in chlP transgenic tobacco plants deficient in tocopherols. Plant Physiol,2003,132: 300-310
    112.Hayano-Kanashiro C, Calderon-Vazquez C, Ibarra-Laclette E, Herrera-Estrella L, Simpson J. Analysis of gene expression and physiological responses in three Mexican maize landraces under drought stress and recovery irrigation. PLoS One, 2009,4:e7531
    113.Hewezi T, Leger M, E1 Kayal W, Gentzbittel L. Transcriptional profiling of sunflower plants growing under low temperatures reveals an extensive down-regulation of gene expression associated with chilling sensitivity. J Exp Bot, 2006,57:3109-3122
    114.Hirayama T, Shinozaki K. Research on plant abiotic stress responses in the post-genome era:past, present and future. Plant Jl,2010,61:1041-1052
    115.Hirose Y, Manley JL. RNA polymerase Ⅱ and the integration of nuclear events. Genes Dev,2000,14:1415-1429
    116.Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA,2006,103:12987-12992
    117. Hu L, Wang Z, Du H, Huang B. Differential accumulation of dehydrins in response to water stress for hybrid and common bermudagrass genotypes differing in drought tolerance. J Plant Physiol,2010,167:103-109
    118.Hu X, Li W, Chen Q, Yang Y. Early signal transduction linking the synthesis of jasmonic acid in plant. Plant Signal Behav,2009,4:696-697
    119. Hutchison CE, Li J, Argueso C, Gonzalez M, Lee E, Lewis MW, Maxwell BB, Perdue TD, Schaller GE, Alonso JM, Ecker JR., Kieber JJ. The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. Plant Cell,2006,18:3073-3087
    120. Islam MR, Aikawa S, Midorikawa T, Kashino Y, Satoh K, Koike H. slr 1923 of Synechocystis sp. PCC6803 is essential for conversion of 3,8-divinyl(proto)chlorophyll(ide) to 3-monovinyl(proto)chlorophyll(ide). Plant Physiol,2008,148:1068-1081
    121.Iwata N, Fujino K. Genetic effects of major QTLs controlling low-temperature germinability in different genetic backgrounds in rice (Oryza sativa L.). Genome, 2010,53:763-768
    122.Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science,1998,280:104-106
    123. Jaspers P, Kangasjarvi J. Reactive oxygen species in abiotic stress signaling. Physiol Plant,2010,138:405-413
    124. Jeon J, Kim NY, Kim S, Kang NY, Novak O, Ku SJ, Cho C, Lee DJ, Lee EJ, Strnad M, Kim J. A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem,2010,285: 23371-23386
    125. Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Do Choi Y, Kim M, Reuzeau C, Kim JK. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol,2010,153:185-197
    126. Jimenez A, Hernandez JA, Del Rio LA, Sevilla F. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol,1997,114:275-284
    127. John Goodstal F, Kohler GR, Randall LB, Bloom AJ, St Clair DA. A major QTL introgressed from wild Lycopersicon hirsutum confers chilling tolerance to cultivated tomato (Lycopersicon esculentum). Theor Appl Genet,2005,111:898-905
    128. Joung JG, Corbett AM, Fellman SM, Tieman DM, Klee HJ, Giovannoni JJ, Fei Z. Plant MetGenMAP:an integrative analysis system for plant systems biology. Plant Physiol,2009,151:1758-1768
    129. Jurado S, Diaz-Trivino S, Abraham Z, Manzano C, Gutierrez C, del Pozo Jc. SKP2A protein, an F-box that regulates cell division, is degraded via the ubiquitin pathway. Plant Signal Behav,2008,3:810-812
    130. Kaneda T, Taga Y, Takai R, Iwano M, Matsui H, Takayama S, Isogai A, Che FS. The transcription factor OsNAC4 is a key positive regulator of plant hypersensitive cell death. EMBO J,2009,28:926-936
    131. Kaplan F, Guy CL. beta-Amy lase induction and the protective role of maltose during temperature shock. Plant Physiol,2004,135:1674-1684
    132. Kaplan F, Guy CL. RNA interference of Arabidopsis beta-amylase 8 prevents maltose accumulation upon cold shock and increases sensitivity of PSⅡ photochemical efficiency to freezing stress. Plant J,2005,44:730-743
    133. Kaplan F, Kopka J, Sung DY, Zhao W, Popp M, Porat R, Guy CL. Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J,2007,50:967-981
    134.Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K. A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol, 2004,45:346-350
    135.Khodakovskaya M, McAvoy R, Peters J, Wu H, Li Y. Enhanced cold tolerance in transgenic tobacco expressing a chloroplast omega-3 fatty acid desaturase gene under the control of a cold-inducible promoter. Planta,2006,223:1090-1100
    136.Khraiwesh B, Zhu JK, Zhu J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta,2012,1819:137-148
    137.Kidokoro S, Maruyama K, Nakashima K, Imura Y, Narusaka Y, Shinwari ZK, Osakabe Y, Fujita Y, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis. Plant Physiol,2009,151:2046-2057
    138.Kieffer M, Neve J, Kepinski S. Defining auxin response contexts in plant development. Curr Opin Plant Biol,2010,13:12-20
    139. Kim JY, Kwak KJ, Jung HJ, Lee HJ, Kang H. MicroRNA402 affects seed germination of Arabidopsis thaliana under stress conditions via targeting DEMETER-LIKE Protein 3 mRNA. Plant Cell Physiol,2010,51:1079-1083
    140. Kirch HH, van Berkel J, Glaczinski H, Salamini F, Gebhardt C. Structural organization, expression and promoter activity of a cold-stress-inducible gene of potato (Solanum tuberosum L.). Plant Mol Biol,1997,33:897-909
    141.Ko JH, Yang SH, Han KH. Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J,2006,47:343-355
    142.Koag MC, Wilkens S, Fenton RD, Resnik J, Vo E, Close TJ. The K-segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. Plant Physiol,2009,150:1503-1514
    143.Koiwa H, Barb AW, Xiong L, Li F, McCully MG, Lee BH, Sokolchik I, Zhu J, Gong Z, Reddy M, Sharkhuu A, Manabe Y, Yokoi S, Zhu JK, Bressan RA, Hasegawa PM. C-terminal domain phosphatase-like family members (AtCPLs) differentially regulate Arabidopsis thaliana abiotic stress signaling, growth, and development. Proc Natl Acad Sci U S A,2002,99:10893-10898
    144.Koseki M, Kitazawa N, Yonebayashi S, Maehara Y, Wang Z-X, Minobe Y. Identification and fine mapping of a major quantitative trait locus originating from wild rice, controlling cold tolerance at the seedling stage. Mol Genet Genomics, 2010,1:45-54
    145.Kosova K, Tom Prasil I, Prasilova P, Vitamvas P, Chrpova J. The development of frost tolerance and DHN5 protein accumulation in barley (Hordeum vulgare) doubled haploid lines derived from Atlas 68 x Igri cross during cold acclimation. J Plant Physiol,2010,167:343-350
    146.Kosova K, Vitamvas P, Prasil IT. Expression of dehydrins in wheat and barley under different temperatures. Plant Sci,2011,180:46-52
    147.Kovacs D, Kalmar E, Torok Z, Tompa P. Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol,2008,147:381-390
    148. Krol M, Ivanov AG, Jansson S, Kloppstech K, Huner NP. Greening under high light or cold temperature affects the level of xanthophyll-cycle pigments, early light-inducible proteins, and light-harvesting polypeptides in wild-type barley and the chlorina f2 mutant. Plant Physiol,1999,120:193-204
    149. Kurkela S, Borg-Franck M. Structure and expression of kin2, one of two cold-and ABA-induced genes of Arabidopsis thaliana. Plant Mol Biol,1992,19:689-692
    150. Kurkela S, Franck M. Cloning and characterization of a cold-and ABA-inducible Arabidopsis gene. Plant Mol Biol,1990,15:137-144
    151. Lang V, Palva ET. The expression of a rab-related gene, rab18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh. Plant Mol Biol,1992,20:951-962
    152.Laudencia-Chingcuanco D, Ganeshan S, You F, Fowler B, Chibbar R, Anderson O. Genome-wide gene expression analysis supports a developmental model of low temperature tolerance gene regulation in wheat (Triticum aestivum L.). BMC Genomics,2011,12:299
    153. Le Martret B, Poage M, Shiel K, Nugent GD, Dix PJ. Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol J,2011,9:661-673
    154. Lee BH, Henderson DA, Zhu JK. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell,2005,17:3155-3175
    155. Lee BH, Kapoor A, Zhu J, Zhu JK. STABILIZED1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis. Plant Cell,2006,18:1736-1749
    156. Lee CM, Thomashow MF. Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Proc Natl Acad Sci U S A,2012,109:15054-15059
    157. Lee H, Guo Y, Ohta M, Xiong L, Stevenson B, Zhu JK. LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J,2002,21:2692-2702
    158. Lee H, Xiong L, Gong Z, Ishitani M, Stevenson B, Zhu JK. The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo--cytoplasmic partitioning. Genes Dev, 2001,15:912-924
    159. Lee S, Seo PJ, Lee HJ, Park CM. A NAC transcription factor NTL4 promotes reactive oxygen species production during drought-induced leaf senescence in Arabidopsis. Plant J,2012,70:831-844
    160. Li HW, Zang BS, Deng XW, Wang XP. Overexpression of the trehalose-6-phosphate synthase gene OsTPSl enhances abiotic stress tolerance in rice. Planta,2011,234: 1007-1018
    161. Li J, Liu L, Bai Y, Finkers R, Wang F, Du Y, Yang Y, Xie B, Visser RGF, van Heusden AW. Identification and mapping of quantitative resistance to late blight {Phytophthora infestans) in Solamum habrochaites LA1777. Euphytica,2011,179: 427-438
    162. Li Z, Keasling JD, Niyogi KK. Overlapping photoprotective function of vitamin E and carotenoids in Chlamydomonas. Plant Physiol,2012,158:313-323
    163. Lin CH, Peng PH, Ko CY, Markhart AH, Lin TY. Characterization of a novel Y2K-type dehydrin VrDhnl from Vigna radiata. Plant Cell Physiol,2012,53: 930-942
    164. Lin YX, Jiang HY, Chu ZX, Tang XL, Zhu SW, Cheng BJ. Genome-wide identification, classification and analysis of heat shock transcription factor family in maize. BMC Genomics,2011,12:76
    165.Lippman ZB, Semel Y, Zamir D. An integrated view of quantitative trait variation using tomato interspecific introgression lines. Curr Opin Genet Dev,2007,17: 545-552
    166. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell,1998,10:1391-1406
    167. Liu X, Hong L, Li XY, Yao Y, Hu B, Li L. Improved drought and salt tolerance in transgenic Arabidopsis overexpressing a NAC transcriptional factor from Arachis hypogaea. Biosci Biotechnol Biochem,2011,75:443-450
    168. Llorente F, Oliveros JC, Martinez-Zapater JM, Salinas J. A freezing-sensitive mutant of Arabidopsis, frs1, is a new aba3 allele. Planta,2000,211:648-655
    169.Lovdal T, Lillo C. Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress. Anal Biochem, 2009,387:238-242
    170.Maeda H, DellaPenna D. Tocopherol functions in photosynthetic organisms. Curr Opin Plant Biol,2007,10:260-265
    171. Mao X, Zhang H, Qian X, Li A, Zhao G, Jing R. TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. JExp Bot,2012,63:2933-2946
    172.Mastrangelo AM, Belloni S, Barilli S, Ruperti B, Di Fonzo N, Stanca AM, Cattivelli L. Low temperature promotes intron retention in two e-cor genes of durum wheat. Planta,2005,221:705-715
    173. Mathieu S, Cin VD, Fei Z, Li H, Bliss P, Taylor MG, Klee HJ, Tieman DM. Flavour compounds in tomato fruits:identification of loci and potential pathways affecting volatile composition. J Exp Bot,2009,60:325-337
    174.Meinecke L, Alawady A, Schroda M, Willows R, Kobayashi MC, Niyogi KK, Grimm B, Beck CF. Chlorophyll-deficient mutants of Chlamydomonas reinhardtii that accumulate magnesium protoporphyrin IX. Plant Mol Biol,2010,72:643-658
    175.Michiels A, Van den Ende W, Tucker M, Van Riet L, Van Laere A. Extraction of high-quality genomic DNA from latex-containing plants. Anal Biochem,2003,315: 85-89
    176. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci,2002, 7:405-410
    177. Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F. ROS signaling:the new wave? Trends Plant Sci, 2011,16:300-309
    178.Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun DJ, Hasegawa PM. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell,2007,19:1403-1414
    179.Moller IM, Sweetlove LJ. ROS signalling--specificity is required. Trends Plant Sci, 2010,15:370-374
    180.Monforte AJ, Tanksley SD. Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background:a tool for gene mapping and gene discovery. Genome,2000,43:803-813
    181. Monroy AF, Dryanova A, Malette B, Oren DH, Ridha Farajalla M, Liu W, Danyluk J, Ubayasena LW, Kane K, Scoles GJ, Sarhan F, Gulick PJ. Regulatory gene candidates and gene expression analysis of cold acclimation in winter and spring wheat. Plant Mol Biol,2007,64:409-423
    182.Morohashi Y. Peroxidase activity develops in the micropylar endosperm of tomato seeds prior to radicle protrusion. JExp Bot,2002,53:1643-1650
    183.Morsy MR, Jouve L, Hausman JF, Hoffmann L, Stewart JM. Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. J Plant Physiol,2007,164:157-167
    184.Mouillon JM, Gustafsson P, Harryson P. Structural investigation of disordered stress proteins. Comparison of full-length dehydrins with isolated peptides of their conserved segments. Plant Physiol,2006,141:638-650
    185.Mu P, Feng D, Su J, Zhang Y, Dai J, Jin H, Liu B, He Y, Qi K, Wang H, Wang J. Cu2+triggers reversible aggregation of a disordered His-rich dehydrin MpDhnl2 from Musa paradisiaca. J Biochem,2011,150:491-499
    186.Munne-Bosch S. Linking tocopherols with cellular signaling in plants. New Phytol, 2005,166:363-366
    187.Munne-Bosch S, Weiler EW, Alegre L, Muller M, Duchting P, Falk J. Alpha-tocopherol may influence cellular signaling by modulating jasmonic acid levels in plants. Planta,2007,225:681-691
    188.Munoz-Mayor A, Pineda B, Garcia-Abellan JO, Anton T, Garcia-Sogo B, Sanchez-Bel P, Flores FB, Atares A, Angosto T, Pintor-Toro JA, Moreno V, Bolarin MC. Overexpression of dehydrin tasl4 gene improves the osmotic stress imposed by drought and salinity in tomato. J Plant Physiol,2012,169:459-468
    189. Muzzalupo I, Stefanizzi F, Perri E, Chiappetta AA. Transcript levels of CHL P gene, antioxidants and chlorophylls contents in olive (Olea europaea L.) pericarps:a comparative study on eleven olive cultivars harvested in two ripening stages. Plant Foods Hum Nutr,2011,66:1-10
    190.Nakamichi N, Kusano M, Fukushima A, Kita M, Ito S, Yamashino T, Saito K, Sakakibara H, Mizuno T. Transcript profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR arrhythmic triple mutant reveals a role for the circadian clock in cold stress response. Plant Cell Physiol,2009,50:447-462
    191.Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta,2012, 1819:97-103
    192.Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T, Sakakibara H, Schmulling T, Tran LS. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell,2011,23:2169-2183
    193.Nordin Henriksson K, Trewavas AJ. The effect of short-term low-temperature treatments on gene expression in Arabidopsis correlates with changes in intracellular Ca2+ levels. Plant Cell Environ,2003,26:485-496
    194.Novillo F, Medina J, Salinas J. Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc Natl Acad Sci USA,2007,104:21002-21007
    195.Ochoa-Alfaro AE, Rodriguez-Kessler M, Perez-Morales MB, Delgado-Sanchez P, Cuevas-Velazquez CL, Gomez-Anduro G, Jimenez-Bremont JF. Functional characterization of an acidic SK(3) dehydrin isolated from an Opuntia streptacantha cDNA library. Planta,2012,235:565-578
    196.Oono Y, Seki M, Satou M, lida K, Akiyama K, Sakurai T, Fujita M, Yamaguchi-Shinozaki K, Shinozaki K. Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays. Funct Integr Genomics,2006,6:212-234
    197. Orvar BL, Sangwan V, Omann F, Dhindsa RS. Early steps in cold sensing by plant cells:the role of actin cytoskeleton and membrane fluidity. Plant J,2000,23: 785-794
    198. Ouyang B, Yang T, Li H, Zhang L, Zhang Y, Zhang J, Fei Z, Ye Z. Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. JExp Bot,2007,58:507-520
    199. Page D, Gouble B, Valot B, Bouchet JP, Callot C, Kretzschmar A, Causse M, Renard CM, Faurobert M. Protective proteins are differentially expressed in tomato genotypes differing for their tolerance to low-temperature storage. Planta,2010,232: 483-500
    200.Palusa SG, Ali GS, Reddy AS. Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins:regulation by hormones and stresses. Plant J,2007,49: 1091-1107
    201. Park MR, Yun KY, Mohanty B, Herath V, Xu F, Wijaya E, Bajic VB, Yun SJ, De Los Reyes BG. Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development. Plant Cell Environ,2010, 33:2209-2230
    202. Pautot V, Holzer FM, Reisch B, Walling LL. Leucine aminopeptidase:an inducible component of the defense response in Lycopersicon esculentum (tomato). Proc Natl Acad Sci USA,1993,90:9906-9910
    203.Peleg Z, Blumwald E. Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol,2011,14:290-295
    204.Plazek A, Zur I. Cold-induced plant resistance to necrotrophic pathogens and antioxidant enzyme activities and cell membrane permeability. Plant Sci,2003,164: 1019-1028
    205.Puranik S, Sahu PP, Srivastava PS, Prasad M. NAC proteins:regulation and role in stress tolerance. Trends Plant Sci,2012,17:369-381
    206. Qin F, Shinozaki K, Yamaguchi-Shinozaki K. Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol,2011, 52:1569-1582
    207. Rapacz M, Tyrka M, Kaczmarek W, Gut M, Wolanin B, Mikulski W. Photosynthetic acclimation to cold as a potential physiological marker of winter barley freezing tolerance assessed under variable winter environment. Journal of Agronomy and Crop Science,2008,194:61-71
    208. Reddy AS, Ali GS, Celesnik H, Day IS. Coping with stresses:roles of calcium-and calcium/calmodulin-regulated gene expression. Plant Cell,2011,23:2010-2032
    209. Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet,2005,37:1141-1146
    210. Reusche M, Thole K, Janz D, Truskina J, Rindfleisch S, Drubert C, Polle A, Lipka V, Teichmann T. Verticillium Infection triggers VASCULAR-RELATED NAC DOMAIN7-dependent de novo xylem formation and enhances drought tolerance in Arabidopsis. Plant Cell,2012,9:3823-3827
    211.Rizza F, Pagani D, Stanca AM, Cattivelli L. Use of chlorophyll fluorescence to evaluate the cold acclimation and freezing tolerance of winter and spring oats. Plant Breeding,2001,120:389-396
    212. Roberts JK, DeSimone NA, Lingle WL, Dure L,3rd. Cellular concentrations and uniformity of cell-Type accumulation of two Lea proteins in Cotton Embryos. Plant Cell,1993,5:769-780
    213. Rohloff J, Kopka J, Erban A, Winge P, Wilson RC, Bones AM, Davik J, Randall SK, Alsheikh MK. Metabolite profiling reveals novel multi-level cold responses in the diploid model Fragaria vesca (woodland strawberry). Phytochemistry,2012,77: 99-109
    214.Rorat T, Szabala BM, Grygorowicz WJ, Wojtowicz B, Yin Z, Rey P. Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species. Planta,2006,224:205-221
    215.Roxas VP, Smith RK, Jr., Allen ER, Allen RD. Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotechnol,1997,15:988-991
    216.Ruibal C, Salamo IP, Carballo V, Castro A, Bentancor M, Borsani O, Szabados L, Vidal S. Differential contribution of individual dehydrin genes from Physcomitrella patens to salt and osmotic stress tolerance. Plant Sci,2012,190:89-102
    217.Sanan-Mishra N, Pham XH, Sopory SK, Tuteja N. Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci U S A,2005,102:509-514
    218. Sanchez-Bel P, Egea I, Sanchez-Ballesta MT, Sevillano L, Del Carmen Bolarin M, Flores FB. Proteome changes in tomato fruits prior to visible symptoms of chilling injury are linked to defensive mechanisms, uncoupling of photosynthetic processes and protein degradation machinery. Plant Cell Physiol,2012,53:470-484
    219. Sato Y, Masuta Y, Saito K, Murayama S, Ozawa K. Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene, OsAPXa. Plant Cell Rep,2011,30:399-406
    220.Sawicki M, Jeanson E, Celiz V, Clement C, Jacquard C, Vaillant-Gaveau N. Adaptation of grapevine flowers to cold involves different mechanisms depending on stress intensity. PLoS One,2012,7:e46976
    221. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J,2002,31:279-292
    222. Seo PJ, Park MJ, Lim MH, Kim SG, Lee M, Baldwin IT, Park CM. A self-regulatory circuit of CIRCADIAN CLOCK-ASSOCIATED1 underlies the circadian clock regulation of temperature responses in Arabidopsis. Plant Cell,2012,24:2427-2442
    223.Shekhawat U, Srinivas L, Ganapathi T. MusaDHN-1, a novel multiple stress-inducible SK3-type dehydrin gene, contributes affirmatively to drought-and salt-stress tolerance in banana. Planta,2011b,5:915-932
    224. Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell,2012,24:2578-2595
    225. Shpilyov AV, Zinchenko VV, Grimm B, Lokstein H. Chlorophyll a phytylation is required for the stability of photosystems Ⅰ and Ⅱ in the Cyanobacterium Synechocystis sp. PCC 6803. Plant J,2012,10.1111/tpj.12044
    226.Siddiqua M, Nassuth A. Vitis CBF1 and Vitis CBF4 differ in their effect on Arabidopsis abiotic stress tolerance, development and gene expression. Plant Cell Environ,2011,34:1345-1359
    227. Solanke A, Sharma A. Signal transduction during cold stress in plants. Physiology and Molecular Biology of Plants,2008,1:69-79
    228. Solanke AU, Sharma MK, Tyagi AK, Sharma AK. Characterization and phylogenetic analysis of environmental stress-responsive SAP gene family encoding A20/AN1 zinc finger proteins in tomato. Mol Genet Genomics,2009,282:153-164
    229. Steinhauser MC, Steinhauser D, Gibon Y, Bolger M, Arrivault S, Usadel B, Zamir D, Fernie AR, Stitt M. Identification of enzyme activity quantitative trait loci in a Solanum lycopersicum x Solanum pennellii introgression line population. Plant Physiol,2011,157:998-1014
    230. Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A,1997,94:1035-1040
    231. Sun JQ, Jiang HL, Li CY. Systemin/Jasmonate-mediated systemic defense signaling in tomato. Mol Plant,2011,4:607-615
    232. Sun W, Xu X, Zhu H, Liu A, Liu L, Li J, Hua X. Comparative transcriptomic profiling of a salt-tolerant wild tomato species and a salt-sensitive tomato cultivar. Plant Cell Physiol,2010,51:997-1006
    233. Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell,2004,16:2001-2019
    234. Suzuki N, Koussevitzky S, Mittler R, Miller G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ,2012,35:259-270
    235. Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R. Respiratory burst oxidases:the engines of ROS signaling. Curr Opin Plant Biol,2011,14:691-699
    236. Svensson JT, Crosatti C, Campoli C, Bassi R, Stanca AM, Close TJ, Cattivelli L. Transcriptome analysis of cold acclimation in barley albina and xantha mutants. Plant Physiol,2006,141:257-270
    237. Szabados L, Savoure A. Proline:a multifunctional amino acid. Trends Plant Sci, 2010,15:89-97
    238.Tahtiharju S, Palva T. Antisense inhibition of protein phosphatase 2C accelerates cold acclimation in Arabidopsis thaliana. Plant J,2001,26:461-470
    239. Takahashi S, Murata N. How do environmental stresses accelerate photoinhibition? Trends Plant Sci,2008,13:178-182
    240.Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics,2010,284:173-183
    241.Tanaka R, Oster U, Kruse E, Rudiger W, Grimm B. Reduced activity of geranylgeranyl reductase leads to loss of chlorophyll and tocopherol and to partially geranylgeranylated chlorophyll in transgenic tobacco plants expressing antisense RNA for geranylgeranyl reductase. Plant Physiol,1999,120:695-704
    242. Tanaka R, Rothbart M, Oka S, Takabayashi A, Takahashi K, Shibata M, Myouga F, Motohashi R, Shinozaki K, Grimm B, Tanaka A. LIL3, a light-harvesting-like protein, plays an essential role in chlorophyll and tocopherol biosynthesis. Proc Natl Acad Sci USA,2010,107:16721-16725
    243.Theocharis A, Clement C, Barka E. Physiological and molecular changes in plants grown at low temperatures. Planta,2012,6:1091-1105
    244.Thiebaut F, Rojas CA, Almeida KL, Grativol C, Domiciano GC, Lamb CR, Engler Jde A, Hemerly AS, Ferreira PC. Regulation of miR319 during cold stress in sugarcane. Plant Cell Environ,2012,35:502-512
    245.Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M. MAPMAN:a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J,2004,37: 914-939
    246. Thomashow MF. Plant cold acclimation:freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol,1999,50:571-599
    247. Thomashow MF. So what's new in the field of plant cold acclimation? Lots! Plant Physiol,2001,125:89-93
    248.Tillett RL, Wheatley MD, Tattersall EA, Schlauch KA, Cramer GR, Cushman JC. The Vitis vinifera C-repeat binding protein 4 (VvCBF4) transcriptional factor enhances freezing tolerance in wine grape. Plant Biotechnol J,2012,10:105-124
    249. Tittarelli A, Santiago M, Morales A, Meisel LA, Silva H. Isolation and functional characterization of cold-regulated promoters, by digitally identifying peach fruit cold-induced genes from a large EST dataset. BMC Plant Biol,2009,9:121
    250.Tognetti VB, Van Aken O, Morreel K, Vandenbroucke K, van de Cotte B, De Clercq I, Chiwocha S, Fenske R, Prinsen E, Boerjan W, Genty B, Stubbs KA, Inze D, Van Breusegem F. Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell,2010,22:2660-2679
    251. Tompa P. Intrinsically unstructured proteins. Trends Biochem Sci,2002,27:527-533
    252.Truco MJ, Randall LB, Bloom AJ, St. Clair DA. Detection of QTLs associated with shoot wilting and root ammonium uptake under chilling temperatures in an interspecific backcross population from Lycopersicon esculentum×L. hirsutum. Theor Appl Genet,2000,7:1082-1092
    253.Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA,2001,98:5116-5121
    254.Urano K, Kurihara Y, Seki M, Shinozaki K.'Omics' analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol,2010,13:132-138
    255. Vallejos CE, Tanksley SD. Segregation of isozyme markers and cold tolerance in an interspecific backcross of tomato. Theor Appl Genet,1983,66:241-247
    256. Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I. Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J,2004,37:115-127
    257.Vashisht AA, Pradhan A, Tuteja R, Tuteja N. Cold-and salinity stress-induced bipolar pea DNA helicase 47 is involved in protein synthesis and stimulated by phosphorylation with protein kinase C. Plant J,2005,44:76-87
    258.Venema JH, Linger P, van Heusden AW, van Hasselt PR, Bruggemann W. The inheritance of chilling tolerance in tomato(Lycopersicon spp.). Plant Biology,2005, 7:118-130
    259.Venema JH, Posthumus F, De Vries M, Van Hasselt PR. Differential response of domestic and wild Lycopersicon species to chilling under low light:growth, carbohydrate content, photosynthesis and the xanthophyll cycle. Physiologia Plantarum,1999a,105:81-88
    260.Venema JH, Posthumus F, van Hasselt PR. Impact of suboptimal temperature on growth, photosynthesis, leaf pigments and carbohydrates of domestic and high-altitude wild Lycopersicon species. J Plant Physiol,1999b,155:711-718
    261. Vergnolle C, Vaultier MN, Taconnat L, Renou JP, Kader JC, Zachowski A, Ruelland E. The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in Arabidopsis cell suspensions. Plant Physiol,2005,139:1217-1233
    262. Vogel JT, Zarka DG, Van Buskirk HA, Fowler SQ Thomashow ME Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J,2005,41:195-211
    263. von Saint Paul V, Zhang W, Kanawati B, Geist B, Faus-Kessler T, Schmitt-Kopplin P, Schaffner AR. The Arabidopsis glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence. Plant Cell,2011,23:4124-4145
    264. Wang HZ, Dixon RA. On-off switches for secondary cell wall biosynthesis. Mol Plant,2012,5:297-303
    265. Wang J, Sun PP, Chen CL, Wang Y, Fu XZ, Liu JH. An arginine decarboxylase gene PtADC from Poncirus trifoliata confers abiotic stress tolerance and promotes primary root growth in Arabidopsis. JExp Bot,2011,62:2899-2914
    266. Wang Y, Li J, Wang J, Li Z. Exogenous H2O2 improves the chilling tolerance of manilagrass and mascarenegrass by activating the antioxidant system. Plant Growth Regulation,2010,61:195-204
    267. Wang Y, Yang Z, Zhang Q, Li J. Enhanced chilling tolerance in Zoysia matrella by pre-treatment with salicylic acid, calcium chloride, hydrogen peroxide or 6-benzylaminopurine. Biologia Plantarum,2009,53:179-182
    268.Wathugala DL, Hemsley PA, Moffat CS, Cremelie P, Knight MR, Knight H. The mediator subunit SFR6/MED16 controls defence gene expression mediated by salicylic acid and jasmonate responsive pathways. New Phytol,2012,195:217-230
    269. Weiss J, Egea-Cortines M. Transcriptomic analysis of cold response in tomato fruits identifies dehydrin as a marker of cold stress. JAppl Genet,2009,50:311-319
    270. Welin BV, Olson A, Palva ET. Structure and organization of two closely related low-temperature-induced dhn/lea/rab-like genes in Arabidopsis thaliana L. Heynh. Plant Mol Biol,1995,29:391-395
    271. Winfield MO, Lu C, Wilson ID, Coghill JA, Edwards KJ. Plant responses to cold: transcriptome analysis of wheat. Plant Biotechnol J,2010,8:749-771
    272.Wingler A, Mares M, Pourtau N. Spatial patterns and metabolic regulation of photosynthetic parameters during leaf senescence. New Phytol,2004,161:781-789
    273. Wisniewski M, Norelli J, Bassett C, Artlip T, Macarisin D. Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus x domestied) results in short-day induced dormancy and increased cold hardiness. Planta,2011, 233:971-983
    274. Wu A, Allu AD, Garapati P, Siddiqui H, Dortay H, Zanor MI, Asensi-Fabado MA, Munne-Bosch S, Antonio C, Tohge T, Fernie AR, Kaufmann K, Xue GP, Mueller-Roeber B, Balazadeh S. JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell,2012,24:482-506
    275. Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen Z, Yu JQ. Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol,2009,150:801-814
    276. Xing X, Liu Y, Kong X, Liu Y, Li D. Overexpression of a maize dehydrin gene, ZmDHN2b, in tobacco enhances tolerance to low temperature. Plant Growth Regulation,2011,65:109-118
    277. Xiong L, Ishitani M, Lee H, Zhu JK. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress-and osmotic stress-responsive gene expression. Plant Cell,2001a,13:2063-2083
    278. Xiong L, Lee B, Ishitani M, Lee H, Zhang C, Zhu JK. FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Dev,2001b,15:1971-1984
    279. Xiong L, Lee H, Ishitani M, Tanaka Y, Stevenson B, Koiwa H, Bressan RA, Hasegawa PM, Zhu JK. Repression of stress-responsive genes by FIERY2, a novel transcriptional regulator in Arabidopsis. Proc Natl Acad Sci U S A,2002,99: 10899-10904
    280. Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol,2006,57:781-803
    281.Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S. Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell,2004,16:367-378
    282. Yang A, Dai X, Zhang WH. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot,2012,63:2541-2556
    283. Yang S, Tang XF, Ma NN, Wang LY, Meng QW. Heterology expression of the sweet pepper CBF3 gene confers elevated tolerance to chilling stress in transgenic tobacco. J Plant Physiol,2011,168:1804-1812
    284. Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP. Normalization for cDNA microarray data:a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res,2002,30:e15
    285. Yao X, Xiong W, Ye T, Wu Y. Overexpression of the aspartic protease ASPG1 gene confers drought avoidance in Arabidopsis. JExp Bot,2012,63:2579-2593
    286. Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K. Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis. Planta,2009,229:1065-1075
    287. Yu C-W, Murphy TM, Lin C-H. Hydrogen peroxide-induced chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. Functional Plant Biology,2003,30:955-963
    288. Yu C, Wang H-S, Yang S, Tang X-F, Duan M, Meng Q-W. Overexpression of endoplasmic reticulum omega-3 fatty acid desaturase gene improves chilling tolerance in tomato. Plant Physiol Bioch,2009,47:1102-1112
    289. Yun KY, Park MR, Mohanty B, Herath V, Xu F, Mauleon R, Wijaya E, Bajic VB, Bruskiewich R, de Los Reyes BG. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress. BMC Plant Biol,2010,10:16
    290.Zeng Y, Yang S, Cui H, Yang X, Xu L, Du J, Pu X, Li Z, Cheng Z, Huang X. QTLs of cold tolerance-related traits at the booting stage for NIL-RILs in rice revealed by SSR. Genes and Genomics,2009,31:143-154
    291. Zhai H, Bai X, Zhu Y, Li Y, Cai H, Ji W, Ji Z, Liu X, Li J. A single-repeat R3-MYB transcription factor MYBC1 negatively regulates freezing tolerance in Arabidopsis. Biochem Biophys Res Commun,2010,394:1018-1023
    292. Zhang C, Liu J, Zhang Y, Cai X, Gong P, Zhang J, Wang T, Li H, Ye Z. Overexpression of SIGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep,2011a,30:389-398
    293. Zhang FD, Huang LM, Wang WD, Zhao XD, Zhu LM, Fu BD, Li ZD. Genome-wide gene expression profiling of introgressed indica rice alleles associated with seedling cold tolerance improvement in a japonica rice background. BMC Genomics,2012a,13:461
    294. Zhang J, Kirkham MB. Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytol,1996,132:361-373
    295. Zhang M, Liang S, Lu YT. Cloning and functional characterization of NtCPK4, a new tobacco calcium-dependent protein kinase. Biochim Biophys Acta,2005,1729: 174-185
    296. Zhang T, Zhao X, Wang W, Pan Y, Huang L, Liu X, Zong Y, Zhu L, Yang D, Fu B. Comparative transcriptome profiling of chilling stress responsiveness in two contrasting rice genotypes. PLoS One,2012b,7:e43274
    297. Zhang X, Fowler SG, Cheng H, Lou Y, Rhee SY, Stockinger EJ, Thomashow MF. Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J,2004,39: 905-919
    298. Zhang YJ, Yang JS, Guo SJ, Meng JJ, Zhang YL, Wan SB, He QW, Li XG. Over-expression of the Arabidopsis CBF1 gene improves resistance of tomato leaves to low temperature under low irradiance. Plant Biol (Stuttg),2011b,13: 362-367
    299. Zhang Z, Huang R. Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Mol Biol,2010:241-249
    300. Zhao ML, Wang JN, Shan W, Fan JG, Kuang JF, Wu KQ, Li XP, Chen WX, He FY, Chen JY, Lu WJ. Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE1 in methyl jasmonate-induced chilling tolerance in banana fruit. Plant Cell Environ,2012,10.1111/j.1365-3040.2012.02551.x
    301. Zheng X, Chen B, Lu G, Han B. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun,2009,379: 985-989
    302.Zhong R, Demura T, Ye ZH. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell,2006,18: 3158-3170
    303.Zhong R, Lee C, Ye ZH. Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. Trends Plant Sci,2010a,15:625-632
    304.Zhong R, Lee C, Ye ZH. Functional characterization of poplar wood-associated NAC domain transcription factors. Plant Physiol,2010b,152:1044-1055
    305.Zhong R, McCarthy RL, Lee C, Ye ZH. Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar. Plant Physiol,2011,157:1452-1468
    306. Zhong R, Richardson EA, Ye ZH. The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. Plant Cell,2007, 19:2776-2792
    307. Zhou MQ, Shen C, Wu LH, Tang KX, Lin J. CBF-dependent signaling pathway:a key responder to low temperature stress in plants. Crit Rev Biotechnol,2011,31: 186-192
    308. Zhu J, Dong CH, Zhu JK. Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol,2007,10:290-295
    309. Zhu J, Shi H, Lee BH, Damsz B, Cheng S, Stirm V, Zhu JK, Hasegawa PM, Bressan RA. An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc Natl Acad Sci U S A,2004,101: 9873-9878

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700