用户名: 密码: 验证码:
液化石油气脱硫剂性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开发了系列液化石油气配方脱硫剂和物理-化学复合脱硫剂,并对脱硫剂的泡沫性能进行了研究,对空间位阻胺-H_2S体系汽液相平衡进行了测定,用电解质溶液理论建立了空间位阻胺-H_2S体系汽液平衡模型。
     首先采用GC-MS和FT-IR分析了液化石油气复合脱硫剂,对常用醇胺单剂及复合脱硫剂的脱硫效果进行了评价,对二异丙醇胺浓度对总硫脱除率的影响进行了考察。研究了浓度、温度对物理溶剂聚乙二醇二甲醚、环丁砜、N-甲基吡咯烷酮脱硫效果的影响,对解吸后物理溶剂的脱硫效果进行了考察,并对解吸后的物理溶剂对总硫的脱除率有所下降的原因进行了探索,提出了在实际生产过程中,防止溶剂氧化降解的措施。根据空间位阻胺的脱硫机理,开发液化石油气新型空间位阻胺脱硫剂二氮杂二环和六次甲基四胺,考察了浓度和温度对间位阻胺脱硫剂脱硫效果的影响。
     以N-甲基二乙醇胺为主剂,分别考察了二乙醇胺、三乙醇胺二异丙醇胺或二氮杂二环的添加,对N-甲基二乙醇胺脱硫效果的影响,开发一系列配方脱硫剂。
     用物理溶剂聚乙二醇二甲醚、环丁砜或N-甲基吡咯烷酮代替配方脱硫剂中的水,开发系列物理-化学复合脱硫剂,考察了温度对物理-化学复合脱硫剂的影响,发现低温有利于脱硫剂保持对总硫较高的脱除率。为降低脱硫剂成本,对筛选的物理-化学复合脱硫剂配方进行了优化,考察了原料气硫含量的波动对优选出的物理-化学复合脱硫剂的影响。在相同的评价条件下,将筛选出的物理-化学复合脱硫剂与YXS-99复合脱硫剂的脱硫效果进行比较,发现筛选出的物理-化学复合脱硫剂净化深度和硫负荷明显大于YXS-99复合脱硫剂。
     考察了Fe(0H)_3、FeS和活性炭颗粒大小和浓度对N-甲基二乙醇胺溶液、SDS-1、SDS-3和SDS-5的泡沫性能影响,提出消除固体颗粒对脱硫剂影响的措施,考察了温度和N_2流量对N-甲基二乙醇胺溶液、SDS-1、SDS-3和SDS-5的泡沫性能的影响。
     对二氮杂二环-H_2S体系汽液相平衡进行了测定,用电解质溶液理论法对二氮杂二环-H_2S体系汽液平衡进行预测,计算值与实验值的平均误差在±40%以内。
A series of compound desulfurizers and physico-chemical compound desulfurizers for liquified petroleum gas were developed and the foaming properties of desulfurizers were studied. Vapour-liquid equilibrium of H2S in aqueous solution of sterically hindered amine was measured and the model of the vapour-liquid equilibrium was developed based on electrolyte solution theory.
    The composition of compound desulfurizers for liquified petroleum gas was determined by GC-MS and FT-IR. The desulfurization effect of ethanol-amine desulfurizers and compound desulfurizers was examined. The effect of concentration of diisopropanol amine on absorptivity for overall sulfur was investigated. The influence of concentration and operation temperature of physical solvents, such as polyethylene glycol dimethyl ethers, solfolane and N-methyl-2-pyrrolidone, on desulfurization effect was studied. The influence of those physical solvents after regeneration on desulfurization effect was also investigated. The reason that the absorptivity of physical solvents for overall sulfur decreased after regeneration was studied. A measure for prevention oxidation degration of the physical solvents in practical production process was proposed. New type sterically hindered amine desulfurizers, l,8-diazabicyclo-[5,4,0]-undec-7-ene and hexamethylenetetramine were developed based on desulfurization mechanism of sterically hindered amine. The influence of concentration and operation temperature of l,8-diazabicyclo-[5,4,0]-undec-7-ene and hexamethylenetetramine on desulfurization effect was studied.
    The effect of addition of diethanolamine, triacetamide, diisopropanol or 1,8-diazabi-cyclo-[5,4,0]-undec-7-ene on absorptivity of methyldiethanolamine solution for sulfur was investigated. A series of compound desulfurizers were developed.
    Physical solvents, such as polyethylene glycol dimethyl ethers, solfolane and N-methyl-2-pyrrolidone, replaced water in compound desulfurizers. A series of physico-chemical compound desulfurizers were developed. The influence of operation temperature on desulfurization effect of physico-chemical compound was studied. The result shows that low operation temperature was in favor of physico-chemical compound desulfurizers to keep higher absorptivity for overall sulfur. In order to reduce the cost, the composition of physico-chemical compound desulfurizers obtained was optimized. The influence of the sulfur content fluctuation of feed on
    
    
    
    desulfurization effect of optimized physico-chemical compound desulfurizers was also investigated. The purified depth and sulfur load of the optimized physico-chemical compound desulfurizer were higher than YXS-99 compound desulfurizer.
    The effect of particles size and concentration of Fe(OH)3, FeS and active carbon on foaming property of methyldiethanolamine solution, SDS-1, SDS-3 and SDS-5 desulfurizers was studied. A measure for eliminating the effect of particles on desulfurizers was proposed. The effect of operation temperature and N2 flow rate on foaming property of methyldiethanolamine solution, SDS-1, SDS-3 and SDS-5 was also investigated.
    Vapour-liquid equilibrium data of H2S in aqueous solution of 1,8-diazabicyclo-[5,4,0]-undec-7-ene was obtained pour-liquid equilibrium model was developed based on the theory of electrolyte. The average deviation of predicted value from experimental value was less than ±40%.
引文
[1] 邱晓林.炼油厂LPG脱硫技术新进展.化工进展,2000,19(2):55~59
    [2] 吴辉,朱煜,刘均安.中国石化集团公司利用国际石油资源的战略与对策研究.当代石油石化,2001,9(1):27~32
    [3] 廖家祺,王更新.加工中东含硫原油面临的问题和对策.炼油设计,2000,30(1):1~5
    [4] 崔新安,贾鹏林.高硫原油加工过程中的腐蚀与防护.石油化工腐蚀与防护,2001,18(1):1~7
    [5] 李东海.高硫原油加工组合工艺探讨.炼油设计,1999,29(8):73~76
    [6] 王先厚,王国兴,孔渝华.甲醇精脱硫新工艺及其催化剂.化工设计通讯,1998,24(3):18~20
    [7] 彭建立.炼厂气脱硫剂及工艺的研究.[硕士学位论文].天津:天津大学,2000
    [8] 王志伟,刘炎武,付占军等.T-907与TC型脱硫剂在丙烯原料精制中的应用.内蒙古石油化工,1997,23(1):57~62
    [9] 龙晓达,龙玲.膜分离技术在天然气净化中的应用现状.天然气工业,1993,13(1):100~103
    [10] 诸林,邓兰.一种新的大然气脱硫方法—电化学膜法.石油与天然气化工,1997,26(2):107~109
    [11] 张才箐.天然气中本性气体脱除的新方法-膜分离方法.天然气工业,1993,13(1):95~99
    [12] 马肖卫,李国建.生物法净化H_2S气体的研究.环境工程,1994,12(2):18~21
    [13] 邵立明,何晶晶,傅钟.同定化微生物处理H_2S气体的研究.环境科学,1990,20(1):19~22
    [14] 黄彦君,浦跃武,叶代启等.生物脱硫的研究新进展.微生物学通报,2003,30(2):89~92
    [15] 中国科学技术情报研究所重庆分所译.国外气体脱硫新技术.重庆:科学技术出版社重庆分社,1978
    [16] 王睿,石冈,魏伟胜.工业气体中H_2S气体的脱除方法—发展现状与展望.天然气工业,1999,19(3):84~90
    [17] Arthur L k, Fred C R. Gas Purification. 4th Edition. Houston USA: Gulf Publishing Company, 1985
    [18] Vaidyanathan A S, Youngquist G R. Sorption of sulfur dioxide, hydrogen sulfide and nitrogen dioxide by ion-exchange resins. Product Research & Development, 1973, 1(4): 288~292
    [19] Bondon J C. Improve operation and enhance refinery sulfur covery. Hydrocarbon processing, 1997, 76 (4): 57~62
    
    
    [20] 叶敬东,王兴国.干法脱硫化氢技术进展.湖北化工,1995,12(2):39~41
    [21] 张毓明.氧化性脱硫技术及国内外概况.化肥与催化,1989,12(2):17~21
    [22] Reid J A. Only selexsorb adsorbents come with a process design team. Hydrocarbon Processing, 1996, 75 (9): 132~135
    [23] 叶敬东,王国兴,黄新伟等.EAC-2型、EAC-3型活性炭脱硫剂的研制.天然气化工,1998,23(2):17~21
    [24] 刁九华.炼厂气胺法脱硫技术,炼油设计,1999,29(8):32~35。
    [25] 王遇冬.天然气处理与加工工艺.北京:石油工业出版社,1994
    [26] 四川石油管理局.天然气工程手册.北京:石油工业出版社,1984
    [27] Franckowiak S, Nitschke E. New gas treating processs. Hydrocarbon Processing, 1970, 49 (5): 145~148.
    [28] 常宏岗.用物理—化学混合溶剂选择性脱除硫化氢与有机硫.石油与天然气化工,1990,19(1):1~9
    [29] 朱利凯.环丁砜甲基二乙醇胺水溶液处理酸性天然气工艺讨论.石油与天然气化工,1990.19(4):36~44
    [30] R N 马道克斯著,朱利凯等译.天然气预处理加工.北京:石油工业出版社,1990
    [31] Dalrymple D A. An overview of liquid redox sulfur recovery. Chemical Engineer Progress, 1989, 35(3): 43~52
    [32] Cabodi A J, Van H R, Hardison L C. First commercial test is successful for catalytic hydrogen sulfide oxidation processs. Oil&Gas J. 1982,80(27):107~109
    [33] Hardison L C. Go from H_2S to S in one unit. Hydrocarbon Processing, 1985, 64 (4): 70~75
    [34] Goat B G. Sulfur recovery. Energy process. 1986, 6 (2): 71~74
    [35] 张剑锋.液相氧化法脱硫工艺的现状与发展.1992,21(3):142~145
    [36] 毛晓青,刘继红,杨树卿.PDS脱硫技术液相氧化法脱硫的最新进展.石油与天然气化工,1993,22(3):2~6
    [37] 王睿,石冈,魏伟胜.杂多酸脱除硫化氢过程的理论分析与实验研究.第九届全国化学工程科技报告会论文集.青岛:1998:424~426
    [38] 沈春红,夏道宏.国内外脱硫技术进展.石化技术,1999,6(1):44~47
    [39] 翟军.液化气脱硫工艺现状浅析.黑龙江石油化工,1998,9(2):4~6
    [40] 张庆安.选择性脱硫溶剂在炼厂气脱硫装置上的应用.石油炼制与化工,1997,28(8):47~50
    [41] 朱利凯.天然气处理与加工。北京:石油工业出版社,1997
    [42] 王开岳.80年代国外天然气净化工艺的发展动向.石油与天然气化工,1990,19(2):27~37
    [43] 王开岳.80年代国外MDEA工艺的工业应用及开发动向.石油与大然气化工,1997,26(4):219~226
    [44] Gazzi L, Rescalli C, Solvent-based process has high H_2S/CO_2 selectivity. Oil&Gas J. 1984, 82(7): 76~79
    [45] Roelof C, Cornelis O. Removal of acid gases from a gas mixture. GB:2017524, 1979
    
    
    [46] Goldstein A M, Edelman A M. Hindered amine yield improved gas treating. Oil&Gas J. 1984, 82(6): 70~73
    [47] Say G R, Heinzelmann F J, Savage D W. A new hindered amine concept for simultaneous removal of H_2S and CO_2 from gas. Chemical Engineer Progress, 1984, (10): 72~76
    [48] 王之德.位阻胺脱硫脱碳工艺及其进展.天然气化工,1993,18(1):46~52
    [49] 陈赓良.空间位阻胺—新型选择性脱硫溶液.天然气工业,1986,6(3):92~96
    [50] 陈赓良.选择性脱硫溶剂发展动向的评述.天然气工业,1987,7(2):69~73
    [51] Delos F, Detar. Effect of alkyl groups on rates of S_N2 reaction. J Organic Chemistry, 1980, 45(25): 5174~5176
    [52] 杨敬一.炼厂气选择性脱硫的研究.[博士学位论文].上海:华东理工大学,2002
    [53] 高建兵.催化耦合法脱除羰基硫.[硕士学位论文].北京:中国科学院,2001
    [54] 张金锐,伍意玉.石油化工分析基础知识问答.北京:中国石化出版社,1995:
    [55] 加藤龙夫,石黑智彦,重田芳广.恶臭的仪器分析.北京:中国环境出版社,1992
    [56] 李福林.炼厂气液化气中形态硫的鉴定及分析研究.[硕士学位论文].北京:石油大学,2001
    [57] 梁文杰.石油化学.东营:石油大学出版社,1995
    [58] 田松柏.原油及其馏分油中活性硫的测定方法.石油化工腐蚀与防腐,1999,16(3):25~28
    [59] 高建兵,詹亚力,朱建华.石油液化气中硫化物测定方法.分析仪器,2001,(1):32~36
    [60] 刘业孝,牟彩琴,秦南奕.特高硫化氢天然气和伴生气有机硫分析方法.石油与天然气化工,1993,22(2)71~75
    [61] 微量硫分析仪的使用说明书.西南华工研究院.2000.10
    [62] Pursglove L. A, Wainwright H. W. Analytical chemistry. 1954, 26(1): 1835
    [63] Sharma M M, Danckwerts P V. Absorption of COS in Aimne and Alkais. Chem Eng Sci, 1964, 19: 991~996
    [64] 房鼎业.化学工艺实验.上海:华东理工大学出版社,1986
    [65] Jiazhong xia, Gerd Maurer. Solubility of H_2S in (H_2O+piperazine) and in (H_2O+MDEA+piperazine). Fluid phase Equilibra, 2003,(207): 23~34
    [66] 孙岩,段福珊,宋湛谦等.新表面活性剂.北京:化学工业出版社,2003
    [67] 谢晶曦,常俊标,王绪明.红外光谱在有机化学和药物化学中的应用.北京:科学出版社,2001
    [68] 彭勤纪,王璧人.波谱分析在精细化工中的应用.北京:中国石化出版社,2001
    [69] 李正西.二异丙醇胺的物化性质.石油炼制与化工,1994,25(7):56~61
    [70] 朱世勇.环境与工业气体净化.北京:化学工业出版社,2001
    [71] 叶盛芳,张鸿林,吴永国等.NHD法脱酸性气体的工业应用.化肥设计,2001,39(1):42~48
    [72] 张宗森,王修平.NHD的应用及市场分析.中氮肥,2000,(3):22~23
    [73] 王修平,王洪记,庞利峰.NHD及NHD气体净化技术.化工生产与技术,1999,6(4):32~36
    [74] 林民鸿,樊玲.NHD净化工艺应用领域.化肥设计,2002,40(5):40~43
    
    
    [75] Anon. New gas-sweetening process offers economical alternative. Oil&Gas J, 1981, 35: 61~69
    [76] 周寿祖,张宗华,赵鲁侠.关于NHD污染问题的探讨.化肥设计,2000,38(3):56~58
    [77] 徐丽连,嫡丽巴哈.环丁砜-N-甲基吡咯烷酮芳烃抽提溶剂的研究.石油化工,1989,18(1):9~13
    [78] 精细有机化工原料及中间体手册.第3版.北京:化学工业出版社,2001
    [79] Stein W. H. Erdol-Erdgas-Zeitschrift. 1969, (85): 467~470
    [80] 黄代忠,顺诗华.环丁砜的合成及应用.四川化工,1991,(3):40~43
    [81] 胡平.环丁砜溶剂的降解与对策.江西石油化工,2001,13(3):18~20
    [82] 刘勇涛,王桂香,韩景臻等.国产环丁砜在芳烃抽提装置上的应用.石油炼制与化工,1997,23(7):13~16
    [83] E Anne Greene, List M, Gieg et al. Sulfolane biodegradation potential in aquifer sediments at sour natural gas plant sites. Wat Res, 32(12): 3680~3688
    [84] 王之德.位阻胺脱硫脱碳工艺及其进展.天然气化工,1993,18(1):46~52
    [85] Warren V. B, Process for the selective removal of hydrogen sulphide and carbonyl sulfide from light hydrocarbon gases containing carbon dioxide, US4749 555, 1988
    [86] 陈国才,王之建,王肇中等.DBU-一种多功能的碱性试剂.化学试剂,1999,21(6):339~346
    [87] 陈赓良.选择性脱硫工艺的发展动向.齐鲁石油化工,1995(2):150~157
    [88] Reilly J. T, Schubert J. R,Lindner M. D et al. Effect of heterocyclic amine additives on the absorption rates of carbonyl sulfide and carbon dioxide in aqueous methyldiethanolamine solutions. Chem Eng Comm, 1990, 93: 181~191
    [89] 王群.新型高效脱碳活化剂—空间位阻胺.辽宁化工,1998,27(1):23~26
    [90] 王秋景,唐耀胜.弱碱性介质中钼酸盐系缓蚀剂的研制.电镀与精饰,2002,22(6):22~26
    [91] 徐宏建,郑志胜,张成芳.实验室模拟脱硫装置及脱硫剂的研究.华东理工大学学报,2002,28(3):314~317
    [92] 田萌林.用物理化学混合溶剂选择性脱除硫化氢与有机硫.石油与大然气化工.1990,19(1):1~10
    [93] 朱利凯.天然气处理与加工.北京:石油工业出版社,1997
    [94] 谢世全,王世存.防止再生塔冲塔泡胺的意见.石油与天然气化工,1986,15(4):31~34
    [95] 刘逸诗,谢世全.解决萨菲诺装置的起泡问题.石油与天然气化工,1983,12(4):45~47
    [96] 戴学海.胺液的发泡原因及处理措施.石油与天然气化工,2002,31(6):304~306
    [97] 肖特.胶体与表面化学导论.北京:科学出版社,1989
    [98] 常宏岗.气体脱硫装置脱硫剂溶液发泡的原因及分析.石油与天然气化工,1995,24(1):
    
    60~63
    [99] Pauley C R. Face the facts about amine foaming. Chem Eng Prig, 1991,87(6):33~38
    [100] Pauley C R, Hashemi R, Caothien S. Ways to control amine unit foaming offered. Oil&Gas, 1989, 87(50):67~75
    [101] Pauley C R, Perlmutter B A. Yrxas plant solves foam problem with modified MEA system. Oil&Gas J, 1988, 86(9): 67~70
    [102] 陈赓良.炼厂气脱硫的清洁操作问题.石油炼制与化工,2000,31(8):20~24
    [103] 徐心茹,杨敬一,李少萍等.高效选择性脱硫剂的消泡性能研究.华东理工大学学报,1999,25(10):461~464
    [104] 杨敬一,顾荣,徐心茹等.固体颗粒对脱硫剂溶液泡沫性能的影响.华东理工大学学报,2002,28(2):351~356
    [105] 胡英,吕端东,刘国杰.物理化学(上).北京:高等教育出版社,1989
    [106] 赵国玺.表面活性剂物理化学.北京:北京大学出版社,1991
    [107] Kent R,Eisenberg B.Better data for amine treating.Hydrocarbon Processing,1976, 55(2):87~91
    [108] Deshmukh R M. A mathematical model for equilibrium solubility of hydrogen sulfide and carbon dioxide in aqueous alkanolamine solutions. Chemical Engineer Science, 1981,36:355~361
    [109] Lee L. Termodynamic models for natural gas sweetening unites. Gas research institutes 1994 annual reports
    [110] Austgen D M, Rochelle G T, Peng X. A model of vapor-liquid equilibria for aqueous acid gas- alkanolamine systems 2.representation of H_2S and CO_2 solubility in aqueous mixtures of MDEA with MEA and DEA. Ind Eng Chem Res,1991,30(3):543~555
    [111] 朱利凯.H_2S和CO_2混合酸性气在甲基二乙醇胺水溶液中计算的溶解度比较.石油与天然气化工,1994,23(2):87~92
    [112] Jou F Y, Mather A E,Otto F D.Solubility of H_2S and CO_2 in aqueous MDEA solutions.Ind Eng Chem Pr-ocess Des Dev, 1982,21:539~544
    [113] Chakma A,Meisen A.Solubility of CO_2 in aqueous MDEA and N,N-Bis(hydroxyethyl) piperazine solution.Ind Eng Chem, 1987,26:2461~2466
    [114] 常宏岗.H_2S、CO_2在环丁砜-甲基二乙醇胺水溶液中的溶解度特性.天然气工业.1993,13(3):80~85
    [115] 锁海滨.甲基二乙醇胺对H_2S、CO_2同时吸收的传质动力学模型.[学位论文].北京:石油大学,1991
    [116] 汤渭龙,徐金火,沈复.硫化氢二氧化碳与二异丙醇胺水溶液的汽液平衡计算模型.计算机与应用.1988:5(2):97~103
    [117] Perrin D D. PK. Prediction for acides and bases. New York:Chapman and Hall,1981
    [118] Eduwards T J, Maurer G, Newman J et al.Vapor-Liquid Equilibria in Multicomponent Aqueous Solutions of Volatile Weak electrolytes. AICHE Journal 24(6):966~976
    [119] 王相田,胡黎明,顾达等.超细颗粒分散过程分析.化学通报.1995,(5):13~17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700