用户名: 密码: 验证码:
冲破式复合材料发射箱盖结构设计和试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导弹发射箱盖是导弹发射系统中非常重要的组成部分,在平常贮存时,箱盖保证了整个发射箱的密封,一方面阻止了箱内惰性气体的外泄,另一方面也起到了保护导弹的作用。在导弹发射时,需要箱盖能够及时地打开并释放出一定范围的空间通道令导弹能够顺利的通过。传统的机械打开盖与爆破盖有质量重、打开反应时间慢和维修费用高等缺陷,鉴于复合材料轻质高强、抗腐蚀等优点,采用复合材料发射箱盖代替传统发射箱盖的趋势不可避免。为了使复合材料发射箱盖能够更加广泛的应用于导弹发射装置中,实现发射系统的轻质化,提高导弹部队的作战反应能力,本文对采用燃气流开盖的整体冲破式复合材料发射箱盖进行了结构设计与试验研究。
     本文第一部分根据箱盖的性能要求设计了箱盖在贮存与冲破工况的基本形式。将箱盖分为主体、薄弱区结构和边框三部分,并着重对主体与薄弱区结构两个部件进行了初步的结构设计。提出了三种主体外型方案,通过有限元数值仿真与充压试验相结合的手段对三种结构进行变形、应力分布和薄弱区应力构成等性能的考察,选取了综合性能较优的圆帽型结构。主体与框架之间的薄弱区结构采用胶接的形式连接,综合薄弱区结构功能与密封等因素,选用双面搭接胶接接头作为薄弱区结构形式。
     第二部分研究了箱盖的基本材料双轴向纤维增强复合材料的强度准则。讨论Tsai-Wu张量准则应用于校核双轴向纤维增强复合材料强度可行性,并确定用双轴加载试验来测定准则中的强度参数F12。采用数值模拟方法结合Taguchi试验设计方法对双向加载十字型试件进行外型设计和参数优化。最后对十字型试件进行不同载荷比的双轴加载试验,通过试验数据计算得到强度参数F12并通过拟合得到了该材料σ1-σ2应力平面第一、三象限的强度包络线。
     第三部分在箱盖初步模型的基础上进一步对各区域铺层方式进行了优化设计,根据箱盖承压工况时的内力方向与应力水平分别确定了各区域的铺层角度与层数,自此决定了箱盖具体的结构形式。分析了薄弱区结构在箱盖承压时的应力构成,随后针对九种不同参数的薄弱区结构分别进行了11种竖向和横向不同比例位移载荷作用下结构强度的预测,并通过拟合得到了强度包络线。
     第四部分阐述了瞬态有限元软件MSC.Dytran中近似黎曼算法与耦合关系的基本理论与求解方法,在此理论基础上建立了瞬态数值模型,采用高压气体球释放后冲击预制缺陷的箱盖层合板模型的数值模拟方法对燃气流开盖过程进行仿真。根据数值模拟的结果得到了箱盖的冲破压力以及侧抛、分离整体性等冲破性能,以此为基础分析了薄弱区结构参数对箱盖冲破压力的影响并进一步调整了圈圈薄弱区结构强度以优化其冲破性能。
     第五部分针对箱盖的成型工艺进行了研究,制备了复合材料发射箱盖试验件。采用自行设计的模拟发射装置进行了气密、冲破压力和侧抛等性能的测试,获得了一些试验数据与现象,验证了设计方案的可行性。通过试验数据与数值结果的比对,讨论了误差形成的原因。
Missile launcher canister cover is one of the most important parts in the missile launchsystem.In usual storage, sealability of the entire missle laucher canister is keepped by the cover,Because of the function of canister cover, the leakage of the inert gas in canister is stopped andthe missile is also protected against the external factors. Canister cover needs to be timelyopening for releasing the channel with a range of space so that the missile can smoothly passthrough when the missile launchering.Traditional canister covers(include mechanical canistercover and blasting canister cover) have the defects of heavy weight、slow reaction of opening andhigh costs of maintenance, so that a trend of being substituted by lightweight composites canistercover for the advantage of lightweight、high strength and corrosion-resistant is inevitable. Inorder to reduce the weight of missile launcher system and improve the response capability of themissile forces, the purpose of widely used composites canister cover in missile launcher systemis achieved, structure design and performance analysis of a integrated bursting type oflightweight composite canister cover with the lauchering method of gas flowing are performed inthe thesis.
     The basic forms of composites canister cover in storage and burst condition are desginedaccording to the performance requirements of missile launch system in the first part of thisdissertation. The whole cover structure is mainly divided into three parts respectively namedprincipal part, weak structure, and remain part, and structural design on principal part and theweak structure are focuses in preliminarily research stage. Three programs of overall appearanceand structure for principal part are desgined so the performances of structural deformation, stressdistribution and stress constitute of the weak stucture of cover structure in three programs areinvestgated by the methods of charge-pressure experiment and numerical simulation, the roundcap structure is selected for the best comprehensive performances in three different structures. Aform of adhesively bonded is desgined to be the weak structure inter principal part and remainpart.
     Strength criterion for biaxial fiber-reinforced composites, the basic material of canistercover, is investigated in the second part of this thesis. The applicability of Tsai-Wu tensorcriterion in the field of biaxial fiber-reinforced composites is discussed and one of strengthparameters in criterion F12is defined and to be determined by biaxial load experiment. Overalldesign and parameter optimization of cruciform specimen are performed by the methods ofnumerical simulation and Taguchi experiment, so a type of cruciform specimen with the properties of high stress level at central weak region and small stress concentration factor isdesigned. The specimens are tested by some biaxial load experiments at different loading ratios.Strength parameters F12at different loading ratios are calculated by experimental strength dateand the failure envelopes with different value of F12are constructed in the first and thirdquadrants of the stress plane.
     Ply schemes in different region of the cover structure are further optimized in the third partof this thesis. Angles and number of layers in each region is respectively determined according tothe directions and levels of the internal forces under the condition of the structure subjected touniform internal pressure and then the finally structure of canister cover is defined. The stressconstitutie of weak structure under the condition of the structure subject to uniform internalpressure is analyzed, structural strength of nine weak structures with different structuralparameters are predicted under eleven conditions of different ratio of vertical and lateraldisplacement and the strength envelopes of weak structures are fittd by the results of numericalsimulations.
     In the beginning of the fourth part of the thesis, The basic theories and methods for solvingof approximate algorithm of Riemann and coupling relationship in the transient finite elementsoftware MSC. Dytran are described. A transient numerical model simulated the process of gasflow impacting the cover which uses Shock wave releasing by high-pressure gas ball to impactweak-prefabricated laminates model is established on the basis of this theory. Burst pressure andthe bursting-through performance of canister cover is obtained according to the results ofnumerical simulations, as a basis for analyzing the effect of weak structural parameters for burstpressure and further optimizating bursting-through performance by adjusting the circle ofstrength of the weak structure.
     Molding process of canister cover is also studied and Specimens of composites canistercover are manufactured in the fifth part. The performance of airtight、burst pressure and lateralthrowing are tested through charge-pressure experiment by self-designed equipment. Feasibilityof design program is verified by experimental data and phenomena, and reasons for theformation of the error are discussed by comparison of experimental data and numerical results.
引文
[1] Copeland R L,Greene R F. Protective cover or a missile nose cone.US Pat.3970006,1976
    [2] Boeglin P H.Plate-glass fitted with an explosion-cutting device].US Pat.4333381,1982
    [3] Bell R E. Missile weapon system. US Pat.5239909,1992
    [4] Krol U B. Frangible cover assembly for missile launchers. US Pat.3742814,1971
    [5]鲁云.先进复合材料.北京:机械工业出版社,2004年.
    [6]王士杰.复合材料导引.重庆:重庆大学出版社,1987年.
    [7]航空航天工业部科学技术研究院.复合材料设计手册.北京:航空工业出版社,1990年.
    [8]王兴业,唐羽章.复合材料力学性能.长沙:国防科技大学出版社,1998年.
    [9]张天平.空间应用复合材料压力容器研制技术.上海航天,2002(3):54-62.
    [10]郑津洋,傅强,开方明等.轻质高压贮氢容器的现状及发展趋势.太阳能学报,2004(5):576-581
    [11]池秀芬,刘志栋,王小永.复合材料缠绕压力容器的失效风险分析.真空与低温,2006,12(4):226-230
    [12] Shaukat Mirza, Andrew Bryan, Mohamm ad Noor.i Fiberre inforced composite cylindricalvessel with lugs. Composite Structure,2001(53):143-151
    [13] Christos C Cham,LevonM inne tyan. De fec/damage to-lerance o f pressured fiber co-mposite hells.Composite Structure,2001(51):159-168
    [14]陈建良,童永光.复合材料在压力容器中的应用.压力容器,2001,18(6):47-50.
    [15] Adali S,Summers E B,Verijenko V E. Optimisation of Laminated Cylindrical PressureVessels under Strength Criterion.Composite Struetures,1993,25:305-312.
    [16] Mistry J,Gibson A G,Wu Y-S. Failure of composite cylinders under combined externalpressure and axial loading.Composite Structures,1992,22(4):193一200.
    [17]姚安林,罗洪泉.纤维增强压力容器的内力分析.石油程建设.1992(1):7-14
    [18]宋大君,王荣国,刘文博等.航天用复合材料压力容器的应用与发展.宇航材料工艺.2010(6):24-26.
    [19] Kaushik Mallick, John Cronin, Kevin Ryan. Steven.Arzberger and Naseem MunshiAnIntegrated Systematic Approach to Liner less Composite Tank Development. AIAA paper2005-2089
    [20]何录菊,马李.复合材料压力容器渐进损伤的模拟研究.台州学院学报.2011,33(6):37-41
    [21] Polymer/Silicate Nanocomposites Used to Manufacture Gas Storage Tanks With ReducedPermeability.http://www.grc.nasa.gov/WWW/RT/2003/5000/5150campbel.lhtml
    [22]张少实,庄茁.复合材料与粘弹性力学第二版.北京:机械工业出版社,2011.
    [23] S W Tsai. Strength Characteristics of Composite Materials. NASA CR-224,1965.
    [24] S W Tsai,E M Wu. A General Theory of Strength for Anisotropic Materials.CompositeMaterials,1971(5):58-80.
    [25] M J Hinton,A S Kaddour,P D Soden. A comparison of the predictive capabilities of cu-rrent failure theories for composite laminates, judged against experimental evidence.Composites Science and Technology,62(2002):1725-1797.
    [26] M J Hinton,A S Kaddour,P D Soden. Failure criteria in fiber reinforced polymercomposites: the world-wide failure exercise. Elsevier Science,2004.
    [27] P D Soden,A S Kaddour, M.J. Hinton. Recommendations for designers andresearchersresulting from the world-wide failure exercise.Composites Science and Technology,64(2004):589-604.
    [28]黄争鸣,张华山.纤维增强复合材料强度理论的研究现状与发展趋势——“破坏分析奥运会”评估综述.力学进展,2007,37(1):80-98.
    [29] J M Whitney, I M Daniel, R B Pipes. Experimental mechanics of fiber reinforced compositematerial.Society for Experimental Stress Analysis,1982.
    [30]谢仁华.复合材料双向应力试验述评.宇航材料工艺,1991,1:12-18.
    [31]任家陶,李冈陵,豆志武,等.双向拉伸试验的进展与钛板双向拉伸的强化研究.试验力学,2001,16(2):196-206.
    [32] I M Daniel. Behavior of Graphite/Epoxy Plates with Holes under Biaxial Loading.Experimental Mechanics,1980,20(1):1-8.
    [33] N Bhatnagar,R Bhardwaj,P. Selvakumar,et al.Development of a biaxial tensile testfixture for reinforced thermoplastic composites. Polymer Testing,26(2007):154-161.
    [34] D Lecompte,A Smits,H. Sol,J Vantomme,et al. Mixed numerical-experimental techniquefor orthotropic parameter identification using biaxial tensile tests on cruciform specimens.International Journal of Solids and Structures,44(2007):1643-1656.
    [35] A. Smits, D. Van Hemelrijck, T.P. Philippidis, et al. Design of a cruciform specimen forbiaxial testing of fibre reinforced composite laminates. Composites Science andTechnology,66(2006):964-975.
    [36] A. Makris, C Ramault, D Van Hemelrijck, et al. An Investigation of the MechanicalBehavior of Carbon Epoxy Cross Ply Cruciform Specimens Under Biaxial Loading.Polymer Composites,31(2010):1554-1561.
    [37] A E Antoniou, D V Hemelrijck, T.P. Philippidis. Failure prediction for a glass/epoxycruciform specimen under static biaxial loading.Composites Science and Technology,70(2010):1232-1241.
    [38] M C Serna Moreno,J J López Cela.Failure envelope under biaxial tensile loading forchopped glass-reinforced polyester composites.Composites Science and Technology,72(2011):91-96.
    [39]沃丁柱.复合材料大全.北京:化学工业出版社,2000:660-684.
    [40]中国航空研究院.复合材料连接手册.北京:航空工业出版社,1994:11-134.
    [41] Hart-Smith L J. Adhesive-bonded double-lap joints, NASA/CR-112235. Virginia:National Aeronautics and Space Administration,1973:3-56.
    [42]薛克兴,周瑾.复合材料结构连接件设计与强度.北京:航空工业出版社,1988:7-350.
    [43]王花娟,杨杰,刘新东等.复合材料机械连接强度影响因素的研究进展.材料导报2007.21(专辑IX):438-440
    [44] D E Fox,K W Swaim.Statie Strength charaeterisrics of Mechanieally Fastened CompositeJoints.NASA/TM-1999-209735
    [45] C.T.McCarthy,M.A.MeCarthy.Three-dimensional finite element analysis of single-bolt,single-lap composite bolted joints: PartII-effects of bolt-hole clearanee.CompositeStructures71(2005):159-175.
    [46]于德昌,陈绍杰,姜从典等.碳纤维复合材料的连接试验.材料工程,1979(3):38-41.
    [47]李煊,党嘉立,郭秉仪.复合材料混合连接接头强度影响因素初探.第十一届全国复合材料学术会议论文集.合肥:中国科学技术大学出版社,2000:475-478.
    [48] Kelly G. Load transfer in hybrid (bonded/bolted) composite single-lap joints.CompositeStructures,2005,69(1):35-43.
    [49] Kelly G. Quasi-static strength and fatigue life of hybrid(bonded/bolted) compositesingle-lap joints.Composite Structures,2006,72(1):119-129.
    [50] Hoang-Ngoc C T,Paroissien E. Simulation of single-lap bonded and hybrid (bolted/bonded) joints with flexible adhesive.International Journal of Adhesion&Adhesives,2010,30(3):117-129.
    [51] Kweon J H, Jung J W, Kim T H, et al. Failure of carbon composite-to-aluminum jointswith combined mechanical fast eningand adhesive bonding.Composite Structures,2006,75(1-4):192-198.
    [52]薛克兴,周瑾.复合材料结构连接件设计与强度.北京:航空工业出版社,1988:7-350.
    [53]白瑞祥,郭兆璞,陈浩然等.复合材料层合板壳胶-铆混合连接件有限元分析.大连理工大学学报,2000,40(3):280-284.
    [54] Hart-Smith L J.Bonded-bolted composite joints.Journal Aircraft,1985,22(11):993-1000.
    [55]陆关兴,王耀先.复合材料结构设计.上海:华东化工学院出版社,1991年.
    [56]鞠苏,曾竟成,江大志,等.碳纤维增强复合材料接头研究进展.高科技纤维与应用,2006,31(3):29-35.
    [57]李欣,张晓妮,徐晓沐.胶接结构和复合材料用于航空航天技术的发展.化学与黏合,2006,28(3):172-175.
    [58]沈真,章怡宁,黎观生.复合材料结构设计手册.北京:航空工业出版社,2001
    [59] M Goland,E Reissner.Stresses in Cemented Joints. ASME Jour. Appl. Meeh.1947,11:17~27.
    [60] D Kutscha,K E HoferJr. Feasibility of Joining Advnaced Composite Flihgt Vehicles.AFMTLR,1969:68~391.
    [61] G M Lehman,A V Hawley. Inestigation of Joints in Advnaced Fibrous Composites forAircraf Structures.1969(1):43~69.
    [62] J N Dickson,T M Hsu. Development of understanding of the fatigue phenomenon ofbonded and bolted joints in advanced filamentary composite materials. Analysis Materials.1972, AFFDL~TR72~64(AD750132).
    [63] L J Hart-smith. Adhesive-bonded single lap joints. NASA-CR112236,1973.
    [64]吴代华,晏石林.有拉-弯耦合效应时复合材料接头的胶层应力分析.武汉工业大学学报,1989(2):234-241.
    [65] Chien-Chang Lin, Tseng-Chung Ko. Adhesive interface element for bonding of laminatedplates. Composite Structures,1993,23:217~225.
    [66] Markolefas,Th K Papathanassiou. Stress redistributions in adhesively bonded double-lapjoints, with elastic-perfectly plastic adhesive behavior, subjected to axial lap-shear cyclicloading. International Journal of Adhesion&Adhesives2009(29):737~744.
    [67] Flaggs D L,Crossman F W.Viscoelastic Response of a Bonded Joint Due to Hydrothermal Exposure. Modern Developments in Composite Materials and Structures,ASME,1979.
    [68]周瑾,薛克兴.复合材料结构连接件设计与强度.北京:航空工业出版社,1988年.
    [69]张福范.复合材料层间应力.北京:高等教育出版社,1993年.
    [70]郑长良,陈浩然,等.复合材料胶连接结构应力分析的一种有限元法,第八届全国复合材料会议文集.
    [71] L M Nunes, S Paciornik, J R M d’Almeida. Evaluation of the damaged area of glass-fiber-reinforced epoxy-matrix composite materials submitted to ballistic impacts.Composites Science and Technology,2004,64:945-954.
    [72] E P Gellert, S J Cimpoeru, R L Woodward. A study of the effect of target thickness on theballistic perforation of glass-fibre-reinforced plasic composites. International Journal ofImpact Engineering,2004,24:445-456.
    [73] S S Morye, P J Hine, R A Ducke,et al. Modeling of the energy absorption by polymercomposites upon ballistic impact.Composites Science and Technology,2000,60:2631-2642.
    [74] Cantwell W J, Morton J,Impact perforation of carbon fiber reinforced plastic. CompositesScience and Technology.1990,38:119-141.
    [75]顾伯洪.织物弹道贯穿性能分析计算.复合材料学报,2002,9(6):92-96.
    [76] Bohong Gu. Analytical modeling for the ballistic perforation of planar plain-woven fabrictarget by projectile. Composites,2003,34(B):361-371.
    [77]杜忠华,赵国志,王晓鸣,欧阳春.复合材料层合板抗弹性的工程分析模型.兵器材料科学与工程,2002,25(1):8-10.
    [78] Srikanth V. Thiruppukuzhi, C.T.sun. Testing and modeling high strain rate behavior ofpolymeric composites. Composites.1998,vol.29(B):535-546.
    [79] C T Sun, S V Potti. A simple model to predict residual velocities of thick compositelaminates subjected to high velocity impact. International Journal of Impact Engineering,1996, vol.18:339-353.
    [80] O Allix. A composite damage meso-model for impact problems. Composites Science andTechnology.2001,61:2193-2205.
    [81]许沭华.钨合金杆弹侵彻复合靶板的试验和数值研究.[博士论文].中国科技大学,2000.
    [82]梅志远,朱锡,刘燕红.混杂纤维增强材料板抗侵彻数值仿真及试验验证.兵工学报.2003,24(3):373-377.
    [83] Doane W J. Frangible fly through diaphragm for missile launch canister. US Pat.4498368,1985
    [84] Wu J H, Wang W T, Kam T Y Failure analysis of a frangible laminated composite canistercover. Proc Inst Mech.Eng,1999,vol.213, Part G:87-95
    [85] Kam T Y,Wu J H, Wang W T. External failure pressure of a frangible laminatedcomposite canister cover. Composite Structure..1999,vol.47:563-569
    [86] Tsai S W, Wu E M. A general theory of strength for anisotropic materials. CompositeMaterial,1971,5:58-80.
    [87] Kam T Y, Lui W Y. First-ply failure strength of laminated composite pressure vesselsComposite Structure.1997,38(14):447-452
    [88] Kam T Y, Sher H F. Chao T N,et al. Prediction of first-ply failure strengths of laminatedcomposite plates using a finite element approach. Solids Structure.1996,33(3):375-398
    [89] Kam T Y,Lai F M. Experimental and theoretical predictions of first-ply failure strength oflaminated composite plates. J. Solids Structure.1999,36(16),2379-2395.
    [90] Kam T Y,Chang E S. Reliability formulation for composite laminates subjected tofirst-ply failure. J. Composite Structure.1997,38(1-4),65-70.
    [91]马飞,王继辉.易碎式密封盖设计和制作.[硕士论文],武汉,武汉理工大学,2004年3月.
    [92]张中利,于存贵.冲击作用下易碎式密封盖数值仿真及试验分析.爆炸与冲击,2008,28(1):62-66.
    [93]孙甫.MY-09易碎材料在武器系统上的应用.宇航材料工艺,2002(02):25-28.
    [94]魏凤春,张晓,张秀丽等.拓扑互锁易碎复合材料隔水罩的设计与试验研究.工程塑料应用.2008,36(1):41-44.
    [95]周宏,周光明.混杂复合材料泡沫夹层结构在某导弹发射箱盖中的应用研究.玻璃纤维.2004(2):12-15
    [96]周光明,袁卓伟.新型轻质穿透式薄膜盖的分析、设计与试验.宇航学报,2006,27(2):276-280
    [97]周光明,袁卓伟.整体冲破式复合材料薄膜盖的设计与试验研究.宇航学报,2007,28(3):707-712
    [98]国外舰载导弹垂直发射技术发展状况研究.2011-03-16. Http://www.ncit.edu.cn/redth/gf·/jskt.asp?id=271
    [99]金钊,陈思庄.航空导弹垂直发射系统发展概况.航空导弹,2006,(1):25-29
    [100]常卫伟.舰载导弹垂直发射系统巡礼.舰载武器,2004,(1):63-68
    [101]苗佩云,袁曾凤.同心发射筒燃气开盖技术.北京理工大学学报,2004,24(4):283-285
    [102]张玲翔.国外小间隙发射箱技术的发展.飞航导弹,1998,(1):23-28.
    [103] Pickens J R,WT Tack.High strength Al-Cu-Li alloys for Lanch system. NASA,Aluminum–Lithium Alloys for Aerospace Applications Workshop,2004,28(6):58-64
    [104]高明坤,宋廷伦.火箭导弹发射装置构造.北京:北京理工大学出版社,1998.
    [105]吴森.结构试验基础.北京:航空工业出版社,1992.
    [106]陈绍杰,高树理.复合材料设计手册.北京:航空航天出版社,1990.
    [107]刘君伍,黄建云.复合材料胶接接头传载能力分析.纺织高校基础科学学报,2008,21(3):114-116
    [108]汪裕炳,张全纯.复合材料的结构连接.北京:国防工业出版社,1992年.
    [109]沈军,谢怀勤.航空用复合材料的研究与应用进展.玻璃钢/复合材料,2006,5:48-54.
    [110]邱冠雄,刘良森,姜亚明.纺织复合材料与风力发电.纺织导报,2006,5:56-64.
    [111] Zihui Xia, Yu Chen, Fernand Ellyin. A meso/micro-mechanical model for damageprogression in glass-fiber/epoxy cross-ply laminates by finite-element analysis.Composites Science and Technology,2000,60:1171-1179.
    [112] J S Welsh, D F Adams.An experimental investigation of the biaxial strength ofIM6-3501-6-cruciform specimens. Composites,Part A,33(2002):829-839.
    [113] E M Wu. Optimal Experimental Measurements of Anisotropic Failure Tensors. Com-posite Materials,1972,6:472-489.
    [114]杨光华,张隐孝,安希娟等.S玻璃/环氧复合材料强度准则的试验研究.西北工业大学学报,1984,2(4):393-404.
    [115]王兴业.复合材料张量多项式强度准则试验研究.复合材料学报,1986,3(2):54-63.
    [116]左惟炜,肖来元,廖道训.Tsai-Wu准则用于三维编织复合材料矩形梁强度计算.华中科技大学学报(自然科学版),2006,34(12):74-76.
    [117] GN Naik, S Gyan, R Satheesh, et al. Minimum weight design of fiber-reinforcedlaminated composite structures with maximum stress and Tsai-Wu failure criteria. Journalof Reinforced Plastics and Composites,2011,30(2):179-192.
    [118] Ru-Yu Wu, Zbigniew Stachurski. Evaluation of the Normal Stress Interaction Parameter inthe Tensor Polynomial Strength Theory for Anisotropic Materials. Composite Materials,1984,18:456-463.
    [119]谢仁华,唐羽章.张量多项式准则相互作用系数试验确定方法.试验力学,1992,7(1):75-79.
    [120]王启天.复合材料强度准则中耦合系数取值范围的研究.华南理工大学学报,1995,23(4):36-39.
    [121]付求舟,谢仁华,王兴业,等.双向拉伸载荷作用下层合板强度的试验研究.宇航材料工艺,1994,4:22-26.
    [122]王震鸣,杜善义,张恒,等.复合材料及其结构的力学、设计、应用和研究.哈尔滨:哈尔滨工业大学出版社,1998.
    [123] P D Soden, M J Hinton, A S Kaddour. A copaeisin of he predictive capabilities of cueeentfailure theoroies for composite laminates. Composites Science and Technology,58(1998):1225-1254.
    [124]周光明,陆晓华,许正辉.细编穿刺3D碳/碳复合材料双向拉伸试验研究.南京理工大学学报,2007,31(3):390-393.
    [125]陆晓华.双轴纤维增强复合材料强度准则研究与双向拉伸试验.[硕士学位论文],南京,南京航空航天大学,2007年4月
    [126] S W Tsai, E M Wu. A General Theory of Strength for Anisotropic Materials CompositeMaterials,1971,5:58-80.
    [127] A Smits, D Van Hemelrijck, T P Philippidis, et al. Design of a cruciform specimen forbiaxial testing of fibre reinforced composite laminates. Composites Science andTechnology,66(2006):964-975.
    [128] A Makris, T Vandenbergh, C Ramault, et al. Shape optimisation of a biaxially loadedcruciform specimen. Polym Test,29(2010):216-223.
    [129] A Makris, C Ramault, D Van Hemelrijck, et al. An Investigation of the MechanicalBehavior of Carbon Epoxy Cross Ply Cruciform Specimens Under Biaxial Loading.Polymer Composites,31(2010):1554-1561.
    [130] M R L Gower, R M Shaw. Towards a Planar Cruciform Specimen for BiaxialCharacterisation of Polymer Matrix Composites. Applied Mechanics and Materials,24-25(2010):115-120.
    [131] Lamkanfi E,Van Paepegem W, Degrieck J,et al. Strain distribution in cruciform specimenssubjected to biaxial loading conditions. Part1: Two-dimensional versus three-dimensionalfinite element model. Polymer Testing,29(2010):7-13.
    [132] Lamkanfi E, Van Paepegem W, Degrieck J, et al. Strain distribution in cruciformspecimens subjected to biaxial loading conditions. Part2: Influence of geometricaldiscontinuities. Polymer Testing,29(2010):132-138.
    [133]西田正孝[日]著,李安定,郭廷玮,张诚文,等译.应力集中.北京:机械工业出版社,1986.
    [134] C Davy, D Marquis. A multiaxial failure criterion for a brittle orthotropic composite.Materials and Design,24(2003):15-24.
    [135]高清振,王耀华,陆明.基于田口方法的某航空应急推动机构参数优化.机械设计,2010,27(10):73-75.
    [136] Doane W J. Frangible fly through diaphragm for missile launch canister.US Patent No.4498368,1985.
    [137]余小青.复合材料双面搭接接头力学性能研究.[硕士学位论文],南京,南京航空航天大学,2011年4月.
    [138]王辉,周光明,钱元等.复合材料易碎盖胶接接头数值模拟.江苏航空,2011增刊:88-90
    [139] Chamis C C. Simplified Composites Micromechanics Equations for Strength, FractureToughness, Impact Resistance and Environmental Effects.29th Annual Conference of theSociety of the Plastics Industry.1984.
    [140]姜毅,耿锋导弹发射筒盖开启过程数值计算及试验,弹道学报2008,20(3):33-35.
    [141]傅德彬,姜毅某导弹易碎盖的开启过程,固体火箭技术2007,30(4):275-277.
    [142]赵承庆,姜毅气体射流动力学,北京:北京理工大学出版社.1998
    [143]姜毅.独立自排导垂直发射技术燃气流场数值计算及试验研究.北京:北京理工大学,2005.
    [144]刘琦,傅德彬,姜毅.贮运发射箱内燃气射流的非定常冲击波流场数值模拟.弹箭与制导学报,2004,24(3):45-49.
    [145]卞文杰,万力,吴莘馨.瞬态动力学CAE解决方案MSC.Dytran基础教程.北京大学出版社.2004.
    [146]傅德彬,刘琦,陈建伟等.导弹发射过程数值模拟.弹道学报,2004,16(3):11-15.
    [147]赵秋艳.复合材料成型工艺的发展.航天返回与遥感,1999,20(1):41-46.
    [148] http://www.kaiwenhuagong.com/news04.html
    [149]高鼎涵,周光明.穿孔泡沫夹层复合材料平拉强度研究.江苏航空,2011增刊:84-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700