用户名: 密码: 验证码:
发光光弹性涂层方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发光光弹性涂层(Luminescent photoelastic coating, LPC)方法是近年来基于分子发光原理和传统的光弹性理论相结合,新提出的一种能够用于测量二维以及三维构件表面全场面内应变/应力分布的实验测试技术。该方法克服了传统光弹性贴片法应用过程中所存在的费时(需要预先制作贴片)、基底加强效应、复杂的后期数据处理(需要多条纹计数和位相去包裹)等诸多问题。目前,国内其他的科研院所在这方面的研究鲜见报道,我校也尚处于研究的起步阶段。本文针对LPC方法实际应用中已有的两种涂层结构(由只含有荧光染料的发光底层和光弹性外层组成的双涂层结构;光弹性涂层内既含有发光染料又含有吸收染料的单涂层结构)信号强度小、信噪比低的局限性,首次提出了在LPC方法中,采用只含有发光染料的新的单涂层结构,通过增大涂层发射信号强度的方法,提高信噪比。并以环氧树脂为光弹性材料,邻苯二甲酸二丁脂为增塑剂,二乙烯三胺为固化剂,罗丹明B为荧光染料制作的新的单涂层结构开展了如下方面的主要工作:
     新单涂层结构的理论分析及强度提高实验验证:根据光弹性理论以及光致发光原理,推导了平面应力状态下新单涂层结构的强度公式。通过制作新、旧两种不同结构LPC,以465nm为激发波长,在Cary Eclipse型荧光分光光度计上对这两种涂层的荧光光谱进行测试。实验结果验证了新涂层结构在提高测量信号强度方面的有效性。另外,通过制作具有相同厚度、但发光染料配比不同的新单涂层结构LPC,荧光光谱的测量结果表明:测量信号的强度提高还与涂层中发光染料配比的合理确定(考虑浓度效应)、荧光信号发射波长的选择有直接关系。
     基于建立厚度——强度标准曲线测量LPC厚度的理论研究及实验验证:为了修正采用喷涂或刷涂方法制作涂层时,构件表面LPC厚度分布的不均匀性对应变测量结果的影响,首次提出基于建立厚度与强度标准曲线的LPC厚度测量方法。具体步骤:(1)制作一系列具有相同厚度,但染料配比不同的LPC,并以465nm为激发波长,在Cary Eclipse型荧光分光光度计上进行荧光光谱测试,确定LPC荧光信号强度I与其厚度h之间满足近似线性关系时的染料最大配比;(2)在实验确定的染料最大配比前提下,制作一系列具有相同染料配比,但厚度不同的标准涂层,通过最小二乘拟合建立I与h之间线性关系标准曲线(线性相关系数大于0.999)。
     基于光学菲涅尔响应测量LPC折射率的理论研究及实验验证:通过对LPC受斜入射光波激发时,发射光波沿入射光波原路径返回振幅变化的理论分析,提出一种基于LPC光学菲涅尔响应的折射率在线测量方法。实验测量了LPC在入射角为60°波长为465nm光波激发下的涂层折射率。测量结果表明:新的折射率测量方法是可行的,对于其他用途的发光涂层折射率测量同样适用。实验结果为LPC方法采用斜射法应变分离时,与涂层应变无关的光学菲涅尔响应值的计算奠定了基础。
     斜射法应变分离提取应变相关光学响应的方法研究:为了获得两个单独的主应变值,提出LPC方法中采用激发光波斜入射的主应变分离方法。考虑到激发光波斜入射时,由于折射光与入射光传播方向的不同,造成与涂层应变无关的光学响应和与涂层应变相关的光学响应耦合在一起。为了从耦合的光学响应中获取只与涂层应变相关的光学响应以便应用于主应变分离,理论研究了新涂层结构在激发光波斜入射时涂层应变相关光学响应的提取及主应变分离方法。并通过对信噪比的理论分析,确定了新涂层结构斜入射应变分离时的最优入射角。
Luminescent photoelastic coating (LPC) method is a relatively new measurement technique to provide the full-field in-plane maximum shear strain and the principal strain directions on the surfaces of the test structures. In order to overcome the shortcoming of low signal-to-noise ratio in signal detection faced in its practical applications, the improved LPC configuration and test method are proposed. In this dissertation, the principal works on the improved LPC prepared by Epoxy resin, Dibutyl phthalate (DBP), Diethylenetriamine (DETA) and Rhodamine B (RhB) are listed as follow:
     Theoretical analysis and experimental verification of the new single-layer LPC. The intensity formula for the new LPC was derived. Fluorescence emission spectra of both the new LPC and the original LPC were measured using fluorescence spectrophotometer. The results show that the new LPC could remarkably improve signal-to-noise ratio with increasing emission intensities. Furthermore, the emission spectra of the new LPC with the same thickness but different weight ratios of luminescent dyes show that both an appropriate concentration of luminescent dyes and an emission wavelength adopted to capture intensity images in LPC method are of real significance in effectively improving signal intensities.
     The theoretical research and experimental verification of the LPC thickness measurement method. In order to correct the influence of coating thickness nonuniformity resulted from spray-on or brush-on coating on accurate strain measurements, a non-contact coating thickness measurement method based on establishing linear calibration curve between the thickness and luminescent signal intensity of test coating is proposed. The experimental results show that the linear calibration curve between LPC intensity and its thickness can be given by selecting an appropriate concentration of luminescent dye added in LPC, and the correlation coefficient of this linear calibration curve is to more than0.999.
     The theoretical studies and experimental measurement of the LPC refractive index. According to the amplitude theoretical analysis of the emission light exiting the coating along the same path as the incident excitation light, a new measurement method of the LPC refractive index based on optical Fresnel response of the coating is proposed. The refractive index of the new LPC was measured and can be used to calculate the non-strain related optical Fresnel response for principal strain separation by oblique incidence technique.
     Propose the oblique-incidence method for principal strain separation in the LPC. The value of the principal strain difference can be obtained by the normal incidence in LPC. To obtain two separate principal strain components in LPC method, a theoretical model of strain separation by oblique incidence with a new LPC only containing luminescent dyes is presented. Considering the non-strain related refraction effect included in the total optical response at oblique incidence, the theoretical analysis of getting the strain related optical response from the total optical response used to separate principal strains is given. The optimal angle of incidence for the oblique incidence method was determined from the signal-to-noise ratio curve.
引文
[1]MatsumotoN, OhtakiS, OhiraM, etal. Elastic-plastic behaviour of a plate with a central hole by photoelastic coating method. Applied Mechanics and Materials,2005,3-4:27-32.
    [2]Yoneyama S, Gotoh J, Takashi M. Experimental analysis of rolling contact stresses viscoelastic strip. Experimental Mechanics,2000,40(2):203-210.
    [3]Akhmetzyanov M, Albaut G. Study of large plastic strains and fracture in metal elements by photoelastic coating method. International Journal of Fracture,2004,128(1):223-231.
    [4]RajamohanD. Hyperstatic method of photoelasticity. Experimental Mechanics,2008,48(5): 693-696.
    [5]Younis N T. Assembly stress for the reduction of stress concentration.Mechanics Research Communications,2006,33(6):837-845.
    [6]Anand V, Dasari N, Ramesh K. Innovative use of transmission and reflection photoelastic techniques to solve complex industrial problems. Experimental Techniques,2011,35(5):71-75.
    [7]Dally JW, Riley W F. Experimental stress analysis,3rd ed., New York:McGraw-Hill,1991.
    [8]Cesar A S, Federico M S. Experimental mechanics of solids. United Kingdom:John Wiley & Sons Ltd,2012.
    [9]张如一,陆耀桢.实验应力分析.北京:机械工业出版社,1981.
    [10]Yamaguchi I. A laser-speckle strain gauge. J. of Physics:Scientific Instruments,1981,14(11): 1270-1273.
    [11]Peters W H, Ranson W F. Digital imaging techniques in experimental stress analysis, Optical Engineering-1982,21(3):427-432.
    [12]Pan B, QianKM, Xie H M, Asundi A. Two-dimensional digital image correlation for in-plane displacement and strain measurement:a review. Measurement Science & Technology,2009,20 (8):427-433.
    [13](美)F.赞德曼,s.雷德诺,J.W.戴利.光弹性贴片法.高瑞亭,黄杰藩译.北京:机械工业出版社,1980.
    [14]严承蔼.光弹性贴片技术及上程应用.北京:国防工业出版社,2003.
    [15]佟景伟,李鸿琦.光力学原理及测试技术.北京:科学出版社,2009.
    [16]Post D, Han B, Ifju P G. High sensitivity moire:Experimental Analysis for Mechanics and Materials, New York:Springer-Verlag,1994.
    [17]Rastogi P. Digital speckle pattern interferometry and related techniques. West Sussex:Wiley,2001.
    [18]Jones R, Wykes C. Holographic and speckle interferometry, Cambridge:Cambridge University Press,1989.
    [19]Shchepinov V P, Pisarev V S. Strain and stress analysis by holographic and speckle interferometry. NewYork:John Wiley & Sons,1996.
    [20]Kreis T. Handbook of holographic interferometry. Weinheim:Wiley-VCH,2005.
    [21]Steinchen W, Yang L. Digital shearography:theory and application of digital speckle pattern shearing interferometry. Washington:SPIE Press,2003.
    [22]Hung Y Y. Shang H M, Yang L. Unified approach for holography and shearography insurface deformation measurement and nondestructive testing. Optical Engineering,2003,42 (5): 1197-1207.
    [23]HarwoodN, Cummings W M. Thermoelastic Stress Analysis, United Kingdom:Taylor & Francis Ltd,1991.
    [24]Pitarresi G, Patterson E A. A review of the general theory of thermoelastic stress analysis. The Journal of Strain Analysis for Engineering Design,2003.38 (5):405-417.
    [25]Pramod K R. Photomechanics. Germany:Springer-Verlag Berlin and Heidelberg GmbH & Co. KG,2000.
    [26]Hastie R L, Fredell R, Dally J W. A photoelastic study of crack repair. Experimental Mechanics, 1998,38 (1):29-36.
    [27]Duong C N, Verhoeven S, Guijt C B. Analytical and experimental study of load attraction and fatigue crack growth in two-sided bonded repair. Composite Structures,2006,73 (4):394-402.
    [28]Patterson E, Brailly P, Taroni M. High frequency quantitative photoelasticity applied to jet engine components.Experimental Mechanics,2006,46(6):661-668
    [29]Neto P S, Palma E S, Bicalho V M F. Stress analysis in automobile components using reflexive photoelasticity technique. Applied Mechanics and Materials,2006,5-6:117-124.
    [30]Szekessy L I. Stresses in a Torispherical Head of a Pressure Vessel by Photoelastic Coating Method University of British Columbia,1961.
    [31]Case R O, Holly J N. Photoelastic-coating analysis of a thermoplastic, rectangular-parallelepiped pressure vessel. Experimental Mechanics,1978,18(11):431-435.
    [32]宋云涛,姚达毛,武松涛.HT-7U真空室支撑结构的数值模拟与实验研究.机械强度,2003,25(4):408--412.
    [33]Chang C W, Lien H S. Expansion stress analysis of ferroconcrete corrosion by digital reflection photoelasticity. NDT & E.International,2007,40 (4):309-314.
    [34]Hirokawa S, Yamamoto K, Kawada T. Circumferential measurement and analysis of strain distribution in the human ACL using a photoelastic coating method. Journal Biomechanics.2001. 34(9):1135-1143.
    [35]Ramesh K. Kumar M A, Dhande S G. Fusion of photoelasticity rapid prototyping and rapid tooling technologies. Experimental Techniques,1999,23:36-38.
    [36]吴智敏,赵国藩,宋玉普,等.光弹贴片法研究砼在疲劳荷载作用下裂缝扩展过程实验力学,2000,15(3):286-292.
    [37]宋淑慧.钢筋混凝土构件应力状态的光弹贴片法监测.山东工程学院学报,2001,15(2):61-64.
    [38]吴智敏,徐世娘,刘佳毅.光弹贴片法研究混凝士裂缝扩展过程及双K断裂参数的尺寸效应.水利学报,2001,32(4):34-39.
    [39]栾兰.光弹性贴片法研究混凝土非标准三点弯曲梁裂缝扩展过程.粮食流通技术,2005,2:7-10.
    [40]谢和平,陈忠辉,易成,等.基于工程体-地质体相互作用的接触面变形破坏研究.岩石力学与工程学报,2008,27(9):1767-1780.
    [41]毛灵涛,王文贞,刘红彬,等.光弹性贴片法研究钢纤维活性粉末混凝土断裂性能.实验力学,2009,24(3):215-222
    [42]董伟,何化南,吴智敏,等.光弹贴片法研究混凝土Ⅰ-Ⅱ复合型裂缝扩展过程.工程力学,2010,27(9):41-48.
    [43]姜桂荣,于敏之,张涛.双面卸矿用车车架强度试验研究,专用汽车,2002.2:31-33.
    [44]谢亮.楔横轧机机架应力分布的光弹性贴片法测试与分析[硕士学位论文].北京:机械科学研究院,2004.
    [45]李志勇,张帆.光弹性贴片法全场分离主应变方法研究.长沙交通学院学报,1993,9(1):76-81.
    [46]王炯华,杨玉贵,刘一华.用盲孑孔—光弹贴片法检测构件内的残余应力,甘肃工业大学学报,1995,10(1):96-99.
    [47]张帆.光弹贴片主应变分离方法与新仪器研究.实验力学,1996,11(4):518-523.
    [48]Chengai Yan. Guanghong Fan, Yajun Li, et al. Application of a photoelastic coating method. Proceedings of the SPIE,2002,4537:290-292.
    [49]顾晓辉,唐晨.边界元法与光弹性实验相结合的应力分析法.沈阳航空工业学院学报,1998,15(3):18-21.
    [50]何小元.干涉条纹识别的自适应视觉基元匹配法.实验力学,1995,10(4):384-389.
    [51]任传波,于万明,云大真.基于神经网络的光弹性应力分析法.大连理工大学学报,1998,38(1):20-24.
    [52]任传波,蒲琪,云大真,等.用图像运算技术对光弹性条纹进行倍增.光学学报,1999,19(5):591-595.
    [53]闫海青,唐晨,徐红霞.多幅图像运算模块的建立及在光弹性图像处理中的应用.应用光学,2001,22(5):31-34.
    [54]杨福俊.光测条纹统计处理与卷积形貌检测方法和光弹性的应用研究,[博士论文].大连:大连理工大学,2002.
    [55]雷振坤.彩色域数字光弹性中数据采集技术的应用研究,[博士论文].大连:大连理工大学,2002.
    [56]岳卉,曹慧芹.模糊理论在光弹性图像处理中的应用.计算机工程,2002,28(6):30-32.
    [57]岳卉,曹慧芹,安里千.光弹性等倾线的图像滤波提取.计算机测量与控制,2004,12(12):1204-1206.
    [58]工彦青.用小波变换识别数字光弹性图像的研究,[硕士论文].天津:天津大学,2004.
    [59]杨夏,陈斌,于起峰,等.彩色光弹性干涉影像分析系统.实验力学,2006,21(4):533-538.
    [60]刘荣阁.光贴片法在复合材料构件中的应用.沈阳上业大学学报,1996,18(1):60-63.
    [61]王喜闻,于万明,张晓音等.各向异性材料应力应变分析方法研究.大连理工大学学报,2003,43(5):567-570.
    [62]常红,李俊林,高廷凯,等.光弹法实测正交异性双材料界面裂纹断裂参数.力学与实践,2008,30(6):56-60.
    [63]侯鑫茜,常红.光弹贴片法检测复合材料残余应力.太原科技大学学报.2010,31(5):403-405.
    [64]邱新新,常红.复合材料单向板断裂韧性的光弹性实验研究.太原科技大学学报,2011,32(5):403-406.
    [66]马光,陈四利,陈永林.光弹贴片法厚度效应的数值分析.沈阳工业大学学报,1993,15(4):28-32.
    [67]Chang C W, Chen P H, Lien H S. Evaluation of residual stress in pre-stressed concrete material by digital image processing photoelastic coating and hole drilling method. Measurement,2009,42 (4):552-558.
    [68]Jankowski L J, Jasienko J, Nowak T P. Experimental assessment of CFRP reinforced wooden beams by 4-point bending tests and photoelastic coating technique. Materials and Structures/Materiauxet Constructions,2010,43(1-2):141-150.
    [69]Nowak TP, Jankowski L J, Jasienko J. Application of photoelastic coating technique in tests of solid wooden beams reinforced with CFRP strips. Archives of Civil and Mechanical Engineering, 2010,10(2):53-66.
    [70]Shin D C, Hawong J S. Development of a hybrid method of reflection photoelasticity for crack problems in anisotropic plates. Experimental Mechanics.2011.51 (2):183-198.
    [71]Hawong J S, Shin D C, Han S L. A study on the development of reflective photoelastic experimental hybrid method on the static plane problems of orthotropic material. Key Engineering Materials,2006,324-325:1197-1200.
    [72]Rowlands R E. Stress analysis by synergizing experimental, analytical and numerical techniques. Proceedings of SPIE-The International Society for Optical Engineering-2009.7375: 737524-1-8.
    [73]Fernandes C P, GlantzP OJ, Svensson S A, et al. Reflection photoelasticity:a new method for Reflection photoelasticity:a new method for studies of clinical mechanics in prosthetic dentistry, Dental Materials.2003,19 (2):106-117.
    [74]Matsushima M, Okada Y, Ikeda S, et al. Photoelastic stress analysis on patient-specific anatomical model of cerebral artery by reflection method. International Symposium on Micro-NanoMechatronics and Human Science, MHS 2008.355-360.
    [75]Grecula M J, Morris R P, Laughlin J C, et al. Femoral surface strain in intact composite femurs: a custom computer analysis of the photoelastic coating technique. IEEE Transactions on Biomedical Engineering,2000,47 (7):926-933.
    [76]Yamamotoa K, Hirokawab S, Kawadac T. Strain distribution in the ligament using photoelasticity. A direct application to the human ACL. Medical Engineering & Physics,1998,20:161-168.
    [77]Cristofolini L, Metti C, Viceconti M, et al. Strain patterns induced by press-fitting and by an external load in hip arthroptasty:a photoelastic coating study on bone models. Journal of Strain Analysis for Engineering Design,2003,38(4):289-301.
    [78]Pacey M N, Haake S J, Patterson E A. A novel instrument for automated principal strain separation in reflection photoelasticity. Journal of Testing and Evaluation,2000,28(4):229-235.
    [79]Barone S, Patterson EA. Full-field separation of principal stresses by combined thermo-and photoelasticity.Experimental Mechanics,1996,36(4):318-324.
    [80]Woolard D F, Hinders M K. Coatings for combined thermoelastic and photoelastic stress measurement. Proceedings of SPIE,1999,3587:88-96.
    [81]Greene R J, Clarke A B, Turner S, et al. Some applications of combined thermoelastic-photoelastic stress analysis. Journal of Strain Analysis for Engineering Design,2007,42 (3):173-182.
    [82]Cardenas-Garcia J F. The hole drilling method in photoelasticity-application of an optimization approach. Strain,2000,36(1):9-17.
    [83]Foust B E, Lesniak J R, Rowlands R E. Determining Individual Stresses Throughout a Pinned Aluminum Joint by Reflective Photoelasticity. Experimental Mechanics,2011-51(9):1441-1452.
    [84]Ramesh K, Mangal S K. Automation of data acquisition in reflection photoelasticity by phase shifting methodology. Strain,1997,33-(3):95-100.
    [85]Aleksa A, Ragulskis M, Palevicius A, et al. Adaptive conjugate smoothing of digital images using photo-elastic coatings. Proceedings of SPIE-The International Society for Optical Engineering, 2009,7292.
    [86]Lyubenova T. Stoykova E, Ivanov B, et al. Full-field stress analysis by holographic phase-stepping implementation of the photoelastic-coating method, Physica Scripta,2012, T149: 1-5.
    [87]Stoykova E, Van Paepegem W. De Pauw S, et al. Study of mechanical characteristics of window security films by phase-stepping photoelasticity. Proceedings of SPIE,2008.7027.
    [88]Dubey V N. Grewal G S, Claremont D J. Load extraction from photoelastic images using neural networks. Experimental Mechanics.2007.47(2):263-270.
    [89]Instructions for photoelastic spray coatings. Measurements Group Tech Notes B-226. http://www.vishaymg.de/vmm,1982.
    [90]Lesniak J R, Bazile D J, Zickel M J. New coating techniques in photoelasticity. Proceedings of Society of Experimental Mechanics Spring Conference, Cincinnati, OH,1999.
    [91]Lesniak J R, Zickel M J. Applications of automated greyfield polariscope. Proceedings of the SEM Spring Conference on Experimental Mechanics, Houston, Texas,1998,298-301.
    [92]Calvert G, Leniak J, Honlet M. Applications of modem automated photoelasticity to industrial problems. Insight:Non-Destructive Testing and Condition Monitoring,2002,44(4):224-227.
    [93]Lesniak J, Zhang S J, Patterson E A. Design and evaluation of the poleidoscope:a novel digital polariscope. Experimental Mechanics,2004,44(2):128-35.
    [94]Honlet M, Lesniak JR, Boyce B R, et al. Real-time photoelastic stress analysis-A new dynamic photoelastic method for non-destructive testing. Insight:Non-Destructive Testing and Condition Monitoring,2004,46(4):193-195.
    [95]West E A, Smith M H. Polarization errors associated with birefringent waveplates. Optical Engineering,1995,34(6):1574-1580
    [96]Boulbry B, Bousquet B, Le Jeune B, et al. Polarization errors associated with zero-order achromatic quarter-wave plates in the whole visible spectral range. Optics Express,2001,9(5): 225-235
    [97]Ajovalasit A, Barone S, Petrucci G. A method for reducing the influence of quarter-wave plate errors in phase stepping photoelasticity.J Strain Anal,1998,33:207-216
    [98]Woolard D, Hinders M. Model for quantifying photoelastic fringe degradation by imperfect retroreflective backings. Applied Optics,2000,39(13):2043-2053.
    [99]Bhowmik A K. Multiple-reflection effects in photoelastic stress analysis. Applied Optics,2001,40 (16):2687-2691.
    [100]Stoykova E. Lyubenova T. Sainov V. Modeling of speckle noise in the interferometric phase-stepping photoelastic-coating stress analysis. Proceedings of SPIE,2011,7747.
    [101]高建荣,叶芳芳,赵海莹,等.氯铝酸离子液体催化合成香豆素结构荧光染料.精细化工,2007,24(9):867-869.
    [102]费学宁,刘丽娟,张宝莲,等.荧光染料探针分子对变异细胞的识别.化学进展,2006,18(6):801-807.
    [103]肖步文,李传南,李新红,等.沉积亚单层荧光染料提高有机发光器件的发光效率.光子学报,2005,34(8):1145-1148.
    [104]吴成.风/水洞测压试验技术的飞跃新型压敏荧光涂层测压传感器.国际航空,2004,7:60-61.
    [105]杜闰萍,刘喆,姜富强,等.荧光光纤光栅传感特性的实验研究.光子学报,2006,35(9):1296-1300.
    [106]杜闰萍,刘喆,程易,等.平面激光诱导荧光技术用 于快速液-液混合过程温度场测量.过程工程学报,2007,7(5):859-864.
    [107]Bell J H, Schairer E T, Hand L A, et al. Surface pressure measurements using luminescent coatings. Annual Review of Fluid Mechanics.2001,33:155-206.
    [108]Wade S A, Forsyth D I. Grattan K T V-et al. Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescence lifetime decay and fiber Bragg grating technique. Rev Sci Instrum,2001.72:3186-3190.
    [109]Hubner J P. Carroll B F-Schanze K S. Heat-transfer measurements in hypersonic flow using luminescent coating techniques. Journal of Thermophysics and Heat Transfer,2002.16 (4): 516-522.
    [110]Lesniak J R. Full field photoelastic stress analysis. US Patent:6219139,2001-4-17.
    [111]Ifju P, Schanze K S, Wang Y S. System, method, and coating for strain analysis. US Patent: 6327030,2001-12-4.
    [112]IfjuP, Schanze KS, WangYS, et al. Luminescent brittle coating in strain analysis. Wipo Patent: 2001011311,2001-2-15.
    [113]Cassidy D T, Lam S K K, Lakshmi B, et al. Strain mapping by measurement of the degree of polarization of photoluminescence. Applied Optics,2004,43(9):1811-1818.
    [114]Akiyama M, Nonaka K, Chao-nan X, et al. Method of and a system for measuring a stress or a stress distribution, using a stress luminescent material. US Patent:6628375,2003-9-30.
    [115]Hubner J P, IfjuP G, Schanze K S, et al. Full-field strain measurement using a luminescent coating. Experimental Mechanics,2003,43 (1):61-68.
    [116]Hubner J P, Ifju P G, Schanze K S, et al. Luminescent strain sensitive coatings. AIAA Journal, 2004,42 (8):1662-1668.
    [117]Hubner J P, Ifju P G, Schanze K S, et al. Luminescent photoelastic coatings. Experimental Mechanics,2004,44 (4):416-424.
    [118]Hubner J, Chen L, Liu Y, et al. Characterization of a new luminescent photoelastic coating. Experimental Mechanics,2005.45 (2):137-143.
    [119]Hubner J P, Nicolosi J, Chen L, et al. Oblique incidence response of photoelastic coatings. Experimental Technique,2005,29 (3):52-56.
    [120]Padmanabhan S, Hubner J P, Kumar AV, et al. Load and boundary condition calibration using full-feld strain measurement. Experimental Mechanics,2006,46(5):569-578.
    [121]Hubner J P, Chen L. Coupled strain and Fresnel response of photoelastic coatings at oblique incidence. Experimental Mechanics.2007.47 (4):549-560.
    [122]Esirgemez E, Hubner J P. Detailed uncertainty analysis of the luminescent photoelastic coating technique. SEM-11th International Congress and Exhibition on Experimental and Applied Mechanics,2008,2:648-657.
    [123]Esirgemez E, Hubner, J. P. Temperature dependence of the luminescent photoelastic coating technique. The Journal of Strain Analysis for Engineering Design,2009,44(8):699-711.
    [124]Takahashi D, Hubner J P. Strain separation on a nonplanar object using a luminescent photoelastic coating. Experimental Mechanics,2010,50(3):365-375.
    [125]Gerber D R, Hubner J P. Factorial design experiment to analyze the response of a luminescent photoelastic coating. AIAA Journal,2010.48(10):2206-2212.
    [126]Esirgemez E, Hubner J P. Luminescent photoelastic coating image analysis and strain separation on a three-dimensional grid, Optical Engineering.2010,49 (8):3601-14.
    [127]Esirgemez E. Gerber DR. Hubner J P. Investigation of the coating parameters for the luminescent photoelastic coating technique. SEM Annual Conference and Exposition on Experimental and Applied Mechanics,2010.3:2262-2275.
    [128]Gerber D R, Ali H K. Hubner J P. Dynamic strain measurements with a luminescent photoelastic coating. Proceedings of SPIE,2011,79815V.
    [129]Gustetic J L. Non-contact thickness measurements of luminescent photoelastic coatings.2004. http://www.clas.ufl.edu/jur/200410/papers/paper gustetic.html//top
    [130]Coppeta J. Rogers C. Dual Emission laser Induced Fluorescence for Direct Planar Scalar Behavior Measurements, Experiments in Fluids.1998,25 (1):1-15.
    [131](德)马科斯.玻恩,(美)埃米尔.沃尔夫.译者:杨葭荪.光学原理(第七版).北京:电 子工业出版社,2005.
    [132]徐叙瑢,苏勉曾.发光学与发光材料.北京:化学工业出版社,2004.
    [133]夏锦尧.实用荧光分析法.北京:中国人民公安大学出版社,1992.
    [134]许金钩,王尊本.荧光分析法(第三版).北京:科学出版社,2006.
    [135]Lakowicz J R. Principles of Fluorescence Spectroscopy (3rd Edition). New York:Springer,2006.
    [136]Holst G C, Lomheim T S. CMOS/CCD Sensors and Camera Systems,2nd ed. United States:SPIE Press,2011.
    [137]易平,陈福生,邹红艳.图像处理中消除噪声的方法.计算机应用与软件,2003,5:29-31.
    [138]马艳娥,陈思,陈娟,等.基于多幅图像平均法对数字图像降噪的研究.电子测试,2011,6:1-3.
    [139]阮秋琦.数字图像处理学(第二版).北京:电子工业出版社,2007.
    [140](美)冈萨雷斯,(美)伍兹,阮秋琦(译).数字图像处理(第三版).北京:电子工业出版社,2011.
    [141]Buades A, Coll B, Morel J M. A review of image denoising algorithms, with a new one. Multiscale modeling and simulation,2006,4:490-530.
    [142]Faraji H, MacLean W J. CCD noise removal in digital images. IEEE Transactions on image processing,2006,15:2676-2685.
    [143]Penzkofer A. Fluorescence quenching of rhodamine 6G in methanol at high concentration. Chemical Physics,1986,103(2-3):399-405.
    [144]Grenoble S, Gouterman M, Khalil G, el al. Pressure-sensitive paint (PSP):concentration quenching of platinum and magnesium porphyrin dyes in polymeric films. Journal of Luminescence,2005, 113(1-2):33-44.
    [145]Chen R F, Knutson J R. Mechanism of fluorescence concentration quenching of carboxyfluorescein in liposomes:Energy transfer to nonfluorescent dimmers Analytical Biochemistry,1988,172(1): 61-77.
    [146]Setiawan D, Kazaryan A, Martoprawiro M A, el al. A first principles study of fluorescence quenching in rhodamine B dimers:how can quenching occur in dimeric species? Phys Chem Chem Phys.2010,12(37):11238-44.
    [147]熊友华,高爱中,任东明,等.罗丹明B单克隆抗体的的制备及鉴定.免疫学杂志,2011,27(4):328-331.
    [148]王晓梅,叶超,李臣贵,等.CdTe量子点-罗丹明B荧光共振能量转移猝灭法测定金银花中的微量铜.光谱学与光谱分析,2011,31(2):448-451.
    [149]门志伟,房文汇,孙成林,等.罗丹明B荧光增强苯受激拉曼散射研究.光散射学报,2010,22(2):115-119.
    [150]王颖,李钟卉,钟文英,等.罗丹明B硅纳米粒子探针及其在蛋白芯片检测中的应用.中国科学:化学,2010,53(4):747-751.
    [151]杜娟,孙丹.罗丹明B光谱探针测定面粉中过氧化苯甲酰.食品科学,2009,30(10):156-158.
    [152]宋植缇.覆层测厚方法.北京:水利出版社,1992.
    [153]胡传炘.涂层技术原理及应用.北京:化学工业出版社,2000.
    [154]李岩,花国梁.精密测量技术(第二版).北京:中国计量出版社出版,2001.
    [155]马国欣.激光差动扫描测量厚度.应用激光.2005,25(3):176-178.
    [156]朱万彬,曹世豪.光谱共焦位移传感器测量透明材料厚度的证用.光机电信息,2011,28(9):50-53.
    [157]Bhattacharyya D, Ray A, Dutta B K, et al. Direct measurement on transparent plates by using Fizeau interferometry. Optics & Laser Technology,2002,34:93-96.
    [158]Nabeel A R, Mumtaz S, Frank P. Optical substrate thickness measurement system using hybrid fiber-freespace optics and selective wavelength interferometry, Optics Communications,2007, 269(1):24-29.
    [159]Horkel M, Mahr H, Hell J, et al. Determination of the thickness of metal coatings on granular diamond materials by spatially resolved optical methods. Vacuum,2010,84:57-60.
    [160]徐志辉,林莉,李喜孟,等.基于功率谱分析的表面涂层厚度超声无损测量方法.中国表面工程,2004,6:7-14.
    [161]Zhang J, DrinkwaterB W, Dwyer-Joyce R S. Calibration of the ultrasonic lubricant-film thickness measurement technique. Measurement Science and Technology,2005,16:1784-1791.
    [162]Maev R G, Shao H, Maeva E Y. Thickness measurement of a curved multilayered polymer system by using an ultrasonic pulse-echo method. Materials characterization.1998,41:97-105.
    [163]ByoungG K, SekyungL, Kishi T. Time-domain reflection field analysis for ultrasonic evaluation of thin layered media. NDT&E International,1996,29 (5):317-322.
    [164]Changyi Z, Vikram K K. Time-Domain ultrasonic measurement of the Thickness of a sub-Half-wavelength elastic layer. American society for testing and materials,1992:265-274.
    [165]Weimin G, Glorieux C, Thoen J. Laser ultrasonic study of Lamb waves: determination of the thickness and velocities of a thin plate. International journal of engineering science,2003,41: 219-228.
    [166]Moreno E, Acevedo P, Castillo M. Thickness measurement in composite materials using lamb-waves viscoelastic effects. Ultrasonics,2000.37:595-599.
    [167]Schneider D, Schwarz T, Bradford AS. et al. Controlling the quality of thin films by surface acoustic waves. Ultrasonics,1997,35:345-356.
    [168]Schneider D, Tucker M D. Non-destructive characterization and evaluation of thin films by laser-induced ultrasonic surface waves. Thin solid films,1996,290-291:305-311.
    [169]GB/T4957—1985.非磁性金属基体上非导电覆盖层厚度测量,涡流方法.
    [170]Yin W, Peyton A J. Thickness measurement of non-magnetic plates using multi-frequency eddy current sensors. NDT and E International,2007,40:43-48.
    [171]GB/T4956—1985.磁性金属基体上非磁性覆盖层厚度测量,磁性方法.
    [172]Lukhvich A A, Luk'Yanov A L, Shukevich A K. Estimation of influence of impeding factors on magnetic thickness measurements. Russian Journal of Nondestructive Testing,2007,43:809-816.
    [173]Gotoh Y, Matsuoka A, Takahashi N. Measurement of thickness of nickel-layer on steel using electromagnetic method. IEEE Transactions on Magnetics,2007,43:2752-2754.
    [174]Adams L. X-ray fluorescence measures coating thickness. Quality,2001,40.30-33.
    [175]陈敏聪,陈子瑜,李红梅,等.X射线质量厚度测量研究.中国科学技术大学学报,2008,38(2):195-199.
    [176]李洪涛,罗毅,席光义,等.基于X射线衍射的GaN薄膜厚度的精确测量.物理学报,2008,57(11):7119-7125.
    [177]陈德斌,胥福顺,栾争位.影响X射线测厚仪测量精度的因素及维护方法.轻合金加工技术,2009,37(4):38-40.
    [178]刘以思.β测厚仪.核电子学与探测技术,1995,15(3):161-166.
    [179]辛登科,张玉杰.冷轧带钢生产用的γ射线在线测厚仪.仪表技术与传感器,2004,6:6-7.
    [180]Harara W. Deposit thickness measurement in pipes by tangential radiography using gamma ray sources. Russian Journal of Nondestructive Testing.2008.44:796-802.
    [181]Fernandez MSB, Calderon J M A. Diez P M B, et al. Stress-separation techniques in photoelasticity:a review. The Journal of Strain Analysis for Engineering Design,2010.45(1): 1-17.
    [182]Drucker D C. Photoelastic separation of principal stresses by oblique incidence. Journal of Applied Mechanics,1943, A:156-160.
    [183]Redner S S. New oblique incidence method for direct photoelastic measurement of principal strains. Experimental Mechanics,1963,3(3):67-72.
    [184]Hung Y Y, Pottinger M G. An improved oblique-incidence technique for principal-strain separation in photoelastic coatings. Experimental Mechanics,1980,20(5),170-173.
    [185]Komorowski J, Stupnicki J. Strain measurement with asymmetric oblique-incidence polariscope by birefringent coatings. Experimental Mechanics,1983,23(2):171-176.
    [186]Chaudhari U M, Godbole P B. Direct oblique incidence method for reflection photoelasticity. Experimental Techniques,1990,14(2):37-40.
    [187]Redner A S. Separation of principal strains in photoelastic coatings by the slitting method. Experimental Techniques,1987,11(5):29-33.
    [188]高雅丽,张光,苟文选.光弹性贴片中用宽条带法分离主应变的研究.机械科学与技术,1998,17(5):833-834.
    [189]Mahfhfuz H, Wong T L, Case R O. Hybrid stress analysis by digitized photoelastic data and numerical methods. Experimental Mechanics,1990,30(2):190-194.
    [190]Berghaus D G. Combining photoelasticity and finite element method for stress analysis using least squares. Experimental Mechanics,1991,31(1):36-41.
    [191]Vishay Measurements Group Inc. Principal stress separation in Photostress measurements-Technical Note 708-2. http://www.vishavpg.com.
    [192]Cardenas-Garcia J F, Hashemi J, Durelli A J. The practical use of the hole method in photoelasticity. Mechanics Res. Communs,1995,22(3):239-244.
    [193]Cardenas-Garcia J F, Tian Y L, Hashemi J, et al. A least-squares approach to the practical use of the hole method in photoelasticity. J.Appl. Mechanics,1997.64 (3):576-581.
    [194]Durelli A J. Complete determination of the stress tensor in a field using brittle coatings. Experimental Mechanics,1989,29(1):84-89.
    [195]杨秀芳,王小明,高宗海,等.基于法布里-珀罗干涉仪的液体浓度实时检测系统的研究.光学学报,2005,25(10):1343-1346.
    [196]曾捷,梁大开,杜艳,等.用于温度测试的光纤SPR传感器特性研究.仪器仪表学报,2007,28(1):38-41.
    [197]肖丙刚,申溯,邸岳淼.棱镜耦合法测量负折射率材料光学特性理论研究.光子学报,2007,36(7):1230-1234.
    [198]王义生,徐斌,张军.最小偏向角法V棱镜法测量折射率的原理公式误差.长春光学精密机械学院学报,1995,18(1):5-10.
    [199]孟庆华,向阳.高精度测量光学玻璃折射率的新芳法.光学精密工程.2008,16(11):2114-2119.
    [200]Hui Li, Shusen Xie. Measurement method of the refractive index of biotissue by total internal reflection. Appl. Opt.,1996,35 (10):1793-1795.
    [201]李晖,谢树森,邱怡申.会聚光全反射法测量物质折射率.应用光学,1996,16(6):258-260.
    [202]程树英,沈鸿元,张戈,等.一种简单的测量生物组织折射率的方法.中国激光,2002,29(5):450-454.
    [203]沈翀,徐向东.全反射法折射率测量中的多光源光学系统设计.光电工程,2007,34(3):136-139.
    [204]李毛和,张美敦.用光纤迈克耳孙干涉仪测量折射率.光学学报,2000,20(9):1294-1296.
    [205](美)阿查姆RMA,巴夏拉N M,梁民基译.椭圆偏振测量术和偏振光.北京:科学出版社,1986.
    [206]朱筱玮,于金涛,陈永丽.椭圆偏振仪测量误差的修正.西安工业大学学报,2008,28(2):112-114.
    [207]邓广安,蔡志岗,张运华,等.用衍射光栅和CCD测量透明材料折射率.光学学报,2004,24(1):99-103.
    [208]赵宇,金永兴,董新永,等.基于多模干涉的光纤折射率传感器的实验研究.中国激光,2010,37(6):1516-1519.
    [209]方安平,叶卫平Origin8.0实用指南.北京:机械工业出版社,2009.
    [210]刘智敏.不确定度原理.北京:中国计量出版社,1993.
    [211]施昌彦.测量不确定度评定与表示指南.北京:中国计量出版仕,2000.
    [212]M.弗罗希特,黎仲鼎译.光测弹性力学(第二卷),北京:科学出版社,1966.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700