用户名: 密码: 验证码:
金属蜂窝夹芯结构的疲劳行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蜂窝夹芯结构具有轻质高强和可设计性强等优点,是航空航天、船舶、汽车、建筑等领域不可缺少的材料之一。在实际工程应用中,经常面临循环载荷作用,并且蜂窝夹芯结构力学性能极易受到载荷、环境等因素的影响。为了探索钎焊金属蜂窝夹芯结构的力学行为,尤其是疲劳行为,揭示结构破坏模式,对结构性能进行宏观预测和评价,论文主要开展了以下研究工作:
     对两种金属蜂窝夹芯结构系统开展了侧向拉伸、平压、三点弯曲、四点弯曲、SHPB冲击压缩性能实验研究工作,考虑试件几何尺寸、芯子排列方向、实验温度等条件对结构宏观性能的影响,借助数码相机和光学体式显微镜,对结构在不同实验条件下的失效模式和机理进行了详细的探讨。
     利用四点弯曲装置,分别研究了结构完整的钢质蜂窝夹芯试件和带有初始芯面脱焊缺陷的试件在室温下的疲劳行为,得到反映疲劳寿命的S-N曲线和疲劳强度极限,并讨论了不同缺陷尺寸对疲劳寿命的影响。系统地研究了钢质蜂窝夹芯结构的高温三点弯曲、四点弯曲疲劳行为。在试件的三点弯曲疲劳实验研究中,通过改变环境温度(200,300,400℃)来近似模拟实际工程中可能出现的高温、热力耦合的情况,得到各温度下循环次数与载荷水平的关系,并讨论了芯子排列方向对疲劳强度的影响;在四点弯曲疲劳实验研究中,重点开展了300℃下蜂窝夹芯结构疲劳寿命研究。分析了以上加载条件下蜂窝夹芯结构疲劳失效的主要模式。
     论文提出了以下几种蜂窝夹芯结构疲劳寿命预测方法。即:直接S-N曲线方法、刚度退化方法、强度折减方法,系统地建立了蜂窝夹芯结构的弯曲疲劳模型。建立了基于刚度退化的钢质蜂窝夹芯结构弯曲疲劳模型,与实验结果进行比较;对模型进行修正,使其适合预测结构高温弯曲疲劳行为。考虑芯子不同排列方向,推导得出两个非线性累计损伤模型,并与Miner损伤准则进行比较。基于强度折减法,分别针对完好试件和局部缺陷试件的弯曲疲劳实验结果,对Burman公式的适用性展开讨论,并在此基础上提出修正模型,合理地预测了室温弯曲疲劳寿命。
     论文最后借助三种无损检测技术对蜂窝夹芯结构的宏观性能进行评价。采用激光剪切散斑技术进行层合板表面及内部缺陷无损检测,探讨了错位量、缺陷尺寸、深度等因素对检测结果的影响,并利用该技术完成了蜂窝夹芯结构芯面脱焊的检测,利用像素标定技术,得到缺陷尺寸信息。编制了均值、中值、小波滤波等时域空域图像处理程序,并对得到的缺陷条纹图进行优化分析。提出一种基于数字图像相关技术的蜂窝夹芯结构面内弹性模量测试方法,编制计算程序,并探讨了搜索模板尺寸及不同算法对结果的影响,与传统机测法结果比较证明了提出方法的正确性。采用声发射技术,借助三点弯曲试验,对含有初始缺陷的蜂窝夹芯试件进行破坏及损伤分析,建立了三种不同载荷工况下,AE特征参数随加载时间、位置等变化规律。这些参数可以反映结构的损伤和断裂过程,实验结果与分析结果一致性较好。
Due to advantages of light weight, high stiffness and strength ration, design flexibility, etc, honeycomb sandwich structures are attractive structural components and are therefore widely used in aerospace, shipbuilding, automobile, civil engineering and other areas. In practical engineering applications, generally honeycomb sandwich structures are designed to carry cyclic loading. Moreover, mechanical properties can be influenced by loading and service conditions. In order to explore the mechanical behaviors of brazed metal honeycomb sandwich structures, especially to investigate fatigue behavior and reveal different failure modes, also to evaluate the macro structural performance, some research works were carried out as following:
     Mechanical properties of two kinds of metal honeycomb sandwich structures, such as lateral tension, flatwise compression, three-point bending, four-point bending, SHPB impact compression were experimental investigated in detail. The results show mechanical properties are sensitively influenced by geometries of specimen, different cell orientation, experiment temperatures and so on. With digital cameras and optical stereo microscope, different failure modes were analyzed and discussed in detail.
     The fatigue behavior of honeycomb sandwich beams was experimentally investigated through four-point bending tests. Two kinds of specimens, initially undamaged and damaged by interface debonding, have been tested. The fatigue tests results were presented in standard SN diagrams and the fatigue limit was obtained. Meanwhile the influence of different debonding size on fatigue life was discussed. Fatigue behaviors of three-point bending and four-point bending at high temperature were investigated in detail. During the three-point bending fatigue experiments, by changing the service temperature (ranges from 200 to 400℃), high temperature, coupled thermal and mechanics limit conditions of actual engineering were simulated. Curves between number of cycles and load level were acquired. Also based on the above results, the effects of cell orientations on the fatigue strength were studied. In the four-point bending fatigue tests, the experimental temperature was focused on 300℃. Different failure modes of the above loading conditions were carried out.
     Several fatigue life prediction methods were presented in this thesis. Namely:direct SN curve method, stiffness degradation method and strength reduction method. The results between experiments and established method based on stiffness degradation were contrasted. Meanwhile, appropriate corrected work on the stiffness model was finished in order that it can fit for life prediction of honeycomb structure under high temperature. Two non-linear cumulative damage models derived from the chosen stiffness degradation equations, were examined in context with the linear Miner's damage criterion and compared with available experimental results. For the strength reduction method, the effectiveness formula used by Burman was studied for undamaged specimens and damaged by interface debonding specimens. A corrected model was proposed to get a reasonable prediction of bending fatigue life for honeycomb sandwich specimens at room temperature.
     Finally in this thesis, three non-destructive testing methods were employed to evaluate the macro performance of honeycomb sandwich structures. Surface and inner defects of laminated wood panel were detected by ESSPI. The influence of shearography size, defect geometry, depth and other factors on the detection results were analyzed. Debonding between face layer and honeycomb core and defect information were successfully accomplished by pixel and displacement calibration technique. Program with mean, median, wavelet domain spatial filtering functions was compiled and used to optimize the speckle patterns. Introduced a method based on digital image correlation to obtain the in-plane elastic modulus of honeycomb sandwich structure. Special calculation programs were compiled. Results acquired from different search template size and subpixel algorithms were contrasted and studied. Meanwhile compared results with the traditional machine measurement method proved the validity of the proposed method. Using acoustic emission technique, with the three-point bending test, the damage analysis of honeycomb sandwich with the initial defects was monitored. Variation rules of AE parameters with the load time, different location under three different load conditions were developed. These AE characteristic parameters indicated the damage and fracture process of the steel sandwich beam specimens. A good agreement was found between the experimental and analytical results.
引文
[1]M.F.Ashby. Mechanical properties of cellular solids. Metall. Trans. A,1983,14(9),1755-1769页
    [2]卢天健,何德坪,陈常青等.超轻多孔金属材料的多功能特性及应用.力学进展,2006,36(4),517-535页
    [3]王兴业,杨孚标,曾竟成等.夹层结构复合材料设计原理及其应用.北京:化学工业出版社,2007
    [4]张广平,戴千策.复合材料蜂窝夹芯板及其应用.纤维复合材料,2000,17(2),6,25-27页
    [5]井玉安,果世驹.钢质蜂窝夹芯复合板的开发和应用.材料导报,2005,19(11),434-436页
    [6]符定梅,韩静涛,刘靖等.钢质蜂窝夹芯板的研究进展.航空精密制造技术,2004,40(3),14-30页
    [7]李勇Nomex蜂窝在俄罗斯航空领域的发展及应用.材料工程,1995,(4),3-5页
    [8]周连会.金属蜂窝结构在某机上的应用.航空工艺技术,1986,20(4),23-24页
    [9]R.A.Staal. Failure of Sandwich Honeycomb Panels in Bending. Ph.D thesis of The university of Auckland, New Zealand,2006
    [10]李勇.直九机用Nomex蜂窝研究.航空材料学报,1996,16(1),47-54页
    [11]郑立刚.钎焊扩散焊蜂窝结构在航空发动机中的应用.航空工艺技术,1991,(2),34-36页
    [12]P.L.Moses, V.L.Rausch, L.T.Nguyen, et al. NASA hypersonic flight demonstrators-overview, status and future plans. Acta Astronautica,2004,55(3-4),619-630P
    [13]周祝林,张长明.运载火箭复合材料仪器舱力学分析.玻璃钢/复合材料,2002,(6),12-14页
    [14]肖军,张秋禹,石宝仁等.提高空空导弹隐身性的蜂窝结构弹翼的简易方案.航空兵器,2000,(2),16-18页
    [15]M.L.Blosser. Advanced metallic thermal protection systems for reusable launch vehicles. University of Virginia,2000
    [16]M. L. Blosser. Development of metallic thermal protection systems for the reusable launch vehicle. NASA Technical Memorandum, Hampton, Virginia,1996,110296: 1-21P
    [17]M. L. Blosser, R. R. Chen, I. H. Schmidt, et al. Advanced metallic thermal protection system development. AIAA.2002,0504:1-20P
    [18]姚草根,吕宏军,贾新潮等.金属热防护系统材料与结构研究进展.宇航材料工艺,2005,(5),10-13页
    [19]姚骏.蜂窝夹层结构承力筒在FY-3卫星上的应用.上海航天,2004,21(1),52-57页61页
    [20]韦娟芳,冀有志,龚博安.星载蜂窝夹层结构天线复合材料力学性能检测.宇航材料工艺,2007,37(5),8-12页
    [21]张延昌,王自力,顾金兰等.夹层板在舰船舷侧防护结构中的应用.中国造船,2009,50(4),36-44页
    [22]冯仁杰,于九明.蜂窝夹芯复合板及其在汽车工业中的应用.汽车工艺与材料,2003,(8),30-32页
    [23]李红,韩静涛.复合蜂窝夹芯板的防弹机理及其应用.兵器材料科学与工程,2004,27(6),69-71页
    [24]黄志纲.蜂窝梁在大跨度走廊设计中的应用.钢结构,2002,17(5),30-31页
    [25]L.J.Gibson, M.F.Ashby. Cellular solids:structure and properties. Second edition. Cambridge UK:Cambridge University Press,1997
    [26]Allen G. Analysis and design of structural sandwich panel. Oxford UK:Pergamon Press, 1969
    [27]Zenkert D. An introduction to sandwich construction. Solihull UK:EMAS,1995
    [28]Zenkert D. The handbook of sandwich construction. UK:EMAS,1997
    [29]Vinson JR. The behavior of sandwich structures of isotropic and composite materials. USA:Technomic Pub. Co.,1999
    [30]J.M.Davies. Lightweight sandwich construction. UK:Blackwell Science Ltd.,2001
    [31]成广民,丁锁柱.复合材料蜂窝夹层结构计算的一般方法和进展.玻璃钢/复合材料,1996,(2),11-13,25页
    [32]中国科学院北京力学研究所固体力学研究室板壳组撰写.夹层板壳的弯曲稳定和振动.北京:科学出版社,1977
    [33]Reissner E. Finite deflection of sandwich plates. Journal of Aerospace Science,1948, 15(7),435-440P
    [34]Hoff NJ. Bending and buckling of rectangular sandwich plates. NASA TN,1950,2225
    [35]杜庆华.三合板的一般弹性理论.物理学报,1945,10(4),395-411页
    [36]G. Shi, P. Tong. Equivalent transverse shear stiffness of honeycomb cores. Int J Solids Struct,1995,32(10),1383-1393P
    [37]Masters IG, Evans KE. Models for the elastic deformation of honeycombs. Compos Struct,1996,35,403-422P
    [38]J.M. Albuquerque, M.F. Vaz, M.A. Fortes. Effect of missing walls on the compression behaviour of honeycombs. Scripta Mater,1999,41(2),167-174P
    [39]富明慧,尹久仁.蜂窝夹层的等效弹性参数.力学学报,1999,31(1),113-118页
    [40]F. Meraghni, F. Desrumaux, M.L. Benzeggagh. Mechanical behaviour of cellular core for structural sandwich panels. Composites:Part A,1999,30,767-779P
    [41]W. Becker. Closed-form analysis of the thickness effect of regular honeycomb core material, Compos Struct,2000,48(1-3),67-70P
    [42]M. Doyoyo, D. Mohr. Microstructural response of aluminum honeycomb to combined out-of-plane loading. Mech Mater,2003,35(9),865-876P
    [43]M.Y. Yang, J.S. Huang. Elastic buckling of regular hexagonal honeycombs with plateau borders under biaxial compression. Compos Struct,2005,71(2),229-237P
    [44]S.D. Pan, L.Z. Wu, Y.G. Sun et al. Longitudinal shear strength and failure process of honeycomb cores. Compos Struct,2006,72 (1),42-46P
    [45]J.N. Reddy. A review of refined theories of laminated composite plates. Shock-Vib. Dig., 1990,22,3-17P
    [46]J.Vinson. Optimum design of composite honeycomb sandwich panels subjected to uniaxial compression. AIAA J.,1986,24(10),1690-1696P
    [47]O.T. Thomsen. Analysis of local bending effects in sandwich plates with orthotropic face layers subjected to localized loading. Compos Struct 1993,25,511-520P
    [48]Y. Frostig. Behavior of delaminated sandwich beams with transversely flexible core: high order theory. Compos Struct,1992,20,1-16P
    [49]Y. Frostig, M. Baruch. High-order buckling analysis of sandwich beams with transversely flexible core. ASCE EM Div,1993,119(3),476-495P
    [50]K.M. Rao, H.R. Meyer-Piening. Analysis of sandwich plates using a hybrid stress finite element. AIAA J,1991,29(9),1498-1506P
    [51]邱克鹏,张卫红,孙士平.蜂窝夹层结构等效弹性常数的多步三维均匀化数值计算分析.西北工业大学学报,2006,24(4),514-518页
    [52]梁森,陈花玲,陈天宁等.蜂窝夹芯结构面内等效弹性参数的分析研究.航空材料学报,2004,24(3),26-31页
    [53]W.S. Burton, A.K. Noor. Three-dimensional solutions for thermomechanical stresses in sandwich panels and shells. ASCE J. Engrg. Mech.,1994,120(10),2044-2071P
    [54]A.K. Noor, W.S. Burton, J.M. Peters, Hierarchical adaptive modeling of structural sandwiches and multilayer composite panels. Appl. Num. Math.,1993,14,69-90P
    [55]A.K. Noor, W.S. Burton. Assessment of computational models for multilayered composite shells. Appl. Mech. Rev.,1990,43(4),67-97P
    [56]A.K. Noor, W.S. Burton. Computational models for high-temperature multilayered composite plates and shells. Appl. Mech. Rev.,1992,45(10),419-444P
    [57]Burton WS, AK Noor. Computational models for sandwich panels and shells. Applied Mechanical Review.1996,49(3),155-199P
    [58]史丽萍,赫晓东,孟松鹤等.MTPS金属蜂窝夹芯结构尺寸效应的数值模拟.南京航空航天大学学报,2005,37(1),121-124页
    [59]王萍萍,罗文波,邹经湘.碳纤维蜂窝夹层结构动特性分析.复合材料学报,2002,19(6),134-136页
    [60]王虎,富明慧.芯层面内刚度的蜂窝夹层板壳结构模型.中山大学学报,1998,37(4),46-49页
    [61]徐胜今,孔宪仁,王本利等.正交异性蜂窝夹层板动、静力学问题的等效分析方法.复合材料学报,2000,17(3),92-95页
    [62]井玉安,果世驹,李志军等.钢蜂窝夹芯板面内压缩性能.机械工程材料,2007,31(8),19-22,48页
    [63]泮世东,吴林志,孙雨果.蜂窝夹芯试件破坏行为分析.力学学报,2007,39(5),610-617.
    [64]泮世东,吴林志,孙雨果.含面芯界面缺陷的蜂窝夹芯板侧向压缩破坏模式.复合材料学报,2007,24(6),121-127页
    [65]Jeom Kee Paik, Anil K. Thayamballi, Gyu Sung Kim. The strength characteristics of aluminum honeycomb sandwich panels. Thin-Walled Structures,1999,35(3),205-231P
    [66]S. Kelsey, R.A. Gellatly, B.W. Clark. The shear modulus of foil honeycomb cores. Aircraft Engng.,1958,30,294-308P
    [67]Isaac M. Daniel, Jandro L. Abot. Fabrication, testing and analysis of composite sandwich beams. Composites Science and Technology,2000,60(12-13),2455-2463P
    [68]程军,曾伟明,方如华等.金属蜂窝夹芯板等效弹性模量的实验测试.实验力学,2003,18(1),50-55页
    [69]Yao Caogen, Lu Hongjun, Jia Zhonghua et al. A study on metallic thermal protection system panel for Reusable Launch Vehicle. Acta Astronautica,2008,63(1-4),280-284P
    [70]CA. Steeves, NA. Fleck. Collapse mechanisms of sandwich beams with composite faces and a foam core, loaded in three-point bending. Part Ⅰ:analytical models and minimum weight design. International Journal of Mechanical Sciences,561-583P
    [71]CA. Steeves, NA. Fleck. Collapse mechanisms of sandwich beams with composite faces and a foam core, loaded in three-point bending. Part II:experimental investigation and numerical modelling. International Journal of Mechanical Sciences,2004,46(4), 585-608P
    [72]沃西源,夏英伟,涂彬.蜂窝夹层结构复合材料特性及破坏模式分析.航天返回与遥感,2005,26(4),45-49页
    [73]M.A. Azeem, C. Shortall, U. Ramamurty. Tensile properties of stainless steel sandwich sheets with fibrous cores. Scripta Materialia,2007,57(3),221-224P
    [74]M.G. Toribio, S.M. Spearing. Compressive response of notched glass-fiber epoxy/honeycomb sandwich panels. Composites Part A:Applied Science and Manufacturing,2001,32(6),859-870P
    [75]中国航空研究院.复合材料结构设计手册.北京:航空工业出版社,2001
    [76]S.D. Papka, S. Kyriakides. In-plane compressive response and crushing of honeycomb. Journal of the Mechanics and Physics of Solids,1994,42(10),1499-1532P
    [77]S.D. Papka, S. Kyriakides. Experiments and full-scale numerical simulations of in-plane crushing of a honeycomb. Acta Materialia,1998,46(8),2765-2776P
    [78]S.D. Papka, S. Kyriakides. Biaxial crushing of honeycombs:Part I:Experiments. International Journal of Solids and Structures,1999,36(29),4367-4396P
    [79]S.D. Papka, S. Kyriakides. In-plane biaxial crushing of honeycombs:Part II:Analysis. International Journal of Solids and Structures,1999,36(29),4397-4423P
    [80]Jaeung Chung, AM. Waas. Compressive response of honeycombs under inplane biaxial static and dynamic loading, Part 1:Experiments. AIAA Journal,2002,40(5),566-973P
    [81]Jaeung Chung, AM. Waas. Compressive response of honeycombs under inplane biaxial static and dynamic loading, Part 2:Simulation. AIAA Journal,2002,40(5),974-980P
    [82]Gotoh M, Yamashita M, Kawakita A. Crush behavior of honeycomb structure impacted by drop-hammer and its numerical analysis. Mater Sci Res Int,1996,2(4),261-266P
    [83]Wu E, Jiang W.S. Axial crush of metallic honeycombs. Int J Impact Eng.,1997,19(5), 439-456P
    [84]Baker W.E, Togami T.C. Static and dynamic properties of high-density metal honeycombs. Int J Impact Eng.,1998,21(3),149-163P
    [85]Zhao H, Gray G. Crushing behavior of alumimium honeycombs under impact loading. Int J Impact Eng.,1998,21(10),827-836P
    [86]Yasui Y. Dynamical axial crushing of multi-layer honeycomb panels and impact tensile behavior of the component members. Int J Impact Eng.,2000,24(6),659-671P
    [87]寇长河,程小全,郦正能.低速冲击后复合材料蜂窝夹芯板的拉伸特性.复合材料 学报,1998,15(4),69-73页
    [88]程小全,寇长河,郦正能.复合材料蜂窝夹芯板低速冲击后的压缩.北京航空航天大学学报,1998,24(5),551-554页
    [89]寇长河,程小全,郦正能.复合材料蜂窝夹芯板低速冲击后的压缩强度估算.北京航空航天大学学报,1998,24(5),555-558页
    [90]程小全,寇长河,郦正能.复合材料蜂窝夹芯板低速冲击损伤研究.复合材料学报,1998,15(3),124-128页
    [91]程小全,寇长河,郦正能.复合材料夹芯板低速冲击后弯曲及向静压特性.复合材料学报,2000,17(2),114-118页
    [92]卢文浩,鲍兴荣.动态冲击下峰窝材料的力学行为.振动与冲击,2002,24(1),49-52页
    [93]张新春,刘颖.面内冲击载荷作用下蜂窝材料单胞动态变形机制的研究.科学技术与工程,2007,7(12),2799-2802页
    [94]孙德强,张卫红.双壁厚蜂窝铝芯的共面冲击力学性能.振动与冲击,2008,27(7),69-74页
    [95]H.Hu, S.Belouettar, E.M.Daya, et al. Evaluation of kinematic formulations for visco-elastically damped sandwich beam modeling. J Sandwich Struct Mater.2006,8, 477-495P
    [96]汪勇,汤剑飞.蜂窝夹层复合材料老化强度与疲劳性能的试验研究.实验力学,2004,19(3),381-385页
    [97]徐朝阳,李大纲.蜂窝纸板低周疲劳及蠕变复合作用下的损伤研究.包装工程,2009,30(2),1-3页
    [98]肖伟,李大纲,徐朝阳.疲劳振动对蜂窝纸板承载力和缓冲性能的影响.包装工程,2009,30(1),15-1页
    [99]栾旭,梁军,王超等.金属蜂窝夹芯板疲劳行为的试验研究.材料工程,2008,增刊1,149-152页
    [100]栾旭.金属蜂窝夹芯板疲劳和冲击力学性能研究.博士学位论文,哈尔滨:哈尔滨工业大学,2009
    [101]韩杰才,梁军,王超等.高超声速飞行器两类典型防热材料的性能表征与评价.力学进展,2009,39(6),695-715页
    [102]J.Lu, G.P.Zou, Y.Cao et al. Experimental investigation of static and thermal-mechanical bending fatigue strength of steel honeycomb sandwich beams. Proc. SPIE,2009, Vol. 7522,752226P
    [103]Huang JS, Lin JY. Fatigue of cellular materials. Acta Mater.,1996,44(1),289-296P
    [104]Huang JS, Liu SY. Fatigue of honeycombs under in-plane multiaxial loads. Mater Sci Eng A.,2001,308(1-2),45-52P
    [105]Burman M, Zenkert D. Fatigue of foam core sandwich beams-1:Undamaged specimens. Int J Fatigue,1997,19(7),551-561P
    [106]Burman M, Zenkert D. Fatigue of foam core sandwich beams-2:Effect of initial damage. Int J Fatigue 1997,19(7),563-578P
    [107]M. Burman. Fatigue crack initiation and propagation in sandwich structures. Ph.D thesis of Royal Institute of Technology, Sweden,1998, ISSN:0280-4646P
    [108]Burchardt C. Fatigue in sandwich structures loaded in transverse shear. Compos Struct, 1997,40(1),73-79P
    [109]Burchardt C. Fatigue of sandwich structures with inserts. Compos Struct,1997,40(4), 201-211P
    [110]H. Judawisastra, J. Ivens, I. Verpoest. The fatigue behaviour and damage development of 3D woven sandwich composites. Compos Struct,1998,43(1),35-45P
    [111]Clark SD, Shenoi RA, Allen HG. Modelling the fatigue behaviour of sandwich beams under monotonic,2-step and block-loading regimes. Compos Sci Technol,1999,59(4), 471-486P
    [112]Harte AM, Fleck NA, Ashby MF. The fatigue strength of sandwich beams with an aluminum alloy foam core. Int J Fatigue,2001,23(6),499-507P
    [113]Demelio G, Genovese K, Pappalettere C. An experimental investigation of static and fatigue behaviour of sandwich composite panels joined by fasteners. Composites Part B:Eng.,2001,32(4),299-308P
    [114]Kulkarni N, Mahfuz H, Jeelani S, Carlsson LA. Fatigue crack growth and life prediction of foam core sandwich composites under flexural loading. Compos Struct., 2003,59(4),499-505P
    [115]Kanny K, Mahfuz H. Flexural fatigue characteristics of sandwich structures at different loading frequencies. Compos Struct,2005,67(4),403-410P
    [116]Freeman B, Schwingler E, Mahinfalah M, Kellogg K. The effect of low-velocity impact on the fatigue life of Sandwich composites. Compos Struct,2005,70(3), 374-381P
    [117]Bozhevolnaya E, Thomsen OT. Structurally graded core junctions in sandwich beams: fatigue loading conditions. Compos Struct,2005,70(1),12-23P
    [118]Shafiq B, Quispitupa A. Fatigue characteristics of foam core sandwich composites. Int J Fatigue,2006,28(2),96-102P
    [119]Belingardi G, Martella P, Peroni L. Fatigue analysis of honeycomb-composite sandwich beams. Composites Part A:Appl Sci Manuf,2007,38(4),1183-1191P
    [120]Liu L, Holmes JW. Experimental investigation of fatigue crack growth in thin-foil Ni-base sandwich structures. Int J Fatigue,2007,29(8),1452-1464P
    [121]Jen YM, Chang LY. Evaluating bending fatigue strength of aluminum honeycomb sandwich beams using local parameters. Int J Fatigue,2008,30(6),1036-1046P
    [122]Jen YM, Chang LY. Effect of thickness of face sheet on the bending fatigue strength of aluminum honeycomb sandwich beams. Engineering Failure Analysis,2009,16(4), 1282-1293P
    [123]Yi-Ming Jen, Chih-Wei Ko, Hong-Bin Lin. Effect of the amount of adhesive on the bending fatigue strength of adhesively bonded aluminum honeycomb sandwich beams. Int J Fatigue,2009,31(3),455-462P
    [124]S. Belouettar, A. Abbadi, Z. Azari, R. Belouettar, et al. Experimental investigation of static and fatigue behaviour of composites honeycomb materials using four point bending tests. Compos Struct,2009,87(3),265-273P
    [125]Soni SM, Gibson RF, Ayorinde EO. The influence of subzero temperatures on fatigue behavior of composite sandwich structures. Compos Sci Technol,2009,69(6), 829-838P
    [126]姚卫星.结构疲劳寿命分析.北京:国防工业出版社,2003
    [127]徐灏.疲劳强度.北京:高等教育出版社,1988
    [128]Miner MA. Cumulative damage in fatigue. Journal of Applied Mechanics,1945,12(3), 159-164P
    [129]Palmgren A. Die Lebensdauer vori Kugellagern. (The service life of ball bearings.) Zeitschrift des Vereines Deutscher Ingenieure,1924,68(14),339-341P
    [130]Coffin L.F. A study of the effects of cyclic thermal stresses on a ductile metal. Transactions of the American Society of Mechanical Engineering,1954,76,931-950P
    [131]Manson S.S. Behaviour of materials under condition of thermal stress. NACA TN-2933,1954
    [132]MIL-STD-1530A. Aircraft structural integrity program. Airplane Requirements. USAF, 1975
    [133]姚卫星,杨庆雄.孔边小裂纹扩展率的描述.西北工业大学学报,1987,5(1),107-116页
    [134]Wang C.H., Miler KJ. Short fatigue crack growth under mean stress, uniaxial loading. Fatigue and Fracture of Materials and Structures,1993,16(2),181-198P
    [135]P.C.Paris, F.Erdogan. A critical analysis of crack propagation laws. Journal of Basic Engineering,1963,85,528-534P
    [136]GR.Forman, V.E.Kearney, R.M.Engle. Numerical analysis of crack propagation in cyclic-loaded structure. Journal of Basic Engineering,1967,89(3),459-464P
    [137]Degrieck J, Van Paepegem W. Fatigue damage modeling of fibre-reinforced composite materials:review. Applied Mechanics Review,2001,54(4),279-299P
    [138]Sendeckyj G.P. Life prediction for resin-matrix composite materials. In:Reifsnider, K.L. (ed.), Fatigue of Composite Materials,1990,431-480P
    [139]D. Revuelta, J. Cuartero, A. Miravete, et al. A new approach to fatigue analysis in composites based on residual strength degradation. Composite Structure,2000,48(1-3), 183-186P
    [140]Dai J, Hahn HT. Fatigue analysis of sandwich beams using a wear-out model. Journal of Composite Materials,2004,38(7),581-589P
    [141]Yang JN, Jones DL, Yang SH, et al. A stiffness degradation model for graphite/epoxy laminate. J Compos Mater.,1990,24,753-769P
    [142]Hwang W, S Han K. Fatigue of composites fatigue modulus concept and life prediction. J Compos Mater.1986,20,155-165P
    [143]Wu WF, Lee LJ, Choy ST. A study of fatigue damage and fatigue life of composite laminates. Journal of Composite Materials,1996,30(1),123-137P
    [144]Philippidis TP, Vassilopoulos AP. Fatigue of composite laminates under off-axis loading. International Journal of Fatigue,1999,21(3),253-262P v
    [145]Whitworth HA. A stiffness degradation model for composite laminates under fatigue loading. Composite Structures,1998,40(2),95-101P
    [146]Mahi El A, Farooq M.K, Sahraoui S, et al. Modeling the flexural behavior of sandwich composite materials under cyclic fatigue. Materials& Design,2004,25(3),199-208P
    [147]Epaarachchi J.A, Clausen P.D. A new cumulative fatigue damage model for fiber reinforced plastic composites under step/discrete loading. Composites:Part A,2005, 36(9),1236-1245P
    [148]N. Sharma, R.F. Gibson, E.O. Ayorinde. Fatigue of foam and honeycomb core composite sandwich structures:a tutorial. J. Sandwich Struc. Mater.,2006,8(4), 263-319P
    [149]A. Abbadi, Z. Azari, S. Belouettar, et al. Modelling the fatigue behaviour of composites honeycomb materials (aluminium/aramide fibre core) using four-point bending tests. Int J Fatigue,2010,32(11),1739-1747P
    [150]陈金龙,秦玉文,计欣华.双材料界面粘接质量定量检测的相移错位散斑技术.复合材料学报,2001,18(1),128-130页
    [151]Gibson R.F. Modal vibration response measurements for characterization of composite materials and structures. Composite Science and Technology,2000,60(15), 2769-2780P
    [152]Salawu, O.S. Detection of structural damage through changes in frequency:a review. Engineering Structures,1997,19(9),718-723P
    [153]Kim, H. and Hwang, W. (2002). Effect of Debonding on Natural Frequencies and Frequency Response Functions of Honeycomb Sandwich Beams, Composite Structures, 55(1):51-62P
    [154]David K. Hsu. Nondestructive evaluation of sandwich structures:a review of some inspection techniques. Journal of Sandwich Structures and Materials,2009,11(4), 275-291P
    [155]Akay M, Hanna, R.A. Comparison of honeycomb-core and foam-core carbon-fibre/epoxy sandwich panels. Composites,1990,21(4),325-331P
    [156]Legendre S, Goyette J, Massicott D. Ultrasonic NDE of composite material structures using wavelet coefficients. NDT& E International,2001,34(1),31-37P
    [157]David K.H. Nondestructive testing using air-borne ultrasound. Ultrasonics,2006,44(1), 1019-1024P
    [158]董正宏,王元钦,李静.非接触空气耦合式超声检测技术研究及应用.无损探伤,2007,31(2),1-6页
    [159]李光耀.蜂窝夹心结构件的X射线动态照相试验.无损检测,1999,21(1),24-26,28页
    [160]李艳红,金万平,杨党纲等.蜂窝结构的红外热波无损检测.红外与激光工程,2006,35(1),45-48页
    [161]刘波,张存林,冯立春等.热波检测碳纤维蜂窝材料脱粘缺陷的边缘识别.红外与激光工程,2007,36(2),211-213,273页
    [162]詹绍正,宁宁,曲亚林等.红外热成像检测技术在复合材料蜂窝夹芯结构上的应用研究.结构强度研究.2009,4,32-36页
    [163]A.Quispitupa, B.Shafiq, F.Just, et al. Acoustic emission based tensile characteristics of sandwich composites. Composites Part B:Engineering,2004,35(6-8),563-571P
    [164]国防科技工业无损检测人员资格鉴定与认证培训教材编审委员会.全息和散斑检测.北京:机械工业出版社,2005
    [165]秦玉文.电子散斑方法的进展.实验力学.1996,11(4),410-416页
    [166]洪友仁,何浩培,何小元.剪切散斑:一种光学测量技术及其应用.实验力学,2006,21(6),667-688页
    [167]Hung YY. Shearography:A new optical method for strain measurement and nondestructive testing. Optical Engineering,1982,21(3),391-395P
    [168]付刚强,张庆荣,耿荣生.激光电子剪切散斑干涉成像技术在复合材料检测中的应用.无损检测,2005,27(9),466-468页
    [169]李家伟,陈积懋.无损检测手册.北京:机械工业出版社,2002
    [170]刘贵民.无损检测技术.北京:国防工业出版社,2006
    [171]高炽扬,施克仁.无损检测新技术.北京:清华大学出版社,2007
    [172]Zhuang Li. Vibration and acoustic properties of sandwich composite materials. Ph.D thesis of Auburn University, U.S.A.,2006
    [173]张跃飞.钢蜂窝夹芯板的制备及其压缩性能.辽宁科技大学硕士论文,2007
    [174]张敏,于九明.金属夹芯复合板及其制备技术的发展.焊接技术,2003,32(6),21-23页
    [175]山口进吾.蜂窝状焊接构件的设计制造.国外机车车辆工艺,1994,5,11-17页
    [176]Haydn N.G.Wadley, N.A.Fleck, A.G. Evans. Fabrication and structural performance of periodic cellular metal sandwich structures. Composites Science and Technology,2003, 63(16),2331-2343P
    [177]石丸靖男.高速铁道车辆用钎焊铝蜂窝夹芯板及其加工.国外机车车辆工艺,2001,2,11-15页
    [178]曹斌升,张维琴.小芯格蜂窝结构真空钎焊.航空制造工程,1994,4,21-23页
    [179]伊藤泰永,蔡千华,姚懋许.铝合金钎焊蜂窝夹芯板及其应用.国外机车车辆工艺,2000,5,21-25页
    [180]张敏,于九明.金属夹芯复合板及英制各技术的发展.焊接技术,2003,32(6),21-23页
    [181]H. Hanebuth, A. Dotzer, K. Nielsen, et al. Joining of cellular and stratified laminates for light weight construction and thermal-acoustic insulation. Journal of Materials Processing Technology,2001,11(51),31-37P
    [182]曲文卿,张彦华.TLP连接技术研究进展.焊接技术,2002,31(3),4-5页
    [183]Bian Jian, Bleck W, K. Peter. Investigations of the bonding mechanism at the joining region of a steel sandwich sheet. Steel Research,2002,73(4),157-162P
    [184]Chang Sup Lee, Dai Gil Lee, Je Hoon Oh. Co-cure bonding method for foam core composite sandwich manufacturing. Composite Structures,2004,66(1-4),231-238P
    [185]Plantema F.J. Sandwich construction. John Wiley& Sons, New York,1966
    [186]G.G. Galletti, C. Vinquist, O.S. Es-Said. Theoretical design and analysis of a honeycomb panel sandwich structure loaded in pure bending. Engineering Failure Analysis,2008,15(5),555-562P
    [187]Drapier S, Gardin C, Grandidier J-C, et al. Structure effect and microbuckling. Composites Science and Technology,1996,56(7),861-867P
    [188]Wisnom MR, Atkinson JW. Constrained buckling tests show increasing compressive strain to failure with increasing strain gradient. Composites-Part A:Applied Science and Manufacturing,1997,28(11),959-964P
    [189]Hoff NJ, Mautner SE. Buckling of sandwich type panels. Journal of the Aeronautical Sciences,1945,12(3),285-297P
    [190]Chiras S, Mumm D, Evans A, et al. The structural performance of near-optimized truss core panels. International Journal of Solids and Structures,2002,39(15),4093-4115P
    [191]Soden P. Indentation of composite sandwich beams. Journal of Strain Analysis,1996, 31(5),353-360P
    [192]MF.Ashby, AGEvans, NA.Fleck, et al.著,刘培生等译.泡沫金属设计指南.北京:冶金工业出版社,2006
    [193]Meifeng He, Wenbin Hu. A study on composite honeycomb sandwich panel structure. Materials and Design,2008,29(3),709-713P
    [194]徐之伦.弹性力学.北京:高等教育出版社,2006
    [195]欧蔓丽.火灾条件下钢结构力学性能的研究及应用.博士学位论文,长沙:湖南大学,2007
    [196]邹广平,唱忠良,明如海.泡沫铝夹芯板的冲击性能研究.兵工学报,2009,30(2),276-279页
    [197]U.K.Vaidya, S.Nelson, B.Sinn, et al. Processing and high strain rate impact response of multi-functional sandwich composites. Composite Structures,2001,52(3-4),429-440P
    [198]马晓青.冲击动力学.北京:北京理工大学出版社,1992
    [199]Ansys User's Manual, Release 11.0,2007
    [200]赵金森.铝蜂窝夹层板的力学性能等效模型研究.硕士学位论文.南京:南京航空航天大学,2006
    [201]胡玉琴.铝蜂窝夹层板等效模型研究及数值分析.硕士学位论文南京:南京航空航天大学,2008
    [202]Fe-safe user's manual, version 5.00,2003
    [203]Highsmith AL, Reifsnider KL. Stiffness reduction mechanisms in composite laminate. Damage Compos Mater ASTM STP,1982,775,103-117P
    [204]Giancane S, Panella FW, Dattoma V. Characterization of fatigue damage in long fiber epoxy composite laminates. Int J Fatigue,2009,32(1),46-53P
    [205]Oliver Franke, H. Schurmann. Analysis of the interaction of adjacent layers of a GFRP-laminate under fatigue loading. Int J Fatigue,2010,32(1),54-59P
    [206]Iannucci L, Ankersen J. An energy based damage model for thin laminated composites. Compos Sci Technol,2006,66(7-8),934-951P
    [207]Pauchard V, Grosjean F, Campion-Boulharts H, et al. Application of a stress-corrosion-cracking model to an analysis of the durability of glass/epoxy composites in wet environments. Compos Sci Technol,2002,62(4),493-498P
    [208]Barnard PM, Butler RJ, Curtis PT. The strength-life equal rank assumption and its application to the fatigue life predictions of composites materials. Int J Fatigue 1988, 10(3),171-177P
    [209]Chou PC, Croman R. Residual strength in fatigue based on the strength-life equal rank assumption. J Compos Mater,1978,10(1),177-194P
    [210]Whitworth HA. Modeling stiffness reduction of graphite epoxy composite laminates. J Compos Mater.1987,21,362-372P
    [211]Whitworth HA. Cumulative damage in composites. J Eng Mater Technol.1990,112, 358-361P
    [212]Reifsnider KL, Scott C, Jermy D. The mechanics of composite strength evaluation. Compos. Sci. Technol.2000,60,2539-2546P
    [213]Talreja R. Fatigue of composite materials. Technomic Publishing Company, Lancaster, 1987
    [214]Hwang W, Lee CS, Park HC, et al. Single and multi-stress level fatigue life prediction of glass/epoxy composites. J Adv Mater.,1995,3-9P
    [215]潘燕环,嵇醒,薛松涛.单向复合材料损伤刚度的双重均匀化方法.同济大学学报,1997,25(6),623-628页
    [216]Cheng J, Nemat-Nasser S, Guo W. A unified constitutive model for strain-rate and temperature dependent behavior of molybdenum. Mechanics of Materials,2001,33(11),603-616页
    [217]余寿文,冯西桥.损伤力学.北京:清华大学出版社,1997
    [218]Ferreira JAM, Costa JDM, Reis PNB, et al. Analysis of fatigue and damage in glass-fibre reinforced polypropylene composite materials. Compos Sci Technol,1999, 59(10),1461-1467P
    [219]Salvia MLF, Fournier PP, Vincent L. Flexural fatigue behaviour of UDGFRP experimental approach. Int J Fatigue,1997,19(3),253-262P
    [220]T.P. Philippidis, V.A. Passipoularidis. Residual strength after fatigue in composites: Theory vs. experiment. Int J Fatigue,2007,29(12),2104-2116P
    [221]孙凌寒,邵国建,黄俊.短碳纤维局部增强混凝土疲劳性能实验研究.实验力学,2009,24(5),445-452页
    [222]高镇同.疲劳应用统计学.北京:国防工业出版社,1986
    [223]田代才,陈铁群,张欣宇等.电子错位照相技术及其在材料无损检测中的应用.上海金属,2006,28(2),53-56页
    [224]刘宝会,秦玉文,侯振德.数字错位散斑术的自控音频激振加载研究.仪器仪表学报,2004,25(4),151-152页
    [225]Liu BH, Qin YW, Qu R. Non-destructive test of multiply plywood using ESSPI with wide audio frequency driving vibration. Optical Technology and Image Processing for Fluids and Solids Diagnostics,2002,50(58),307-311P
    [226]郭广平.计算机模拟技术在错位散斑干涉法中的应用.机械工程学报,2001,37(11),103-105页
    [227]K. Creath. Phase-measurement interferometry. Progress in Optics,1988,25,349-393. (E. Wolf, Ed. North-Holland, Amsterdam.)
    [228]何小元,衡伟,徐铸.数字散斑条纹处理的频域法和空域法.实验力学,1995,10(4),302-308页
    [229]于起峰.光测条纹图处理中免除噪声的正则化条纹法.实验力学,1999,14(3),294-301页
    [230]伏思华,于起峰.数字散斑条纹图的滤波方法.应用光学,2005,26(4),5-8页
    [231]杨福生.小波变换的工程分析与应用.北京:科学出版社,2001
    [232]Mallat S. A theory for multi-resolution signal decomposition:the wavelet representation. IEEE Trans. Pattern Anal. Machine Intell,1989,11(7),674-693P
    [233]Ranson WF, Peters WH. Digital image techniques in experimental stress analysis. Optical Engineering,1982,21(3),427-431P
    [234]Yamaguehi I. A laser-speckle strain gage. Journal of Physis E:Scientific Instruments, 1981,14,1270-1273P
    [235]金观昌,孟利波,陈俊达等.数字散斑相关技术进展及应用.实验力学,2006,21(6),689-702页
    [236]潘兵.数字图像相关方法及其在实验力学中的应用.博士学位论文.北京:清华大学,2007
    [237]金观昌.计算机辅助光学测量(第二版).北京:清华大学出版社,2007
    [238]李国华,吴淼.现代无损检测与评价.北京:化学工业出版社,2009
    [239]任方.应用声发射技术对板中波动问题的研究.硕士学位论文.哈尔滨:哈尔滨工程大学,2006
    [240]杨明纬,耿荣生.声发射检测.北京:机械工业出版社,2005
    [241]Hazizan Md. Akil, Igor M. De Rosa, Carlo Santulli, et al. Flexural behaviour of pultruded jute/glass and kenaf/glass hybrid composites monitored using acoustic emission. Materials Science and Engineering:A,2010,527(12),2942-2950P
    [242]Ren Huilan, Ning Jianguo, He Jianhua. Acoustic emission and damage characteristics of alumina. Journal of Beijing Institute of Technology,2009,18(2),127-130P
    [243]Geng Rong-sheng, Wang Ben-zhi, Jing peng, et al. Acoustic emission monitoring of pivots of main landing gear cylinder column during fatigue test of a full-scale aircraft body. Journal of NDT,2008,30(3),142-145P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700