用户名: 密码: 验证码:
电力系统大停电后恢复算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电网互联规模的扩大,满足了现代社会对电力供应日益增长的需求,同时网络结构的日趋复杂也给电网运行带来很多潜在的威胁,一旦发生大面积停电事故,所造成的社会影响和经济损失将极其严重。作为电力系统安全防御的重要措施之一,研究电力系统大停电后安全、快速、有序地恢复系统供电,是减少大停电损失、加快系统恢复的重要手段,也是构建智能电网的重要内容,具有重要的理论意义和社会价值。
     大停电后的电力系统恢复是一个复杂的控制和决策过程,具有多目标、多阶段、多方参与的属性,通常划分为三个阶段:黑启动阶段、网架重构阶段和负荷恢复阶段。利用各种优化方法实现大停电后系统恢复的决策分析是必要的手段。根据大停电后系统恢复进程的三个阶段,本文进行了以下研究工作:
     (1)提出一种基于支持向量机理论的过电压预测方法,将其过电压的预测结果与EMTP的计算结果、及神经网络的预测结果进行比较。结果表明采用支持向量机理论能够实现过电压快速、准确预测,能够满足黑启动初期空充长输电线路过程中对可能出现的过电压的校验需要。
     (2)提出一种利用复杂网络理论评估电网节点重要性的方法。首先将电网抽象成一种赋权值的复杂网络,采用复杂加权网络的节点凝聚方法计算电网中各节点的重要度指标,客观上评价出较为重要的网络重构节点。根据电源和负荷的实际重要性进行适当调整,从而确定进行网络重构的目标节点。在此基础上,利用Kruskal最小生成树算法,计算出覆盖网络所有节点的最小生成树拓扑。通过适当地删减树枝,构造一个覆盖所有重要节点的局部最小生成树,可将此局部最小生成树拓扑作为重构主干网架的一个目标网络。
     (3)针对网架重构阶段的目标,提出一种基于蚁群优化算法结合最短路径算法的主干网架重构方法,优化主干网架同时,亦优化主干网架的各节点路径投入顺序。该算法过程分为两个层次,外层计算利用蚁群算法实现节点投入顺序优化。在各重要节点之间建立广义路径,动态调整已供电区域路径的线路权值。内层利用最短路径算法计算每一待投入节点与已供电区域间的最短路径和距离,并为蚁群算法信息素更新提供依据。算例表明该算法具有较高的计算效率,收敛速度快。
     (4)针对大规模负荷恢复阶段的任务,提出一种改进蚁群算法实现负荷恢复阶段网络优化的方法。保留适当系统备用容量的前提下,通过扩展潮流计算方法,计算当前时段系统可恢复的最大负荷量,以此负荷恢复量最大为目标函数,利用改进蚁群算法实现网络优化。蚂蚁选择路径的过程采用随机拓扑的搜索策略,能扩大蚂蚁搜索范围,确保有更多机会搜索到全局最优解,且保证所有恢复路径的连通性。为提高方案可行性验证速度,引入蚁群搜索的模式记忆功能,记录已搜索验证过的部分较好恢复方案,对目标值较小的方案不再进行潮流计算验证,避免大量反复验证恢复方案可行性的问题,提高了整个算法的计算效率。算例表明利用改进蚁群算法进行负荷恢复的优化过程快速、有效,适合于负荷恢复的各个阶段。
The interconnection of power grids meets the growing demand for electricity in modern society, also leads to more complex network structure which brings lots of potential threat to the power system operation. The effects of wide area outages in such huge power system may be quite more severe too. Therefore, as an important defense measure, the research on the restoration of the power supply safely, promptly and orderly after wide area outage which caused by faults is of great theoretical and practical significance. It will help to speed up the system restoration and reduce the loss. It’s also an important part in the construction of the smart power network.
     The problem of restoration after wide area service interruption is a complex decision-making and control problem. It can be described as a multi-objective, multiple-participant, multi-stage, combinatorial, nonlinear optimization problem with constraints. Using appropriate optimization algorithms to make decision in the restoration process after wide area outage is quite essential. According to the three stages of a general restoration process, this thesis focuses on the following issues:
     1. A method to predict the over-voltage that may appear during the process of energizing the no-load long transmission lines by using the Support Vector Machine theory is presented. The comparison with the Neural Network’s prediction results and EMTP calculation results shows that the method to predict over-voltage with the Support Vector Machine theory works well, and can meet the prediction requirement for speed and accuracy.
     2. A method to evaluate the node importance in power system grid is proposed. Describe the power grid in a weighted complex first, and then an improved node contraction and node importance evaluation method in weighted complex network is adopted to evaluate the node importance in weighted power system network. Determine the important nodes to reconstruct in current stage after appropriate adjustments based on the nodes actual importance and the importance assessment results above. Then by using the Kruskal algorithm to construct the minimum spanning tree of the power network, through the appropriate branches cut , a local minimum spanning tree that covering all the selected important nodes can be constructed as the skeleton- network.
     3. An Ant Colony algorithm combining with the Shortest Path algorithm is adopted to optimize the skeleton- network structure, give the path and node restoration sequence too. The combined algorithm consists of two layers. The outer calculation solves the nodes sequence by Ant Colony algorithm. The shortest path algorithm in the inner calculation provides the distance and path between each important node and the equivalent power supply area. The distance is also the basis for updating Pheromone in Ant Colony algorithm. Examples show the effectiveness of the method.
     4. An improved Ant Colony algorithm is used for the network optimization in the load restoration phase. The maximum amount of recovery load in current step can be calculated by an extended power flow method on the basis of system reserve capacity. Then an improved Ant Colony algorithm which combined with a random topology search strategy is used to optimize the network for load recovery. Improved pheromone update strategy expand the searching scope of the proposed algorithm, ensure a greater opportunity for the global optimal solution. By memorize some better recovery modes searched, the time used to verify the recovery schema by time-consuming power flow calculation can be greatly reduced. Several examples show the effectiveness of the proposed algorithm for load recovery optimization. The proposed algorithm is suitable for all stages in load recovery optimization.
引文
1康毅.关注新体制下的电网调度安全管理.电力安全技术. 2005, 7(1): 30-31
    2朱旭凯,刘文颖,杨以涵.基于协同学思想的电网连锁反应故障预防模型. 2007, 31(23): 62-67
    3 NERC, Final Report on the August 14, 2003, Blackout in the United States and Canada: Causes and Recommendations, Canada. http://www. nerc. com/~filez/blackout. html, 2004
    4 National Grid Company plc. Investigation Report into the Loss of Supply Incident Affecting Parts of South London at 18:20 on Thursday, 28 August 2003, NJ, USA. www.tech.purdue.edu/.../ London03BlackoutExecutiveSummary.pdf
    5屈靖,郭剑波.“九五”期间我国电网事故统计分析.电网技术. 2004, 28(21): 60-68
    6 Yuriv. Makarov, Viktori. Reshetov, Vladimira. Stroev, et al. Blackout Prevention in the United States, Europe and Russia. Proceedings of IEEE. 2005, 93(11): 1942-1955
    7 Ji-Jen Wong, Ching-Tzong Su, Chi-Shuan Liu, et al. Study on the 729 Blackout in the Taiwan Power System. Electrical Power and Energy Systems. 2007, 29(8): 589-599
    8于群,郭剑波.中国电网停电事故统计与自组织临界性特征.电力系统自动化. 2006, 30(2): 16-20
    9罗治强,董昱,胡超凡. 2008年国家电网安全运行情况分析.中国电力. 2009, 42(5): 8-12
    10 Roger Kearsley. Restoration in Sweden and Experience Gained from the 1983. IEEE Trans. On Power Systems. 1987, 2(2): 422-428
    11 M. M. Adibi , L. H. Fink. Power System Restoration Planning. IEEE Trans. On Power System. 1994, 9(1): 22-28
    12 E. Mariani, F. Mastroianni, V. Romano. Field Experience in Reenergization of Electrical Networks from Thermal and Hydro Units. IEEE Trans on Power Apparatus and systems. 1984, 103(7): 1707-1713
    13 Paulo Gomes, Antonio Carlos Siqueira de Lima, Antonio de Pádua Guarini. Guidelines for Power System Restoration in the Brazilian System. IEEE Trans on Power Systems. 2004, 19(2): 1195-1164
    14中华人民共和国国家经济贸易委员会. DL/T 723-2000.电力系统安全稳定控制导则.北京:中国电力出版社, 2001:62-74
    15 A. Borghetti, G. Migliavacca, C. A. Nucci, S. Spelta. Black-start-up Simulation of a Repowered Thermoelectric Unit. Control Engineering Practice. 2001, (9): 791-803
    16周云海,闽勇,杨滨.黑启动及其决策支持系统.电力系统自动化. 2001, 25(15): 43-46
    17刘艳.电力系统黑启动恢复及其决策支持技术的研究. [华北电力大学博士学位论文]. 2007, 40-55
    18薛禹胜,王昊昊, Zhaoyang DONG,等.电力市场环境下互联电网恢复控制的评述,电力系统自动化. 2007, 31(21): 110-115
    19刘隽,李兴源,许秀芳.互联电网的黑启动策略及相关问题.电力系统自动化. 2004, 28(5) :93-97
    20 Adibi M M, Fink L M, Andrews C J , et al. Special Considerations in Power System. Restoration. IEEE Trans on Power Systems,1992, 7(4): 1419-1427
    21 Lindstrom R R.Simulation and Field Tests of the Black Start of a Large Coal Fired Generating Station Utilizing Small Remote Hydro Generation. IEEE Trans. on Power Systems, 1990, 5(1): 162-168
    22 S. Barsali, D. Poli, A. Praticò, et al. Restoration Islands Supplied by Gas Turbines. Electric Power Systems Research. 2008, 78(12), 2004-2010
    23 Adibi M M, Milanicz D P, Volkmman T L. Remote Cranking of Steam Electric Stations. IEEE Trans. On Power Systems, 1996, 11(3) :1613-1618
    24张强,高明,张力强,等.大同电网利用小火电机组黑启动方案.电力系统自动化. 2003, 27(12): 75-77
    25 Ketabi A, Asmar H, Ranjbar A M, et al. An Approach for Optimal Units Start-up During Power System Restoration. 2001 Large Engineering Systems Conference on Power Engineering, Halifax, NS, 190-194
    26胡键,郭志忠,刘迎春,等.故障恢复问题和发电机恢复排序分析.电网技术. 2004, 28(18): 1-2,15
    27刘强,石立宝,周明,等.电力系统恢复中机组恢复的优化选择方法.电工技术学报. 2009, 24(3): 164-170
    28 Mathur R M, Basati R S. A Thyristor Controlled Static Phase-shifter for AC Power Transmission. IEEE Trans on Power Apparatus Systems. 1981, 100(5): 2650-2655
    29郭嘉阳,吴涛,张仁伟.华北电网“黑启动”研究试验.华北电力技术. 2001 (5): 3-18
    30陈闽江,陈家庚,丁明.多机电力系统自励磁判定的状态空间分析法.电网技术. 2004, 28(15): 53-56
    31 Adibi M M, Alexader R W, Milanicz D P. Energizing High and Extra-high Voltage Lines During Restoration. IEEE Trans On Power System. 1999, 14(3): 1121-1126
    32解广润.电力系统过电压.北京:水利电力出版社. 1991: 242-243
    33程改红,徐政.电力系统故障恢复初期的谐波过电压问题.电网技术. 2005, 29(10), 14-19
    34 Adibi M M, Fink L H, Giri J, et al. New Approaches in Power System Restoration. IEEE Trans on Power System, 1992, 7(4): 1428-1434
    35刘艳,顾雪平,张小易.电力系统黑启动过程中发电机自励磁问题的仿真研究.全国高等学校电力系统及其自动化专业第十九届学术年会论文集. 2003: 2137-2140
    36 Jerry J A. A Framework for Power System Restoration Following a Major Power Failure. IEEE Trans on Power Systems. 1995, 9(3): 1480-1485.
    37 Adibi M M, Milanicz D P. Protective System Issues During Restoration. IEEE Trans On Power Systems. 1995, 10(3): 1492-1497
    38刘映尚,张碧华,周云海.黑启动过程中继电保护和安全自动装置的特性和运行.中国电力. 2005, 38(5): 25-28
    39 Sidhu T S, Tziouvaras DA . Protection Issues During System Restoration. IEEE Transactions on Power Delivery. 2005, 20 (1): 47-56
    40蔡述涛,张尧,荆朝霞.地方电网黑启动方案的制定.电力系统自动化. 2005, 29(12): 73-76
    41林济铿,蒋越梅,岳顺民,等.基于DEA/AHP模型的电力系统黑启动有效方案评估.电力系统自动化. 2007, 31(15): 65-69,110
    42刘艳,顾雪平,张丹.基于数据包络分析模型的电力系统黑启动方案相对有效性评估.中国电机工程学报. 2006, 26(5): 32-37, 94
    43 Liu C C,Liou K L,Chu R F,et al.Generation Capability Dispatch for Bulk Power System Restoration: a Knowledge-based Approach. IEEE Trans.On Power Systems. 1993,8(1): 316-323
    44 Robero Salvati, Marino Sforna, Massimo Pozzi. Testing the Strategies and Procedures of the Italian Power Restoration Plan for Powering Up After the Lights Go Down Restoration Project. IEEE power magazine 2004 2(1): 44-49
    45王越.华北电网“黑启动”试验研究情况综述.华北电力技术. 2001, (5): 1-2
    46谌军,曾勇刚,杨晋柏,等.南方电网黑启动方案.电力系统自动化. 2006, 30(9): 80-83,87
    47杨林绪,侯佑华,郭琦.内蒙古电网黑启动试验研究与评估.华北电力技术. 2006, 4: 7-9,19
    48阮前途,王伟,黄玉,等.基于燃机机组的上海电网黑启动系列试验.电网技术. 2006, 30(2): 19-22
    49张铭.海南“9.26”大停电后电网黑启动过程的启示.华东电力. 2005, 33(11): 13-16
    50 Kojima Y, Warashina S, Nakamura S et al. Development Guidance Method for Power System Restoration. IEEE Trans On Power Systems. 1989, 4(3): 1219-1227
    51 C. Y. Teo, Wei Shen. Development of an Interactive Rule-based System for Bulk Power System Restoration. IEEE Trans On Power Systems. 2000, 15(2): 646-653
    52 A. Fountas N. D, Hatziargyrious K. P Valavanis. Hierarchical Time-extended Petri Nets as a Generic Tool for Power System Restoration. IEEE Trans on Power Systems. 1997, 12(2): 837-843
    53 Bretas A S, Phadke A Q. Artificial Neural Networks in Power System Restoration. IEEE Trans on Power Systems, 2003, 18(4):1181-1186
    54 Dong-Joon Shin, Jin-O Kim, Tae-Kyun Kim, et al. Optimal Service Restoration and Reconfiguration of Network Using Genetic-tabu Algorithm. Electric Power Systems Research. 2004, 71(6): 145-152
    55 Zwe-lee Gaing. Particle Swarm Optimization to Solving the Economic Dispatch Considering the Generator Constraints. IEEE Trans. on Power Systems, 2003, 18(3): 1187-1195.
    56 Nagata T, Sasaki H. A. Multiagent Approach to Power System Restoration. IEEE Trans. on Power Systems, 2002, 17(2) :457-462.
    57王洪涛,刘玉田.电力系统恢复的主从递阶决策模型及其优化算法.中国电机工程学报. 2007, 27(1) :8-13
    58盛鹍,李永丽,李斌,等.特高压输电线路过电压的研究和仿真.电力系统及其自动化学报. 2003, 15(6): 13-18
    59吴义纯,丁明,汪兴强.黑启动过程中空载线路的过电压计算.合肥工业大学学报. 2005, 28(1): 18-21
    60 Trehan N K. Ancillary Services-reactive and Voltage Control. IEEE Power Engineering Society Winter Meeting . 2001, (3): 1341-1346
    61张玉琼,顾雪平.基于随机统计分析的黑启动操作过电压的计算校验.电工技术学报. 2005, 20(5): 92-97
    62 G. H. Cheng, Z. Xu. Analysis and Control of Harmonic Overvoltages During Power System Restoration. 2005 IEEE/PES Transmission and Distribution Conference & Exhibition: Asia and Pacific Dalian, China. 2005,1-6
    63钱家骊,袁大陆,徐国政.对1000kV电网操作过电压及相位控制高压断路器的讨论.电网技术. 2005, 29(10): 1-4, 8
    64陈思浩,吴政球,陈加炜,等.多级合闸电阻限制1000kV输电线路操作过电压的研究.电网技术. 2006, 30(20): 10-13
    65王丹昕,房鑫炎. Matlab在系统灾变恢复相关问题研究中的应用.继电器. 2002, 30(4): 22-25
    66李膨源,顾雪平.基于神经网络的黑启动操作过电压快速预测.电网技术. 2006, 30(3): 66-70
    67 Sheng-Wei Fei, Yu Sun. Forecasting Dissolved Gases Content in Power Transformer Oil Based on Support Vector Machine with Genetic Algorithm. Electric Power Systems Research. 2008, (78): 507-514
    68 Mohandes M. Support Vector Machines for Short-term Electrical Load Forecasting. International Journal of Energy Research. 2002, 26(4): 335-345
    69 Bo-Juen Chen,Ming-Wei Chang, and Chih-Jen Lin. Load Forecasting Using Support Vector Machines: A Study on EUNITE Competition 2001. http://www.csie.ntu.edu.tw/~cjlin/papers/elf.pdf
    70李元诚,方廷健,郑国祥.短期电力负荷预测的小波支持向量机方法研究.中国科学技术大学学报. 2003, 33(6): 726-732
    71 Vapnik V. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995: 1-10
    72 Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition . Data Mining and Knowledge Discovery. 1998, 2(2): 121-167
    73 Schlkopf B, Smola A J.Learning with Kernels Support Vector Machines, Regularization Optimization, and Beyond, Cambridge, Mass: MIT Press, 2002: 56-212
    74 Burke J J. Power Quality-two Different Perspectives. IEEE Transaction on Power Delivery, 1990, 5(3): 1502-1513
    75 Huang Cheng-Lung, Dun Jian-Fan. A distributed PSO-SVM hybrid system with feature selection and parameter optimization. Applied soft computing, (ARTICLE IN PRESS), 2007. 3(5): 23-28
    76 CHANG Chih-Chung, LIN Chih-Jen. LiBSVM: A Library for Support Vector Machines. http://www.csie, ntu.edu.tw/-cjlin/libsvm
    77周云海,闵勇.负荷的快速恢复算法研究.中国电机工程学报. 2003, 23(3): 74-79
    78 Yan Liu, Xueping Gu. Skeleton-Network Reconfiguration Based on Topological Characteristics ofScale-free Networks and Discrete Particle Swarm Optimization.IEEE Trans. on Power Systems,2007, 22(3): 1267-1274
    79 Albert R, Barabasi A L. Statistical Mechanics of Complex Networks. Review of Modern Physics, 2002, 74(1): 47-97
    80 Dorogovt sev S N, Mendes J F F, Samukhin A N. Structure of Growing Networks with Preferential Linking. Physical Review Letters, 2000, 85(21): 4632-4636
    81 Newman M E J, Girvan M. Finding and Evaluating Community Structure in Networks. Physical Review E, 2004, 69(2) :26-113
    82曹一家,陈晓刚,孙可.基于复杂网络理论的大型电力系统脆弱线路辨识.电力自动化设备. 2006 ,26(12) : 1-5,31
    83肖军,刘天琪.复杂网络理论在电力系统中的运用与研究.四川电力技术. 2009, 32(2): 28-32
    84谢琼瑶,邓长虹,赵红生,等.基于有权网络模型的电力网节点重要度评估.电力系统自动化. 2009, 33(4): 21-24
    85林振智,文福拴.基于加权复杂网络模型的恢复路径优化方法.电力系统自动化. 2009, 33(6): 11-15,10
    86顾雪平,韩忠晖,梁海平.电力系统大停电后系统分区恢复的优化算法.中国电机工程学报. 2009, 29(10): 41-46
    87 M. M. Adibi, Milanicz D P. Estimating Restoration Duration. IEEE Trans. on Power Systems. 1999, l4(4): 1493-1498
    88 Barthelemy M. Betweenness. Centrality in Large Complex Networks. Euro Phys J B, 2004, 38(2): 163-168
    89谭跃进,吴俊,邓宏钟.复杂网络中节点重要度评估的节点收缩方法.系统工程理论与实践. 2006, 11(11): 79-83
    90朱涛,张水平,郭戎潇,等.改进的加权复杂网络节点重要度评估的收缩方法.系统工程与电子技术. 2009, 31(8): 1902-1905
    91 Chen Guolong, Chen Shuili, Guo Wenzhong, et al. A Multi-Criteria Minimum Spanning Tree Problem Based Genetic Algorithm. European Journal of Operational Research. 1999, 114(1): 141-152
    92刘连志,顾雪平,刘艳.不同黑启动方案下电网重构效率的评估.电力系统自动化. 2009, 33(5): 24-28
    93程云志.新算法在电力系统恢复中的应用. [上海交通大学硕士论文]. 2003, 37-41
    94王洪涛,刘玉田.基于NSGA-II的多目标输电网架最优重构.电力系统自动化. 2009, 33(23):14-18
    95 Roger K. Restoration in Sweden and Experience Gained from the Blackout of 1983.IEEE Trans on Power Systems. 1987, 2(2): 422-428
    96瞿寒冰,刘玉田.计及暂态电压约束的负荷恢复能力快速计算.电力系统自动化. 2009, 33(15): 8-12
    97 John G. Vlachogiannis, Kwang Y Lee. Determining Generator Contributions to Transmission System Using Parallel Vector Evaluated Particle Swarm Optimization. IEEE Trans. on Power System. 2005, 20 (4): 1765-1774
    98 C. C Liu, K. L liou, R.F.Chu, A.T.Holen. Generation Capability Dispatch for Bulk Power System Restoration: a Knowledge-based Approach, IEEE Trans. Power Systems. 1993, 8(1): 230-240
    99刘强,石立宝,周明,等.电力系统恢复控制的机组优化启动策略.电力自动化设备. 2009, 29(4): 1-5
    100刘天琪.超高压大系统最优恢复计划的多目标模糊决策法.电力系统自动化. 2000, 8: 27-31
    101张志毅,陈允平,袁荣湘.系统重构阶段机组最优恢复次序的模糊多属性决策法.电工技术学报. 2007, 22(11): 153-157
    102刘强,石立宝,倪以信,等.电力系统恢复控制的网络重构智能优化策略.中国电机工程学报. 2009, 29(13): 8-15
    103 Marco Dorigo,Gianni.Di Caro. The Ant Colony Optimization Meta-heuristic. New Ideals in Optimization. 1999, 11-23
    104 Hong-Chan Chin, Yuh-Sheng Su. Application of The ant-Based Network for Power System Restoration. 2005 IEEE/PES Transmission and Distribution Conference & Exhibition: Asia and Pacific Dalian, China. 1-5
    105翟海保,程浩忠,吕干云,等.基于模式记忆并行蚁群算法的输电网规划.中国电机工程学报. 2005, 25(9): 19-22
    106 Colorni A, Dorigo M, Manicazzo V. Distributed Optimization by Ant Colonies. Proceedings of ECAL’91, European conference on Artificial life. Amsterdam: Elesevier Publishing, 1991, 134-142
    107 Dorigo M, Manicazzo V, Colorni A. The Ant system: An Cooperation Learning Approach to the traveling Salesman Problem. IEEE Transaction on Evolutionary Computation. 1997, 1: 53-66
    108 Stuetzle T, Hoos H H. The Max-Min Ant System and Local Search for the Traveling SalesmanProblem. Proceedings of the 1997 IEEE International Conference on Evolutionary Computation (ICEC’97), NJ:IEEE Press, 1997, 309-314
    109徐绪松.数据结构域算法导论.北京:电子工业出版社, 1996: 23-55
    110李敏,陈金富,陈海焱,等.一类潮流计算无解的实用性调整研究.电力系统自动化. 2006, 30(8): 11-15
    111 H. Song, S.-D. Baik, B. Lee. Determination of load shedding for power-flow solvability using outage-continuation power flow (OCPF). IEEE Proc. Gener. Transm. Distrib, 2006, 153, (3): 321-325
    112 D. Hazarika, A. K. Sinha. Power System Restoration: Planning and Simulation. Electrical Power and Energy Systems. 2003, 25(3): 209-218
    113张志毅,陈允平,袁荣湘.电力系统负荷恢复问题的混合遗传算法求解.电工技术学报. 2007, 22(2): 105-109
    114魏智博,刘艳,顾雪平.基于DPSO算法以负荷恢复为目标的网络重构.电力系统自动化. 2007, 31(1): 38-42
    115陈小平,顾雪平.基于遗传模拟退火算法的负荷恢复计划制定.电工技术学报. 2009,24(1): 171-175,182
    116程改红,徐政.基于粒子群优化的最优负荷恢复算法.电力系统自动化. 2007, 31(16): 62-74
    117 Abbas Ketabi, AliM. Ranjbar, Rent Feuillet. A New Method for Dynamically Calculation of Load Steps During Power System Restoration. Conference on electrical and computer engineering. Canada, 2000, (2): 7-10
    118 Jadid, S. Salami, A. Accurate Model of Hydroelectric Power Plant for Load Pickup During Power System Restoration. T2004 IEEE Region 10 Conference, ENCON 2004,11. Iran, Dehelan, 2004, (3): 307-310
    119刘映尚,吴文传,冯永青,等.黑启动过程中的负荷恢复.电网技术. 2007, 31(13): 17-22
    120 A. A. Mota, L. T. M. Mota, A. Morelato. Dynamic Evaluation of Reenergization Times During Power Systems Restoration. 2004 IEEE/PES Transmission & Distribution Conference & Exposition: Latin America. 2004, (11): 161-166
    121刘江平,汪洪波.电网运行备用容量分析和控制策略的研究.华中电力. 2005, 6(18): 22-25,28
    122 Hiskens IA, Davy R J. Exploring the Power Flow Solution Space Boundary. IEEE Trans on Power Systems, 2001, 16(3): 389-395
    123燕萍.计及频率变化的电力系统仿真潮流程序.华东电力. 1999, (4): 13-16
    124 Z.B.Kremens, M.Labuzek. Load Flow Analysis Incorporating Frequency as a State Vector Variable, Ninth International Conference on Harmonics and Quality of Power, 2000, (2): 526-530
    125陈曦,程浩忠,戴岭,等.邻域退火粒子群算法在配电网重构中的应用.高电压技术, 2008, 34(1): 148-153
    126 Li Ling, Liao Zhiwei, Huang Shaoxian,等. A Distributed Model for Power System Restoration Based on Ant Colony Optimization Algorithm. 2005 IEEE/PES Transmission and Distribution Conference & Exhibition: Asia and Pacific. Dalian, China. 2005: 1-5
    127 Zhigang Lu, Ying Wen, Lijun Yang. An Improved ACO Algorithm for Service Restoration in Power Distribution Systems. 2009 Asia-Pacific Power and Energy Engineering Conference Proceedings. Wuhan, China. 2009, (2): 1868-1872.
    128 J.S. Anagnostopoulos, D.E. Papantonis. Simulation and Size Optimization of a Pumped–storage Power Plant for the Recovery of Wind-farms Rejected Energy. Renewable Energy.2008, (3): 1685-1694
    129 Ching-Tzong Su, Chung-Fu Chang, Ji-Pyng Chiou. Distribution Network Reconfiguration for Loss Reduction by Ant Colony Search Algorithm. Electric Power Systems Research. 2005, (75): 190–199

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700