用户名: 密码: 验证码:
纤维增强异形柱结构抗震性能试验和设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土异形柱框架结构由于良好的使用功能而逐渐在工程领域得到广泛的应用。但由于异形柱底层柱根部和节点等薄弱部位的存在,限制了异形柱结构的结构高度和在抗震区的进一步推广。因此,本文提出局部采用纤维进行增强的方法,对异形柱结构的薄弱部位进行纤维增强,研究纤维在改善异形柱结构薄弱部位抗震性能上的增强作用,为异形柱结构进一步推广和应用提供试验和研究依据。具体的研究工作包括:
     通过柱根部采用聚丙烯纤维和钢纤维增强的异形柱在反复荷载作用下试验,对比分析破坏状态、承载能力和延性、抗震性能等性能指标,研究纤维种类对异形柱的增强效果。对比分析表明:纤维增强可以改善异形柱的破坏特征,能够提高异形柱的承载能力和变形能力,对T形和L形柱的抗震性能具有显著的改善。综合比较发现,钢纤维对异形柱的各阶段受力特征增强效果优于聚丙烯纤维。
     通过节点采用聚丙烯纤维和钢纤维增强的6个异形柱中节点和4个边节点的抗震性能试验,对比分析节点的破坏形态,承载能力和变形能力,抗震性能以及各阶段受力性能,研究纤维品种及掺入范围对节点的增强效果。研究表明:纤维可以推迟节点核心区开裂,减小裂缝宽度,改善节点破坏特征。纤维增强可以改善异形柱节点承载能力、延性和抗震性能。节点区及相邻梁端一倍梁高范围采用钢纤维增强节点的纤维增强效果最佳。
     在分析异形柱节点受力机理和传力机制的基础上,统计52个异形柱节点剪切试验结果,分析节点受剪承载力变化规律并提出纤维增强异形柱节点的受剪承载力计算公式,建立纤维增强异形柱节点的设计计算方法。计算分析表明:本文提出的节点受剪承载力公式偏安全且有一定安全储备。
     对三种混凝土进行力学性能和本构关系研究和分析。研究表明:纤维增强对混凝土抗压强度和峰值应变均没有显著影响,但可以大幅度提高极限应变,提高混凝土的压缩韧性和韧度,改善混凝土脆性破坏特征。在分析的基础上建立纤维混凝土的本构模型,对中节点建立有限元模型进行分析,补充研究纤维掺入范围对异形柱节点承载力的影响,分析得出纤维掺入范围在节点区及两端0.5~1倍梁高范围节点承载力最大的结论。
     基于上述试验和理论分析,提出了纤维增强异形柱节点工程设计建议。
The RC frame structure with specially shaped columns is widely used in field of engineering for the favorable service function. But the existence of weak parts of joints and legs of specially shaped columns in bottom floor restrict the structure height and the further generalization of structure with specially shaped columns. Therefore the method of fiber reinforcement in local area is proposed to make reinforcement to weak parts of structure with specially shaped columns. Fiber reinforcement to the weak parts of structure with specially shaped columns in seismic behaviors is investigated to make this structure generalize further and provide the experiment and research foundation. The detailed work of this paper is stated as follows:
     According to cyclic loading test of specially shaped columns with leg reinforced by polypropylene fiber and steel fiber, the aspects of failure characteristic, shearing capacity, ductility and seismic behaviors are compared between specimens with and without fiber reinforcement to make the analysis. It is shown in the results that the failure characteristics can be improved and the bearing and deforming capacity can be increased with fiber reinforcement. The conclusion can be drawn from total comparison that the reinforcing effect of steel fiber is better than that of polypropylene fiber.
     Based on the tests on seismic behaviors of six interior joints and four exterior joints with specially shaped joints reinforced with polypropylene fiber and steel fiber, comparison is made on failure characteristic, shearing and deforming capacity, seismic behaviors and mechanical behaviors in loading to study on the fiber reinforcement on different fiber varieties and fiber using areas. It is shown in the study that fiber could delay the cracking of core area of joint, decrease the width of cracks, alleviate the failure pattern of joint and also improve the bearing capacity, ductility, and seismic behaviors. The best fiber reinforcing effect occurred in that fiber reinforcement on the core area of joints and the area of beam height.
     On the basis of mechanical mechanism and force transferring process, 52 test results for joints with specially shaped columns are statistically collected to study the changing rule of shearing capacity, based on which the formula of shearing capacity of joints with specially columns is proposed to provide a design calculation method for fiber reinforced joints with specially shaped columns. Calculation and analysis shows that the formula ares rational and save in calculation with security degree.
     It is shown from the test results and analysis on the constitutive relationship, the compressive strength and peak strain of concrete is influenced little by fiber reinforcement, while the ultimate strain can be increased in large degree, the compressive toughness and tenacity can be improved to make the brittleness of failure characteristics of concrete. The constitutive model of fiber reinforced concrete is established according to the analyzing and test results, which is used in the finite element analysis on the interior joints with specially shaped columns to analyze the influence of fiber using area to the joint bearing capacity in supplement. It is shown from the analysis that the bearing capacity of joints have a maximum with the fiber using area of the core area of joint including half to one times of the beam height.
     The engineering design suggestions on fiber reinforced joints with specially shaped columns are put forward on the basis of the above test and analysis.
引文
[1]Joaquin Marin, Design Aids for L-shaped Reinforced Concrete Columns, ACI Structural Journal, 1979(11): 1197~1216
    [2] Cheng-Tzu, Hsu Thomas, Biaxially loaded L-shaped reinforced concrete columns, Journal of Structural Engineering, 1985, 111(12): 2576~2595
    [3] Cheng-Tzu, Hsu Thomas, L-shaped Reinforced Concrete Compression Members under Biaxial Bending. ACI Structural Journal, 1987, 84(3): 201~211
    [4] Cheng-Tzu, Hsu Thomas, T-shaped reinforced concrete members under biaxial bending and axial compression, ACI Structural Journal, 1989, 86(4): 460~468
    [5] Sinha S.N, Design of Cross (+) Section of Column, The Indian Concrete Journal, 1996, 70(3): 153~158
    [6] Yau C.Y., Chan S.L., Wso A.K, Biaxial bending design of arbitrarily shaped reinforced concrete column, ACI Structural Journal, 1993, 90 (3): 269~278
    [7] M.Kawakami, Limit States of Cracking and Ultimate Strength of Arbitrary Concrete Sections under Biaxial Bending, ACI Structural Journal, 1985(3-4): 69~78
    [8] Dundar C.sahin B, Arbitrarily shaped Reinforced Concrete Members Subject to Biaxial Bending and Axial Load, Computer and Structures, 1993, 49(4): 1245~1256
    [9] Mallikarjural, Mahadevappa P, Computer-Aided Analysis of Reinforced Concrete Columns Subjected to Axial Compression and Bending-I: L-shaped Sections. Computer and Structures, 1992, 44(5): 435~444
    [10] Mallikarjunal, Mahadevappa P, Computer Aided Analysis of Reinforced Concrete Columns Subjected to Axial Compression and Bending-II: T-shaped Sections. Computer and Structures, 1993, 52(6): 142~152
    [11]陈云霞,刘超,赵艳静等,T形、L形截面钢筋混凝土双向压弯构件正截面承载力的研究,建筑结构,1999(1):11~15,26
    [12]赵艳静,陈云霞,王玲勇,钢筋混凝土异形截面双向压弯柱延性性能的理论研究,建筑结构,1999(1):16~21
    [13]王依群,赵艳静,周克民等,异形截面钢筋混凝土柱正截面承载力简化计算,建筑结构,2001.1,31(1):46~50
    [14]黄承逵,王丹,崔博,钢筋混凝土异形柱轴压比限值研究,大连理工大学学报,2002.3,42(2):213~217
    [15]陈娟,陈滔,钢筋混凝土异形柱分析时平截面假定适用范围,建筑结构,2010(10):91~93,90
    [16]冯建平,陈谦,卫园等,L形和T形截面柱正截面承载力的研究,华南理工大学学报,1995.1,23(1):11~15,26
    [17]徐海燕,薛海宏,袁志华,Z形截面柱正截面承载力的试验与分析,华东交通大学学报,2004.2,21(1):8~11,20
    [18]何放龙,肖芳,钢筋混凝土异形截面柱配筋计算,湖南大学学报(自然科学版),2001.4,28(2):83~88
    [19]焦俊婷,刁波,叶英华等,钢筋混凝土Z形柱正截面承载力与延性,北京航空航天大学学报,2007.1,33(1):110~114
    [20]申东建,陈云霞,赵艳静,Z形截面钢筋混凝土偏压柱的简化设计方法,北京航空航天大学学报,2001.11,31(11):18~20
    [21]冯建平,陈谦,李志忠,混凝土L形截面柱抗剪承载力的试验研究,华南理工大学学报,1995.1,23(1):51~61
    [22]康谷贻,巩长江,单调及低周反复荷载作用下异形截面框架柱的受剪性能,建筑结构学报,1997.5,18(5):51~61
    [23]巩长江,康谷贻,姚石良,L形截面钢筋混凝土框架柱受剪性能的试验研究,建筑结构,1999(1):31~34
    [24]徐向东,康谷贻,姚石良,单调及低周往复荷载作用下T形截面框架柱受剪性能的试验研究,建筑结构,1999(1):27~30
    [25]黄承逵,曲福来,赵顺波,钢筋混凝土不等肢异形柱抗剪性能试验研究,西南交通大学学报,2008.6,43(3):197~201
    [26]黄承逵,曲福来,徐士弢,钢筋混凝土不等肢异形柱抗剪承载力研究,工程力学,2009.5,26(5):197~201
    [27]曹万林,王光远,欧进萍等,周期反复荷载作用下钢筋混凝土十字形柱的性能,地震工程与工程振动,1994.9,14(3):60~67
    [28]曹万林,王光远,不同方向周期反复荷载下T形柱的性能,地震工程与工程振动,1995.12,15(4):76~84
    [29]曹万林,王光远,吴建有等,不同方向周期反复荷载下L形柱的性能,地震工程与工程振动,1995.3,15(1):67~72
    [30]邹积麟,钢筋混凝土异形柱抗剪性能的试验研究,[硕士学位论文],大连:大连理工大学,1997
    [31]王丹,钢筋混凝土异形柱设计理论,[博士学位论文],大连:大连理工大学,2002
    [32]曹万林,胡国振,崔立长等,钢筋混凝土带暗柱异形柱抗震性能试验研究及分析,建筑结构学报,2002.2,23(1):16~20
    [33]李杰,吴建营,L形和Z形宽肢异形柱低周反复荷载试验研究,建筑结构学报,2002.2,23(1):29~32
    [34]郭棣,宽肢异形柱的试验研究,[博士学位论文],西安:西安建筑科技大学,2001
    [35]赵彤,周芝兰,谢剑,高强混凝土L形截面柱抗剪承载力的试验研究,工业建筑,2002.4,32(4):29~32
    [36]曹祖同,陈云霞,吴戈等,钢筋混凝土异形柱框架节点强度的研究,建筑结构,1999(1):42~46
    [37]陈昌宏,单建,马乐为等,钢筋混凝土异形柱框架节点抗震性能试验,工业建筑,2007,37(2):6~10
    [38]马乐为,陈昌宏,李晓丽等,异形柱框架节点抗震性能试验研究,工业建筑,2006,26(4):70~73
    [39]冯建平,吴修文,T形截面柱框架边节点的抗震性能,华南理工大学学报,1995,23(3):123~130
    [40]桂国庆,熊黎黎,熊进刚,钢筋混凝土异形柱框架顶层边节点受剪性能试验研究,建筑结构,2006,36(7):32~35
    [41]熊黎黎,谢群,张少钦,钢筋混凝土异形柱框架顶层边节点受剪承载力的理论分析,南昌航空大学学报(自然科学版),2007,21(3):41~46
    [42]熊黎黎,异形柱框架结构顶层边节点受剪性能试验研究,[硕士学位论文],南昌:南昌大学,2003.5
    [43]周树勋,钢筋混凝土十字形截面柱框架顶层中节点抗震性能的有限元分析[硕士学位论文],天津:天津大学,2003
    [44]王文进,钢筋混凝土异形柱框架顶层角节点抗震性能研究及非线性有限元分析,[硕士学位论文],天津:天津大学,2004
    [45]周树勋,薛敬,王依群等异形柱框架顶层中节点试验研究,工程力学,2003(supp):472~475
    [46]赵艳静,钢筋混凝土异形柱结构体系理论与试验研究,[博士学位论文],天津:天津大学,2004
    [47]王丹,刘明,黄承逵,T形柱框架节点延性及承载力的试验研究,建筑结构,2006,36(2):36~39,50
    [48]傅剑平,张笛川,韦峰等,异形柱框架中间层端节点抗震性能试验研究,建筑结构,2005(9):66~72
    [49]黄珏,肖建庄,葛亚杰等,异形柱框架节点受力性能研究进展与评述,结构工程师,2002(1):52~57
    [50]严士超,康谷贻,王依群等,混凝土异形柱结构技术规程理解与应用,北京:中国建筑工业出版社,2006.10,84~97
    [51]刘军进,吕志涛,9层(带转换层)钢筋混凝土异形柱框架结构模型振动台试验研究,建筑结构学报,2002.2,23(1):21~26
    [52]潘越,八度区六层异形柱框架抗震性能模型振动台试验研究[硕士学位论文],上海:同济大学,2004.3
    [53]潘文,刘建,杨晓东等,八度区异形柱框架结构的振动台试验研究,建筑结构学报,2002(supp):15~20
    [54]王滋军,刘伟庆,汪杰等,中高层大开间钢筋混凝土异形柱框架结构抗震性能研究,地震工程与工程振动,1999.9,19(13):59~64
    [55]王滋军,刘伟庆,蒋永生等,中高层大开间钢筋混凝土异形柱框架结构试验与理论研究,地震工程与工程振动,2002.10,22(5):46~49,82
    [56]曹万林,郑汉兵,王普山等,底部矩形柱上部异形柱框架抗震性能试验研究,地震工程与工程振动,2002.9,18(3):106~109
    [57]罗佑新,刁波,李淑春等,RC异形柱框架反复加载试验及数值模拟,工业建筑,2008.8,38(8):106~109
    [58]王铁成,林海,康谷贻等,钢筋混凝土异形柱框架试验及静力弹塑性分析,天津大学学报,2006(12):1457~1464
    [59]王铁成,张学辉,康谷贻,两种异形柱框架抗震性能试验对比,天津大学学报,2006(12):791~798
    [60]王秀芬,王铁成,混凝土异形柱框架抗震性能的试验研究,工业建筑,2010(5):28~32
    [61]王铁成,张学辉,赵海龙,纤维增强异形柱框架抗震性能的试验研究,地震工程和工程振动,28(12):178~185
    [62] Wang Tiecheng,Zhang Xuehui,Frame property of unequal story height with specially shaped columns under cyclic loading,Journal of central south University of technology,2010.12,17(6):1364~1369
    [63]黄雅捷,梁兴文,吴敏哲,钢筋混凝土异形柱框架结构抗震试验与分析,建筑结构,2002(1):49~52
    [64]李杰,刘威,异形柱框架结构中支撑与填充墙作用的对比研究,建筑结构,2003(9):26~28
    [65]李晓轩,钢筋混凝土异形柱斜撑框架结构抗震性能研究,[硕士学位论文],天津:天津大学,1993
    [66]黄承逵,纤维混凝土结构,北京:机械工业出版社,2004
    [67] P.S. Song,S.Hwang,Mechanical properties of high-strength steel fiber reinforced concrete,Construction and Building Materials,2004(18):669~673
    [68]管仲国,黄承逵,张宏战等,钢纤维混凝土受压极限强度,建筑结构,2005,35(4):56~58
    [69]姚武,蔡江宁,吴科如等,钢纤维混凝土的抗弯韧性研究,混凝土,2002(6):31~33,30
    [70]汤寄予,高丹盈,朱海堂等,钢纤维对高强混凝土弯曲性能影响的试验研究,建筑材料学报,2010.2,13(1):85~89
    [71]彭刚,刘德富,戴会超,钢纤维混凝土动态压缩性能及全曲线模型研究,振动工程学报,2009.2,22(1),99~104
    [72]刘永胜,王肖钧,金挺等,钢纤维混凝土力学性能和本构关系研究,中国科学技术大学学报,2007.7,37(7),717~723
    [73]董毓利,谢和平,李世平,混凝土受压损伤力学本构模型的研究,工程力学,1996.2,13(1),44~53
    [74]高丹盈,赵柯岩,王亮,钢纤维高强混凝土框架边节点梁的曲率延性,世界地震工程,2009.12,25(4),80~86
    [75]李凤兰,黄承逵,温世臣等,低周反复荷载下钢纤维高强混凝土柱延性试验研究,工程力学,2005,35(6),159~164
    [76]姜睿,高轴压比钢纤维超高强混凝土短柱延性的试验研究,建筑结构学报,2007(supp),230~235
    [77]章文纲,程铁生,钢纤维砼框架节点抗震性能的研究,空军工程学院学报,1988,(2):33~45
    [78]蒋永生,卫龙武,徐金法等,钢纤维高强砼框架节点性能的试验研究,东南大学学报,1991,21(2):72~79
    [79]王宗哲,王崇昌,黄良壁等,钢纤维混凝土框架边节点的抗震性能,西安冶金学院学报,1989,21(3):25~36
    [80]郑七振,魏林,钢纤维混凝土框架节点抗剪承载力的试验研究和机理分析,土木工程学报,2005,38(9):89~93
    [81]孙海燕,龚爱民,彭玉林,聚丙烯纤维混凝土性能试验研究,云南农业大学学报,2007,22(1):154~158
    [82]汪洋,杨鼎宜,周明耀,聚丙烯纤维混凝土的研究现状与趋势,混凝土,2004,(1):24~26,31
    [83] Chen L,Mindess S,Morgan D R.Comparative toughness testing of fiber reinforced concrete, Testing of Fiber Reinforced Concrete,1995:41~75
    [84]卢哲安,邹尤,任志刚等,纤维高强混凝土弯曲韧性试验研究,混凝土,2010(3) :5~8
    [85] HughesB.P,Fattuhi N.I,Load-deflection curves for fiber~reinforced concrete beams in flexure.Magazine of Concrete Research,1997,101(29):199~206
    [86]Yeol Choi, Robert L.Yuan,Experimental relationship between splitting tensile strength and compressive strength of GFRC and PFRC,Cement and Concrete Research,2005(35),1587~1591
    [87]朱江,聚丙烯纤维与高强高性能混凝土,混凝土,2000(5):49~51
    [88]安玉杰,赵国藩,黄承逵,纤维水泥增强机理的研究,水利学报,1991(10),55~58
    [89]杨萌,钢纤维高强混凝土增强、增韧机理及基于韧性的设计方法研究,[博士学位论文],大连:大连理工大学,2006
    [90]刘永胜,纤维混凝土增强机理的界面力学分析,混凝土,2008(4),34~35
    [91]刘新荣,祝云华,周丽等,纤维混凝土界面应力增强机理分析,2009(1),48~50
    [92]李忠献,工程结构试验理论与技术,天津:天津大学出版社,2003.6
    [93]张学辉,低周往复荷载下纤维增强混凝土异形柱结构的试验研究,[博士学位论文],天津:天津大学,2008.12
    [94]郝贵强,聚丙烯纤维增强异形柱框架抗震性能的研究,[博士学位论文],天津:天津大学,2008.12
    [95]郝津津,聚丙烯纤维增强混凝土异形柱边节点试验研究,[硕士学位论文],天津:天津大学,2010.6
    [96]祖健全,纤维增强混凝土异形柱中节点试验研究,[硕士学位论文],天津:天津大学,2010.6
    [97]唐九如,钢筋混凝土框架节点抗震,南京:东南大学出版社,1998
    [98]赵国藩,高等钢筋混凝土结构学,北京:机械工业出版社,2005.8,430~480
    [99]王东升,冯启民,王国新,考虑低周疲劳寿命的改进Park-Ang地震损伤模型,土木工程学报,2004,37(11):41~49
    [100]刁波,李淑春,叶英华,往复荷载作用下混凝土异形柱结构累积损伤分析及试验研究,建筑结构学报,2008,29(1):57~63
    [101] Hitoshi Shiohara, New Model for Shear Failure of RC Interior Beam-Column Connections, Journal of Structural Engineering, 2001(12):152~160
    [102]A.Ghobarah, T.El-Amoury, Seismic Rehabilitation of Deficient Exterior Concrete Frame Joints, Journal of Composites for Construction, 2005(9):408~416
    [103]Laura N.Lowes, Arash Altoontash, Modeling Reinforced-Concrete Beam-Column Joints Subjected to Cyclic Loading, Journal of Structural Engineering, 2003(11):1686~1697
    [104]傅剑平,游渊,白绍良,钢筋混凝土抗震框架节点传力机构分析,重庆建筑大学学报,1996,18(2):43~52
    [105]傅剑平,钢筋混凝土框架节点抗震性能与设计方法研究,[博士学位论文],重庆:重庆建筑大学,2002
    [106]盂洁平,潘文,缪升,异形柱节点抗震性能分析,建筑结构,2005,(4):32~34
    [107] T.鲍雷,M.J.N普里斯特利,钢筋混凝土和砌体结构的抗震设计,北京:中国建筑工业出版社,1999
    [108]中华人民共和国行业标准,混凝土结构设计规范(GB50010~2002),北京:中国建筑工业出版社,2002
    [109]中华人民共和国行业标准,异形柱结构技术规程(JGJ149~2006),北京:中国建筑工业出版社,2006
    [110]中国工程建设标准化协会,CECS13~1989,钢纤维混凝土试验方法,北京:中国工程建设标准化协会,1989.12
    [111]中华人民共和国行业标准,GB50010~2002,混凝土结构设计规范,北京:中国建筑工业出版社,2006
    [112]中国工程建设标准化协会,CECS38~2004,钢纤维混凝土结构技术规程,北京:中国计划出版社,2004
    [113]王春来,徐必根,李庶林等,单轴受压条件下钢纤维混凝土损伤本构模型研究,岩土力学,2006,27(1):151~154
    [114]薛云亮,李庶林,林峰等,考虑损伤阀值影响的钢纤维混凝土损伤本构模型研究,岩土力学,2009,30(7):1987~1992,1999
    [115]王连广,钢与混凝土组合结构理论与计算,北京:科学出版社,2005
    [116] Chaboche JL, Constitute Equations for Cyclic Plasticity and Cyclic Viscoplasticity, International Journal of Plasticity, 1989, 5(3):247~302
    [117] Chaboche JL, On Some Modifications of Kinematic Hardening to Improve the Description of Ratcheting Effects, International Journal of Plasticity, 1991,7(7):661~678
    [118] ANSYS理论分析手册,ANSYS公司内部手册,1998
    [119]陈玺,有限元方法在框架节点中的应用,[硕士学位论文],重庆:重庆大学,2005
    [120]江见鲸,钢筋混凝土结构非线性有限元分析,西安:陕西科学技术出版社,1994
    [121] Francesco Bencardino, Lidia Rizzuti, Giuseppe Spadea etc, Stress~strain behacior of steel fiber-reinforced concrete in compression, Journal of Materials in Civil Engineering, 2008(3):255~263
    [122]徐礼华,池寅,李荣渝等,钢纤维混凝土深梁非线性有限元分析在ANSYS中的实现,岩土力学,2008,29(9):2577~2582
    [123]胡金生,周早生,唐德高等,聚丙烯纤维增强混凝土分离式Hopkinson压杆压缩试验研究,土木工程学报,2004,37(6):12~15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700