用户名: 密码: 验证码:
古建筑双跨木结构抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
古建筑是历史上科学文化、政治经济、艺术特征的实物载体,代表着一定历史时期的物质与精神文明。抢救国家和人类重要文物艺术的责任感和使命感,激发了广大建筑、艺术、考古、结构等领域学者研究古建筑的热情。近20年来,在结构领域,古建筑木构架的抗震机理以及力学性能研究已经引起了很多学者重视,并作了一系列有益的开拓工作,这些工作非常难能可贵。虽然如此,还有许多研究领域有待于研究:例如,古建筑历史价值较大的宫式建筑基本上都是多跨的,目前,对于多跨木结构抗震性能研究还较少;倒梯形燕尾榫卯的连接性能研究刚刚开始,近代木结构常用的上下等宽燕尾榫卯的半刚性连接力学模型还没有完全建立;用于木结构力学分析的方法还有待于改进。
     针对以上几个问题,根据历史文献记载,确定了宋代分心斗殿堂的结构原型,宋代分心斗殿堂是一种双跨古建筑木结构,常常用于建筑群的正门。这种结构是多跨木结构的一种,它的构造相对简单,通过这种结构力学特征和工作性能的研究,可以为多跨木结构的后继研究工作奠定基础。
     以宋代分心斗八架椽殿堂木构架为原型,制作了3榀1:4木构架缩尺模型,模型的榫卯,按照马炳坚先生的《中国古建筑木作营造技术》中记载的上面大、下面小、外面窄、里面宽的倒梯形燕尾榫卯制作方法制作。根据古建筑木构架与柱础、柱顶的连接条件,对试件的边界条件和加载方式进行了合理假定,对所制作的3榀木构架试件进行了拟静力实验。分析了双跨木构架的滞回曲线、骨架曲线,骨架曲线的强度、刚度退化特征,分析了双跨木构架的耗能能力,确定了双跨木构架的骨架曲线模型,根据多线型枢纽点Pivot模型,提出了适合于木结构的修正双线型枢纽点滞回模型和修正多线型枢纽点滞回模型。
     木结构的节点连接是弱节点榫卯连接,对于木结构,实验时作动器力的示值与P-△效应产生的二阶水平力处于一个量级,当位移较大时,忽略P-△效应,将会使分析结果误差较大。提出了基于等效框架的虚拟荷载法和基于等效框架的D值法,这些分析方法主要适用于分析半刚性连接框架,可以考虑结构非线性和整体二阶效应,用这些分析方法所得的结果与实验结果吻合较好。
     对木构架半刚性节点的弯矩一转角关系进行了深入研究,确定了节点连接弯矩与节点连接刚度、柔度的计算公式;节点连接相对转角与位移关系的计算公式,位移与节点连接刚度、柔度的计算公式。确定了节点弯矩—连接相对转角的双线型模型和幂函数模型。
     通过计算机模拟验证了节点连接弯矩—连接转角幂函数模型用于计算机分析的适用性。
     测试了双跨木构架的模态参数,根据幅频峰值法和实频、虚频峰值法,计算了双跨木构架的一阶模态频率和一阶模态阻尼比,对计算结果进行了深入分析。
Ancient building represented science, culture, politic, economic and art in historic period, and could reflected material and cultural progress. The senses of responsibility and mission of protecting and rescuing those human relics arouse the enthusiasm for historic building of researchers in architecture, art, archaeology and structure areas. In past 20 years, quite a few scholars were coming to study the seismic mechanism and mechanical performance hidden in Chinese ancient timber structure, and doing some excellent pioneering workings. Still, many problems were remained to be studied. Traditional multi-span timber structures remain largely unexplored until current days. It is recorded in the book of Construction Technique in Chinese Traditional Timber Structure written by Ma BingJian that the cross-section of traditional dovetail looks like an upside down trapezoid (wide on the top side, and narrow at the bottom side). This inverted trapezoid dovetail is expected to be studied. Besides, the mechanical model of semi-rigid connector for ordinary tenon with rectangular cross-section is still not built up. The analysis approaches used to wooden structures are not yet excellent.
     Fen-Xin-Dou palace built in Song Dynasty is double span wooden structure, and used for the main entrance of ancient buildings. Double-span timber structure is a special sort of multi-span timber structures, and its details are simpler than other multi-span structures. Research on the structure can lay the groundwork for subsequent studies of multi-span wooden structures.
     Based on Fen-Xin-Dou palace built in Song Dynasty, three scaled model with the ratio of 1:4 are built, and its connector is made as inverted trapezoid dovetail. According to the realistic connection condition at the bottom and top of column, the text makes rational assumptions about the boundary conditions and loaded modes for the test samples, and reports the results of pseudo-static tests of the three samples.
     The samples made of either steel or concrete, rather than timber, have larger capacities resisting lateral force and lower ductility. For these samples, the overall P-A effects induced by structural displacement are only the test values of actuator of 1/20~1/10 in test process, thus, we can neglect the overall P-△effects in analyzing test values, and the errors resulted by the simplification will be small. But the second order lateral force induced by overall P-△ effects of timber structure, with semi-rigid joggle joint, is 0.3~3.5 times of the test values of actuator. When lateral displacement of structure is relatively larger, the lateral force by P-△effects occupies the leading position, so, P-△effects should be concern in dealing with the test results of wooden samples.
     Both virtual load and D-value method based on equivalent portal frame are presented. Those methods take the non-linear effect and overall P-△effects into consideration, and are validated with a broader range of test results. They can be more incorporated into frame analysis with semi-rigid joints for predicting system response.
     Formulas are obtained, such as relationships between connectional moment and stiffness, between connectional moment and flexibility, between lateral displacement and relative angle of wedge joint, between lateral displacement and connectional stiffness in joints, and between lateral displacement and connectional flexibility in joints. Besides, both double-line and power functional model between connectional moment and relative angle in joints are decided. Based on multi-linear pivot hysteresis model, both revised bi-linear and multi-linear pivot hysteresis model are presented. The power function representation between connectional moment and relative angle in joints is validated with the results of a number of computer imitations, and is suited to estimate the responses of semi-rigid timber frame.
     Mode parameters of 3 double span wooden structures were tested. Besides, based on both methods of the amplitude-frequency peak value and of the real-frequency and imaginary-frequency peak value, fundamental frequencies and fundamental mode damping ratios of tested samples were estimated.
引文
[1]张鹏程,赵鸿铁.中国古代建筑抗震[M].北京:地震出版社,2007,12.
    [2]李诫.营造法式[M].上海:商务印书馆,1933.
    [3]梁思成.清式营造则例[M].北京:中国营造学社,1934.
    [4]梁思成.中国建筑史[M].天津:百花文艺出版社,2005.
    [5]梁思成.图像中国建筑史[M].天津:百花文艺出版社,2000.
    [6]梁思成.梁思成全集(第一卷)[M].北京:建筑工业出版社,2001.
    [7]梁思成.梁思成全集(第二卷)[M].北京:建筑工业出版社,2001.
    [8]梁思成.梁思成全集(第三卷)[M].北京:建筑工业出版社,2001.
    [9]梁思成.梁思成全集(第四卷)[M].北京:建筑工业出版社,2001.
    [10]梁思成.梁思成全集(第五卷)[M].北京:建筑工业出版社,2001.
    [11]梁思成.梁思成全集(第六卷)[M].北京:建筑工业出版社,2001.
    [12]姚承祖.营造法原[M].北京:中国建筑工业出版社,1986.
    [13]陈明达.营造法式大木作研究[M].北京:文物出版社:1981.
    [14]陈明达.应县木塔[M].北京:文物出版社,1981.
    [15]马炳坚.中国古建筑木作营造技术[M].北京:科学出版社,1991.
    [16]王天.古代大木作静力初探[M].文物出版社,1992.
    [17]Yu M H, Chen B Q, Fang D P. Advancing technology and ancient architecture [C]. Technique Moderneet Construction Ancienne, In:Proceedings of CIB, Washington:1986.
    [18]赵均海,俞茂宏,杨松岩,等.中国古建筑木结构斗拱的动力实验研究[J].实验力学,1999,14(1):106一112.
    [19]赵均海,俞茂宏,高大峰,等.中国古代木结构的弹塑性有限元分析[J].西安建筑科技大学学报,1999,31(2):131-133.
    [20]赵均海,俞茂宏,杨松岩,等.中国古代木结构有限元动力分析[J].土木工程学报,2000,33(1):32-35.
    [21]俞茂宏,赵均海,方东平,等.中国古建筑结构力学研究进展[R].内部资料,1986.
    [22]俞茂宏,张学彬,方东平.西安古城墙研究[M].西安:西安交通大学出版社,1993.
    [23]赵均海.中国古代建筑结构特性研究[M].武汉:武汉工业大学出版社,1999.
    [24]魏剑伟,李铁英,李世温.独乐寺观音阁动力特性实测分析[J].太原理工大学学报,2002,33(4): 430-431.
    [25]李铁英,张善元,李世温.古木塔场地抗震性能评价及地震参数选择[J].岩土工程学报,2002,24(5):660-661.
    [26]李铁英,张善元,李世温.古木塔风压模型试验分析[J].实验力学,2002,17(3):334-342.
    [27]李铁英,张善元,李世温.应县木塔风作用振动分析[J].力学与实践,2003,25:40-42.
    [28]李铁英,魏剑伟,张善元,等.木结构双参数地震损坏准则及应县木塔地震反应评价[J].建筑结构学报,2004,25(2):91-98.
    [29]李铁英,魏剑伟,张善元,等.高层古建筑木结构-应县木塔现状结构评价[J].土木工程学报,2005,38(2):51-58.
    [30]李铁英,秦慧敏.应县木塔现状结构残损分析及修缮探讨[J].工程力学,2005,22增刊:199-212.
    [31]雷宏刚,李铁英,魏剑伟.典型古建筑保护中的基础性问题研究[J].工程力学(增刊),2007,24(sup.Ⅱ):99-109.
    [32]薛建阳,张鹏程,赵鸿铁.古建木结构抗震机理的探讨[J].西安建筑科技大学学报,2000,32(1):8-11.
    [33]薛建刚,赵鸿铁,张鹏程.中国古建筑水结构模型的振动台试验研究[J].士木工程学报,2004,37(6):,6-11.
    [34]姚侃,赵鸿铁,葛鸿鹏.古建木结构榫卯连接特性的试验研究[J].工程力学,2006,23(10):168-173.
    [35]姚侃,赵鸿铁,薛建阳,等.木结构古建筑的抗震性能分析[J].建筑科学,2007,23(7):47-50.
    [36]谢启芳,赵鸿铁,薛建阳,等.中国古建筑小结构榫卯节点加固的试验研究[J].土木工程学报,2008,41(1):28-33.
    [37]张鹏程.中国古代木构建筑结构及其抗震发展研究[D].西安建筑科技大学博土论文,2003.
    [38]谢启芳.中国木结构古建筑加固的实验研究及理论分析[D].西安建筑科技大学博土论文,2007.
    [39]高大峰.中国小结构古建筑的结构及其抗震性能研究[D].西安建筑科技大学博十论文,2007.
    [40]Xue J Y, Zhao H T, Zhang P C, et al. Study on the seismic behaviors of China ancient wooden building by shaking table test. Proceedings of the Seventh International Symposium on Structural Engineering for Young Exports [C].2002.08, Tianjin, China.
    [41]Gao D F, Zhao H T, Xue J Y. Aseismatic carpentry of ancient Chinese timber building. Proceeding of the Eighth International Symposium on Structural Engineering for Young Exports [C].2004.08, Xi'an, China.
    [42]Zhao H T, Yao K, Xue J Y, et al. Study on the seismic characteristics of Chinese historic timber buildings. Proceeding of the Ninth International Symposium on Structural Engineering for Young Exports [C].2006.08, Fuzhou&Xiamen, China.
    [43]Kermani A, Goh H C C. Load-slip characteristics of multi-nailed timber joints[J]. Proc. Inst. Civ. Eng. Struct. Build,1999,134(1):31-43.
    [44]Leichti Robert J, Hyde Richard A, Rench Mark L, et al. The continuum of connection rigidity in timber structures [J]. Wood and Fiber Science,2000,22(1):11-19.
    [45]N. Sahin, Guchan. Dynamic testing and stiffness evaluation of a six-storey timber framed building during construction [J]. Engineering Structures,2001,23(10):1232-1242.
    [46]S. A. Young, P. Clancy. Structural modelling of light-timber framed walls in fire [J]. Fire Safety Journal,2001,36(3):241-268.
    [47]Lan Smith, Greg Foliente. Load and Resistance Facor Design of Timber Joints:International Practice and Future Direction [J]. Journal of Structural Engineering,2002,128(1):48-59.
    [48]Philip J. paevere, Greg C. Foliente, Bo Kasal. Load-shearing and Redistribution in a One -Story Wood frame Building[J]. Journal of Structural Engineering,2003,129(9):1275-1284.
    [49]M. Premrov, P. Dobrila, B. S. Bedenik. Analysis of timber-framed walls coated with CFRP strips strengthened fibre-plaster boards [J]. International Journal of Solids and Structures,2004,41(24-25): 7035-7048.
    [50]M. Premrov, P. Dobrila, B. S. Bedenik. Approximate analytical solutions for diagonal reinforced timber-framed walls with fibre-plaster coating material [J]. Construction and Building Materials, 2004,18(10):727-735.
    [51]Robert J.M. Craik, Laurent Galbrun. Vibration transmission through a frame typical of timber-framed buildings [J]. Journal of Sound and Vibration,2005,281(3-5):763-782.
    [52]Chui Ying H, Li Yantao. Modeling timber moment connection under reversed cyclic loading [J]. Journal of Structural Engineering,2005,131(11):1757-1763.
    [53]Eckelman Carl A, Akcay Huseyinl, Haviarova Eval. Performance tests of small barn frame constructed with round mortise and tenon joints [J]. Forest Products Journal,2006,56(4):41-47.
    [54]Leijten A J M, Ruxton S, Prion H, et al. Reversed-cyclic behavior of a novel heavy timber tube connection [J]. Journal of Structural Engineering,2006,132(8):1314-1319.
    [55]Urbonas Kestutis, Daniunas Alfonsas. Behaviour of semi-rigid steel beam-to-beam joints under bending and axial forces[J], Journal of Constructional Steel Research.2006,62(12):1244-1249.
    [56]Daniunas Alfonsas, Urbonas Kestutis. Analysis of the steel frames with the semi-rigid beam-to-beam and beam-to-column knee joints under bending and axial forces [J]. Engineering Structures.2008, 30(11):3114-3118.
    [57]Heiduschke Andreas, Kasal Bo, Haller Peer. Performance and drift levels of tall timber frame buildings under seismic and wind loads [J]. Struct Eng Int J Int Assoc Bridge Struct Eng,2008, 18(2):185-191.
    [58]Eckelman Carl A, Haviarova Eva. Rectangular mortise and tenon semirigid joint connection factors [J]. Forest Products Journal,2008,58(12):49-55.
    [59]Miroslav Premrov, Peter Dobrila. Mathematical modelling of timber-framed walls strengthened with CFRP strips [J]. Applied Mathematical Modelling,2008,32(5):725-737.
    [60]Mascia Nilson Tadeu, Santana Claudia Lucia de Oliveiral, Cramer, Steven M. Evaluation of the equivalent slip modulus of nailed connections for application in linear analysis of plywood timber beams [J].2008,11(2):151-157.
    [61]Miroslav Premrov, Peter Dobrila. Modelling of fastener flexibility in CFRP strengthened timber-framed walls using modified y-method [J], Engineering Structures 2008,30(2):368-375.
    [62]Santana C L O, Mascia N T. Wooden framed structures with semi-rigid connections:Quantitative approach focused on design needs [J]. Structural Engineering and Mechanics,2009,31(3):315-331.
    [63]M. Premrov, M. Kuhta. Influence of fasteners disposition on behaviour of timber-framed walls with single fibre-plaster sheathing boards [J]. Construction and Building Materials,2009,23(7): 2688-2693.
    [64]R.H. Sangree, B.W. Schafer. Experimental and numerical analysis of a halved and tabled traditional timber scarf joint [J]. Construction and Building Materials,2009,23(2):625-624.
    [65]Ulf Arne Girhammar, Bo Kallsner. Elasto-plastic model for analysis of influence of imperfections on stiffness of fully anchored light-frame timber shear walls [J]. Engineering Structures,2009,31(9): 2182-2193.
    [66]潘谷西.中国建筑史[M].北京:中国建筑工业出版社,2003.
    [67]楼庆西.中国传统建筑文化[M].北京:中国旅游出版社,2008.
    [68]刘叙杰.中国古代建筑史(第一卷)[M].北京:中国建筑工业出版社,2003.
    [69]傅熹年,中国古代建筑史(第二卷)[M].北京:中国建筑工业出版社,2001.
    [70]郭黛姮.中国古代建筑史(第三卷)[M].北京:中国建筑工业出版社,2003.
    [71]潘谷西.中国古代建筑史(第四卷)[M].北京:中国建筑工业出版社,2001.
    [72]孙大章.中国古代建筑史(第五卷)[M].北京:中国建筑工业出版社,2002.
    [73]祁英涛.中国古代建筑的维护与保护[M].北京:文物出版社,1986.
    [74]郭黛姮,傅熹年,刘叙杰等.中国古代建筑[M].北京:新世界出版社,2002.
    [75]李充稣.华夏意匠[M].天津:天津大学出版社,2002.
    [76]杨亚弟,杜景林,李贵荣.古建筑震害分析[J].世界地震工程,2003,16(3),12-16.
    [77]刘致平.中国建筑类型和结构[M].北京:中国建筑工业出版社,2003.
    [78]陈明达.中国古代木结构建筑技术[M].北京:文物出版社,1990.
    [79]于卓文.中国宫殿建筑论文集[M].北京:紫禁城出版社,2002.
    [80]中国科学院自然科学史研究所.中国古代建筑技术史[M].北京:科学出版社,1985.
    [81]楼庆西.中国古建筑二十讲[M].北京:三联书店,2001.
    [82]张驭寰.中国古建筑百问[M].北京:中国档案出版社,2000.
    [83]刘致平.中国建筑类型与结构[M].北京:中国建筑工业出版社,1987.
    [84]罗哲文.中国古代建筑[M].上海:上海古籍出版社,2001.
    [85]梁思成.营造法式注释[M].北京:中国建筑工业出版社,1983.
    [86]姚谦峰,陈平.土木工程结构实验[M].北京:中国建筑工业出版社,2001.
    [87]湖南大学,太原工业大学,福州大学.建筑结构实验[M].北京:中国建筑工业出版社,1991.
    [88]朱伯龙.结构抗震实验[M].北京:地震出版社,1989.
    [89]沈聚民,周锡元,高小旺等.抗震工程学[M].北京:中国建筑工业出版社,2000.
    [90]Anil K. Chopra著,谢礼立,吕大刚等译.结构动力学[M].北京:高等教育出版社,2007.
    [9l]R.W.克拉夫,彭津著,王光远等译.结构动力学[M].北京:科学出版社,1983.
    [92]JGJl01-96.建筑抗震实验方法规程[S].北京:中国建筑工业出版社,1997.
    [93]ATC-24. Guidelines for cyclic seismic testing of components of steel structures [S]. Redwood City: Applied Technology Council,1992.
    [94]GB 50011-2001.建筑抗震设计规范[S].北京:中国建筑工业出版社,2001.
    [95]GBl927-91~1943-91,木材物理力学性能规范[S].北京:中国标准出版社,1991.
    [96]R.帕克著,秦文钺译.钢筋混凝土结构(上下册)[M].重庆:重庆大学出版社,1986.
    [97]北京金土木软件技术有限公司,中国建筑标准设计研究院.SAP2000中文版使用指南[M].北京:人民交通出版社,1986.
    [98]陈惠发著,周绥平译.钢框架稳定设计(中文版)[M].上海:世界图书出版公司,1999.
    [99]Chen W F, Toma S. Advanced analysis for steel frames:Theory, Software and Applications [M]. BocaRation, Florada:CRC Press,1994.
    [100]Chen W F, Sohal Ⅰ. Plastic design and second-order analysis of steel frames [M]. New York: Springer-verlag,1995.
    [101]Chen W F, Goto Y, Liew J Y R. Stability design of semi-rigid frames [M]. New York:John Wiley and Sons,1996.
    [102]Chen W F, Kim S E. LRFD steel design using advanced analysis [M]. Boca Ration, Florida:CRC Press,1997.
    [103]陈绍藩.钢结构设计原理[M].北京:科学出版社,1998.
    [104]Chen W F. Plasticity limit analysis and structural design [M]. International Journal of Solids and Structures,2000a,37:81-92.
    [105]N. Kishi, W F Chen, Y Goto, et al. Analysis program for the design of flexibly jointed frames [J]. Computers & Structures,1994,49(4):705-713.
    [106]N. Kishi, W F Chen, Y Goto. Effective length factor of columns in semirigid and unbraced frames [J]. Journal of Structural Engineering,1997,123(3):313-320.
    [107]W F Chen, N Kishi. Semirigid steel beam-to-column connections:database and modeling [J]. Journal of Structural Engineering,1989,115(1):105-119.
    [108]Hajjar J F, Molodan A, Schiller P H. A distributed plasticity model for cyclic analysis of concrete-filled tube beam-columns and composite frames[J]. Engineering Structures,1998,20(4-6): 398-412.
    [109]Hajjar J F, Schiller P H, Molodan A. A distributed plasticity model for concrete-filled steel tube beam-columns with interlayer slip[J]. Engineering structures,1998,20(8):663-676.
    [ll0]李方泽,刘馥清,王正.工程振动测试与分析[M].北京:高等教育出版社,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700